2021

(121) Quantitative analysis of proton exchange membrane prepared by radiation-induced grafting on ultra-thin FEP film X. Li, H. Zhang, C. Lin, Z. He, & V. Ramani, International Journal of Hydrogen Energy, 47(3), pp. 1874-1887, (2021).

(120) Metal‐Nitrogen‐Carbon Cluster‐Decorated Titanium Carbide is a Durable and Inexpensive Oxygen Reduction Reaction Electrocatalyst S. B. Cho, C. He, S. Sankarasubramanian, A. S. Thind, J. Parrondo, J. A. Hachtel, A. Y. Borisevich, J. Idrobo, J. Xie, V. Ramani, & R. Mishra, ChemSusChem, 14(21), pp. 4613-4614, (2021).

(119) High-performance AEM unitized regenerative fuel cell using Pt-pyrochlore as bifunctional oxygen electrocatalyst P. Gayen, S. Saha, X. Liu, K. Sharma, & V. K. Ramani, Proceedings of the National Academy of Sciences, 118(40), (2021).

(118)Electrochemical implications of modulating the solvation shell around redox active organic species in aqueous organic redox flow batteries K. Sharma, S. Sankarasubramanian, J. Parrondo, & V. Ramani, Proceedings of the National Academy of Sciences, 118 (34), (2021).

(117) Development of bimetallic PdNi electrocatalysts toward mitigation of catalyst poisoning in direct borohydride fuel cells S. Saha, P. Gayen, Z. Wang, R. J. Dixit, K. Sharma, S. Basu, & V. K. Ramani, ACS Catalysis, 11(14), pp. 8417-8430, (2021).

(116) Binder-free thin graphite fiber mat sandwich electrode architectures for energy-efficient vanadium redox flow batteries M. Raja, H. Khan, S. Sankarasubramanian, D. Sonawat, V. Ramani, & K. Ramanujam, Catalysis Today, 370, pp. 181-188, (2021).

(115) Self-Anchored Platinum-Decorated Antimony-Doped-Tin Oxide as a Durable Oxygen Reduction Electrocatalyst C. He, S. Sankarasubramanian, A. Ells, J. Parrondo, C. Gumeci, M. Kodali, I. Matanovic, A. K. Yadav, K. Bhattacharyya, N. Dale, P. Atanassov, & V. K. Ramani, ACS Catalysis, 11, pp. 7006-7017, (2021).

(114) Ex-solution kinetics of nickel-ceria–doped strontium titanate perovskites M. Shahid, S. Sankarasubramanian, C. He, V. K. Ramani, & S. Basu, Ionics, 27(6), pp. 2527-2536, (2021).

(113) Titanium carbide: An emerging electrocatalyst for fuel cell and electrolyser S. Saha, B. M. Rajbongshi, V. Ramani, & A. Verma, International Journal of Hydrogen Energy, 46(24), pp. 12801-12821, (2021).

(112) Electrocatalytic hydrogenation of furfural paired with photoelectrochemical oxidation of water and furfural in batch and flow cells R. J. Dixit, A. Singh, V. K. Ramani, & S. Basu, Reaction Chemistry & Engineering, 6(12), pp. 2342-2353, (2021).

(111) Engineering Block Co-polymer Anion Exchange Membrane Domains for Highly Efficient Electrode-Decoupled Redox Flow batteries Z.Wang, S. Sankarasubramanian, J. Willey, H. Feng, H. Xu, & V. Ramani, Sustainable Energy & Fuels, 5, pp. 3606-3616, (2021).

(110) Electrocatalytic hydrogenation of furfural using non-noble-metal electrocatalysts in alkaline medium R. J. Dixit, K. Bhattacharyya, V. K. Ramani, & S. Basu, Green Chemistry, 23, pp. 4201-4212, (2021).

(109) Bidirectional energy & fuel production using RTO-supported-Pt–IrO 2 loaded fixed polarity unitized regenerative fuel cells P. Gayen, X. Liu, C. He, S. Saha, & V. K. Ramani, Sustainable Energy & Fuels, 5(10), pp. 2734-2746, (2021).

2020

(108) Fuel and oxygen harvesting from Martian regolithic brine P. Gayen, S. Sankarasubramanian, & V. K. Ramani, Proceedings of the National Academy of Sciences, 117(50), pp. 31685-31689, (2020).

(107) Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells X. Xie, C. He, B. Li, Y. He, D. A. Cullen, E. C. Wegener, A. J. Kropf, U. Martinez, Y. Cheng, M. H. Engelhard, M. E. Bowden, M. Song, T. Lemmon, X. S. Li, Z. Nie, J. Liu, D. J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, & Y. Shao, Nature Catalysis, 3(12), pp. 1044-1054, (2020).

(106) Facet‐dependent Chlorine and Oxygen Evolution Selectivity on RuO2: An Ab initio Atomistic Thermodynamic Study S. Saha, P. Gayen, & V. K. Ramani, ChemCatChem, 12(19), pp. 4922-4929, (2020).

(105) Alkaline Stability of Pure Aliphatic-based Anion Exchange Membranes Containing Cycloaliphatic Quaternary Ammonium Cations Z. Wang, J. Parrondo, S. Sankarasubramanian, K. Bhattacharyya, M. Ghosh, & V. Ramani, Journal of The Electrochemical Society, 167(12), 124504, (2020).

(104) Reactant-transport engineering approach to high-power direct borohydride fuel cells  Z. Wang, S. Sankarasubramanian, & V. Ramani, Cell Reports Physical Science, 1(7), 100084, (2020).

(103) Oxidation state and oxygen-vacancy-induced work function controls bifunctional oxygen electrocatalytic activity P. Gayen, S. Saha, K. Bhattacharyya, & V. K. Ramani, ACS Catalysis, 10(14), pp. 7734-7746, (2020).

(102) Highly Durable and Active Pt/Sb-Doped SnO2 Oxygen Reduction Reaction Electrocatalysts Produced by Atomic Layer Deposition C. He, X. Wang, S. Sankarasubramanian, A. Yadav, K. Bhattacharyya, X. Liang, & V. Ramani, ACS Applied Energy Materials, 3(6), pp. 5774-5783, (2020).

(101) Influence of water transport across microscale bipolar interfaces on the performance of direct borohydride fuel cells Z.Wang, M. Mandal, S. Sankarasubramanian, G. Huang, P. A. Kohl, & V. K. Ramani, ACS Applied Energy Materials, 3(5), pp. 4449-4456, (2020).

(100) Selective seawater splitting using pyrochlore electrocatalyst P. Gayen, S. Saha, & V. Ramani, ACS Applied Energy Materials, 3(4), pp. 3978-3983, (2020).

(99) Enhanced methane electrooxidation by ceria and nickel oxide impregnated perovskite anodes in solid oxide fuel cells M. Shahid, C. He, S. Sankarasubramanian, V. Ramani, & S. Basu, International Journal of Hydrogen Energy, 45(19), pp. 11287-11296, (2020).

(98) Co₃O₄-Impregnated NiO–YSZ: An Efficient Catalyst for Direct Methane Electrooxidation M., Shahid, C. He, S. Sankarasubramanian, V. Ramani, & S. Basu, ACS Applied Materials & Interfaces, 2020, 12(29), pp. 32578-32590, (2020).

(97) Anisotropy of Pt nanoparticles on carbon-and oxide-support and their structural response to electrochemical oxidation probed by in situ techniques H. Schmies, A. Bergmann, E. Hornberger, J. Drnec, G. Wang, F. Dionigi, S. Kühl, D. Sandbeck, K. Mayrhofer, V. Ramani, S. Cherevko, & P. Strasse, Physical Chemistry Chemical Physics, 22(39), pp. 22260-22270, (2020).

(96) A high performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes G. Braesch, Z. Wang, S. Sankarasubramanian, A. G. Oshchepkov, A. Bonnefont, E. R. Savinova, V. Ramani, & M. Chatnet, Journal of Materials Chemistry A, 8(39), pp. 20543-20552, (2020).

(95) Kinetics of methane electrooxidation in pure and composite anodes of La0.3Y0.1Sr0.4TiO3−δ M. Shahid, V. Ramani, & S. Basu, Journal of Solid State Electrochemistry, 24(1), pp. 145-156, (2020).

(94) Predicting operational capacity of redox flow battery using a generalized empirical correlation derived from dimensional analysis M. Kapoor, R. K. Gautam, V. K. Ramani, & A. Verma, Chemical Engineering Journal, 379, 122300, (2020).

2019

(93) A high-performance membrane electrode assembly for polymer electrolyte membrane fuel cell with poly (arylene ether sulfone) nanofibers as effective membrane reinforcements
Y. Zhao, X. Li, W. W. Li, Z. Wang, S. Wang, X. Xie, & V. Ramani, Journal of Power Sources, 444, 227250, (2019).

(92) Understanding the Oxygen Reduction Reaction Activity and Oxidative Stability of Pt Supported on Nb‐Doped TiO2 C. He, S. Sankarasubramanian, I. Matanovic, P. Atanassov, & V. Ramani, ChemSusChem, 12(15), pp. 3468-3480, (2019).

(91) Tuning anion solvation energetics enhances potassium–oxygen battery performance S. Sankarasubramanian, J. Kahky, & V. Ramani, Proceedings of the National Academy of Sciences, 116(30), pp. 14899-14904, (2019).

(90) Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, & V. Ramani, Nature Energy, 4(4), pp. 281-289, (2019).

(89) Impact of Surface Carbonyl-and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery Y. Li, J. Parrondo, S. Sankarasubramanian, & V. Ramani, The Journal of Physical Chemistry C, 123(11), pp. 6370-6378, (2019).

(88) Methanesulfonic acid-based electrode-decoupled vanadium–cerium redox flow battery exhibits significantly improved capacity and cycle life S. Sankarasubramanian, Y. Zhang, & V. Ramani, Sustainable Energy & Fuels, 3(9), pp. 2417-2425, (2019).

2018

(87) Advances in anion exchange membranes for electrochemical energy conversion Z. Wang, S. Sankarasubramanian, & V. Ramani, Current Opinion in Electrochemistry, 12, pp. 240-245, (2018).

(86) Chloromethylbenzoylation as a simple way to poly (aryl ether) s with side-chain-type benzylic cationic groups for anion-exchange membranes Z. Zhang, X. Yan, L. Yu, H. Xie, L. Wang, & V. K. Ramani, Polymer, 154, pp. 272-280, (2018).

(85) In Situ Stability Studies of Platinum Nanoparticles Supported on Ruthenium−Titanium Mixed Oxide (RTO) for Fuel Cell Cathodes E. Hornberger, A. Bergmann, H. Schmies, S. Kühl, G. Wang, J. Drnec, D. J. S. Sandbeck, V. Ramani, S.  Cherevko, K. J. J. Mayrhofer, & P. Strasser, Catalysis, 8(10), pp. 9675-9683, (2018).

(84) N‐and P‐co‐doped Graphite Felt Electrode for Improving Positive Electrode Chemistry of the Vanadium Redox Flow Battery V. Pasala, J. N. Ramavath, C. He, V. K Ramani, & K. Ramanujam, ChemistrySelect, 3(30), pp. 8678-8687, (2018).

(83) Dimethyl Sulfoxide-Based Electrolytes for High-Current Potassium–Oxygen Batteries S. Sankarasubramanian & V. Ramani, The Journal of Physical Chemistry C, 122(34), pp. 19319-19327, (2018).

(82) Cobalt-based coordination polymer for oxygen reduction reaction P. Mani, A. Sheelam, S. Das, G. Wang, V. K. Ramani, K. Ramanujam, & S. K. Pati, ACS omega 3 (4), pp. 3830-3834, (2018).

(81) Catalytic oxidation of biomass to oxygenated chemicals with exceptionally high yields using H5PV2Mo10O40 T. Lu, Y. Hou, W. Wu, M. Niu, S. Ren, Z. Lin, & V. K. Ramani, Fuel, 216, pp. 572-578, (2018).

(80) Unravelling Degradation Pathways of Oxide‐Supported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions H. Schmies, A. Bergmann, J. Drnec, G. Wang, D. Teschner, S. Kühl, D. J. S. Sandbeck, S. Cherevko, M. Gocyla, M. Shviro, M. Heggen, V. Ramani, R. E. Dunin-Borkowshi, K. J. J. Mayrohofer, & P. Strasser, Advanced Energy Materials, 8(4), 1701663, (2018).

2017

(79) A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications S. Kushwaha, M. P. Karthikayini, G. Wang, S. Mandal, P. A. Bhobe, & V. K. Ramani, Applied Surface Science, 418, pp. 179-185, (2017).

(78) Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries V. Medabalmi, G. Wang, V. K. Ramani, & K. Ramanujam, Applied Surface Science, 418, pp. 9-16, (2017).

(77) β-Nickel hydroxide cathode material for nano-suspension redox flow batteries Y. Li, C. He, E. V. Timofeeva, Y. Ding, J. Parrondo, C. Segre, & V. Ramani, Frontiers in Energy, 11(3), pp. 401-409, (2017).

(76) Detection of reactive oxygen species in anion exchange membrane fuel cells using in situ fluorescence spectroscopy Y. Zhang, J. Parrondo, S. Sankarasubramanian, & V. Ramani, ChemSusChem, 10(15), pp. 3056-3062, (2017).

(75) Ring-opening metathesis polymerization for the preparation of polynorbornene-based proton exchange membranes with high proton conductivity X. Li, Y. Zhao, Z. Feng, X. Xiang, S. Wang, X. Xie, & V. K. Ramani, Journal of Membrane Science, 528, pp. 55-63, (2017).

(74) Pt/C/Ni (OH) 2 bi-functional electrocatalyst for enhanced hydrogen evolution reaction activity under alkaline conditions G. Wang, J. Parrondo, C. He, Y. Li, & V. Ramani, Journal of The Electrochemical Society, 164(13), pp. F1307-F1315, (2017).

(73) Pt/RuO2-TiO2 electrocatalysts exhibit excellent hydrogen evolution activity in alkaline media C. He, G. Wang, J. Parrondo, S. Sankarasubramanian, & V. Ramani, Journal of The Electrochemical Society, 164(12), pp. F1234-F1240, (2017).

(72) Anion exchange membranes based on polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene triblock copolymers: cation stability and fuel cell performance Z. Wang, J. Parrondo, & V. Ramani, Journal of The Electrochemical Society, 164(12), pp. F1216-F1225, (2017).

(71) Polystyrene-block-poly (ethylene-ran-butylene)-block-polystyrene triblock copolymer separators for a vanadium-cerium redox flow battery Z. Wang, J. Parrondo, & V. Ramani, Journal of The Electrochemical Society, 164(4), pp. F372-F378, (2017).

(70) Effect of protonated amine molecules on the oxygen reduction reaction on metal-nitrogen-carbon-based catalysts M. P. Karthikayini, G. Wang, P. A. Bhobe, A. Sheelam, V. K. Ramani, & K. R. Priolkar, Electrocatalysis, 8(1), pp. 74-85, (2017).

2016

(69) X-ray photoelectron spectroscopy study of the degradation of Pt/ITO electrocatalyst in an operating polymer electrolyte fuel cell G. Wang, K. Bhattacharyya, J. Parrondo, & V. Ramani, Chemical Engineering Science, 154, pp. 81-89, (2016).

(68) Study on tunable crosslinking anion exchange membranes fabrication and degradation mechanism Y.  Zhao, L. Feng, J.  Gao, Y. Zhao, S. Wang, V. Ramani, Z. Zhang, & X. Xie, International Journal of Hydrogen Energy, 41(36), pp. 16264-16274, (2016).

(67) Proton conducting self-assembled metal–organic framework/polyelectrolyte hollow hybrid nanostructures U. Sen, M. Erkartal, C. W. Kung, V. Ramani, J. T. Hupp, & O. K. Farha, ACS Applied Materials & Interfaces, 8(35), pp. 23015-23021, (2016).

(66) The performance of all vanadium redox flow batteries at below-ambient temperatures J. Pan, M. Huang, X. Li, S. Wang, W. Li, T. Ma, X. Xie, & V. Ramani, Energy, 107, pp. 784-790, (2016).

(65) Composite anion exchange membranes based on quaternized cardo-poly (etherketone) and quaternized inorganic fillers for vanadium redox flow battery applications S. Yun, J. Parrondo, & V. Ramani, International Journal of Hydrogen Energy, 41(25), pp. 10766-10775, (2016).

(64) Alkaline stability of poly (phenylene oxide) based anion exchange membranes containing imidazolium cations Z. Wang, J. Parrondo, & V. Ramani, Journal of The Electrochemical Society, 163(8), F824, (2016).

(63) Optimization of inactive material content in lithium iron phosphate electrodes for high power applications S. Ha, V. K. Ramani, W. Lu, & J. Prakash, Electrochimica Acta, 191, pp. 173-182, (2016).

(62) Hierarchically structured nanomaterials for electrochemical energy conversion P. Trogadas, V. Ramani, P. Strasser, T. F. Fuller, & M. O. Coppens, Angewandte Chemie International Edition, 55(1), pp. 122-148, (2016).

(61) Contribution of Electrocatalyst Support to PEM Oxidative Degradation in an Operating PEFC V. Prabhakaran, G. Wang, J. Parrondo, V. Ramani, Journal of The Electrochemical Society, 163(14), pp. F1611-F1617, (2016).

(60) Probing oxygen reduction and oxygen evolution reactions on bifunctional non-precious metal catalysts for metal–air batteries T. Thippani, S. Mandal, G. Wang, V. K. Ramani, & R. Kothandaraman, RSC Advances, 6(75), pp. 71122-71133, (2016).

(59) Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments J. Parrondo, Z. Wang, M. S. J. Jung, & V. Ramani, Physical Chemistry Chemical Physics, 18(29), pp. 19705-19712, (2016).

(58) Highly active and durable non-precious metal catalyst for the oxygen reduction reaction in acidic medium M. P. Karthikayini, T. Thirupathi, G. Wang, V. K. Ramani, & R. K. Raman, Journal of The Electrochemical Society, 163(6), pp. F539-F547, (2016).

(57) Evaluation of polycrystalline platinum and rhodium surfaces for the electro-oxidation of aqueous sulfur dioxide M. Potgieter, J. Parrondo, V. K. Ramani, & R. J. Kriek, Electrocatalysis, 7(1), pp. 50-59, (2016).

2015

(56) Mechanically stable poly (arylene ether) anion exchange membranes prepared from commercially available polymers for alkaline electrochemical devices C. G. Arges, L. Wang, M. Jung, & V. Ramani, Journal of The Electrochemical Society, 162(7), F686, (2015).

(55) A Vanadium–Cerium Redox Flow Battery with an Anion‐Exchange Membrane Separator S. Yun, J. Parrondo, & V. Ramani, ChemPlusChem, 80(2), pp. 412-421, (2015).

(54) Synthesis and alkaline stability of solubilized anion exchange membrane binders based on poly (phenylene oxide) functionalized with quaternary ammonium groups via a hexyl spacer J. Parrondo, J. J. Min-suk, Z. Wang, C. G. Arges, & V. Ramani, Journal of The Electrochemical Society, 162(10), pp. F1236-F1242, (2015).

(53) Pyrochlore electrocatalysts for efficient alkaline water electrolysis J. Parrondo, M. George, C. Capuano, K. E. Ayers, & V. Ramani, Journal of Materials Chemistry A, 3(20), pp. 10819-10828, (2015).

(52) Controlling the nitrogen content of metal-nitrogen-carbon based non-precious-metal electrocatalysts via selenium addition K. M. Palanivelu, V. Prabhakaran, V. K. Ramani, & K. Ramanujam, Journal of The Electrochemical Society, 162(6), pp. F475-F482, (2015).

2014

(51) The Activity of Benzyl and Allyl α-H Sites in p-Cresol-grafted Fluorinated Poly(aryl ether oxadiazole) toward the Bromination Reaction Y. Zhao, X. Li, S. Wang, W. Li, X. Zhang, X. Xie, C. Chai, Y. Luo, & V. K. Ramani, Chemistry Letters, 43(12), pp. 1943-1945, (2014).

(50) X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries P. Trogadas, O. O. Taiwo, B. Tjaden, T. P. Neville, S. Yun, J. Parrondo, V. Ramani, M. Coppens, D. J. L. Brett, & P. R. Shearing, Electrochemistry Communications, 48, pp. 155-159, (2014).

(49) Study of Side-chain Effects on the Properties of Anion-exchange Membrane with In Situ Photoswitch C. Li, S. Zhang, S. Wang, X. Xie, C. Deng, & V. K. Ramani, Chemistry Letters, 43(9), pp. 1493-1495, (2014).

(48) Bipolar polymer electrolyte interfaces for hydrogen–oxygen and direct borohydride fuel cells C. G. Arges, V. Prabhakaran, L. Wang, & V. Ramani, International Journal of Hydrogen Energy, 39(26), pp. 14312-14321, (2014).

(47) Density functional theory study of hydroxide-ion induced degradation of imidazolium cations W. Wang, S. Wang, X. Xie, & V. Ramani, International Journal of Hydrogen Energy, 39(26), pp. 14355-14361, (2014).

(46) Hydroxide-ion induced degradation pathway for dimethylimidazolium groups in anion exchange membranes W. Wang, S. Wang, X. Xie, & V. K. Ramani, Journal of Membrane Science, 462, pp. 112-118, (2014).

(45) Bifunctional crosslinking agents enhance anion exchange membrane efficacy for vanadium redox flow batteries W. Wang, M. Xu, S. Wang, X. Xie, Y. Lv, & V. K. Ramani, ACS Applied Materials & Interfaces, pp. 1-28, (2014).

(44) Strong metal–support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts A. Kumar & V. Ramani, ACS Catalysis, 4(5), pp. 1516-1525, (2014).

(43) Electrochemical and Thermal Studies of LiNi {sub 0.8} Co {sub 0.15} Al {sub 0.015} O {sub 2} under Fluorinated Electrolytes A. Benmayza, W. Lu, V. Ramani, & J. Prakash, Electrochimica Acta, 123, pp. 7-13, (2014).

(42) Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, & V. Ramani, Proceedings of the National Academy of Sciences, 111(1), pp. 45-50, (2014).

(41) Simple and facile synthesis of water-soluble poly (phosphazenium) polymer electrolytes C. G. Arges, L. Wang, & V. Ramani, RSC Advances, 4(106), pp. 61869-61876, (2014).

(40) Stability of poly (2, 6-dimethyl 1, 4-phenylene) oxide-based anion exchange membrane separator and solubilized electrode binder in solid-state alkaline water electrolyzers J. Parrondo & V. Ramani, Journal of The Electrochemical Society, 161(10), pp. F1015-F1020, (2014).

(39) Microstructure-property relationships in sulfonated polyether ether ketone/silsesquioxane composite membranes for direct methanol fuel cells S. Yun, J. Parrondo, F. Zhang, & V. Ramani, Journal of The Electrochemical Society, 161(9), pp. F815-F822, (2014).

(38) Derivatized cardo-polyetherketone anion exchange membranes for all-vanadium redox flow batteries S. Yun, J. Parrondo, & V. Ramani, Journal of Materials Chemistry A, 2(18), pp. 6605-6615, (2014).

(37) Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis J. Parrondo, C. G. Arges, M. Niedzwiecki, E. B. Anderson, K. E. Ayers, & V. Ramani, RSC Advances, 4(19), pp. 9875-9879, (2014).

(36) Kinetic and mechanistic investigation of methanol oxidation on a smooth polycrystalline Pt surface G. Hou, J. Parrondo, V. Ramani, & J. Prakash, Journal of The Electrochemical Society, 161(3), pp. F252-F258, (2014).

(35) Structurally-tuned nitrogen-doped cerium oxide exhibits exceptional regenerative free radical scavenging activity in polymer electrolytes V. Prabhakaran & V. Ramani, Journal of The Electrochemical Society, 161(1), pp. F1-F9, (2014).

2013

(34) Best practices for investigating anion exchange membrane suitability for alkaline electrochemical devices: case study using quaternary ammonium poly (2, 6-dimethyl ) C. G. Arges, L. Wang, J. Parrondo, & V. Ramani, Journal of The Electrochemical Society, 160(11), F1258, (2013).

(33) TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability C. P. Lo, G. Wang, A. Kumar, & V. Ramani, Applied Catalysis B: Environmental, 140, pp. 133-140, (2013).

(32) RuO2–SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells A. Kumar & V. K. Ramani, Applied Catalysis B: Environmental, 138, pp. 43-50, (2013).

(31) Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes C. G. Arges & V. Ramani, Proceedings of the National Academy of Sciences, 110(7), pp. 2490-2495, (2013).

(30) Perfluorinated Polymer Electrolytes Hybridized With In Situ Grown Titania Quasi-Networks Y. Patil, S. Sambandam, V. Ramani, & K. Mauritz, ACS Applied Materials & Interfaces, 5(1), pp. 42-48, (2013).

(29) In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell V. Prabhakaran, C. G. Arges, & V. Ramani, Physical Chemistry Chemical Physics, 15(43), pp. 18965-18972, (2013).

(28) Ta0. 3Ti0. 7O2 electrocatalyst supports exhibit exceptional electrochemical stability A. Kumar & V. Ramani, Journal of The Electrochemical Society, 160(11), pp. F1207-F1215, (2013).

(27) Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells S. Sambandam, J. Parrondo, & V. Ramani, Physical Chemistry Chemical Physics, 15(36), pp. 14994-15002, (2013).

(26) Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery J. J. Min-suk, J. Parrondo, C. G. Arges, & V. Ramani, Journal of Materials Chemistry A, 1(35), pp. 10458-10464, (2013).

(25) Investigation of cation degradation in anion exchange membranes using multi-dimensional NMR spectroscopy C. G. Arges & V. Ramani, Journal of The Electrochemical Society, 160(9), pp. F1006-F1021, (2013).

2012

(24) SiO2–RuO2: A Stable Electrocatalyst Support C. P. Lo & V. Ramani, ACS Applied Materials & Interfaces, 4(11), pp. 6109-6116, (2012).

(23) CeO2 Surface Oxygen Vacancy Concentration Governs in Situ Free Radical Scavenging Efficacy in Polymer Electrolytes P. Trogadas, J. Parrondo, & V. Ramani, ACS Applied Materials & Interfaces, 4(10), pp. 5098-5102, (2012).

(22) Kinetics of the oxygen reduction reaction on Pd3M (M= Cu, Ni, Fe) electrocatalysts synthesized at elevated annealing temperatures M. Ramanathan, V. Ramani, & J. Prakash, Electrochimica acta, 75, pp. 254-261, (2012).

(21) Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy V. Prabhakaran, C. G. Arges, & V. Ramani, Proceedings of the National Academy of Sciences, 109(4), pp. 1029-1034, (2012).

(20) Assessing the influence of different cation chemistries on ionic conductivity and alkaline stability of anion exchange membranes C. G. Arges, J. Parrondo, G. Johnson, A. Nadhan, & V. Ramani, Journal of Materials Chemistry, 22(9), pp. 3733-3744, (2012).

2011

(19) Degradation mitigation in PEM fuel cells using metal nanoparticle additives P. Trogadas, J. Parrondo, F. Mijangos, & V. Ramani, Journal of Materials Chemistry, 21(48), pp. 19381-19388, (2011).

(18) Platinum supported on CeO 2 effectively scavenges free radicals within the electrolyte of an operating fuel cell P. Trogadas, J. Parrondo, & V. Ramani, Chemical Communications, 47(41), pp. 11549-11551, (2011).

(17) A perfluorinated anion exchange membrane with a 1, 4-dimethylpiperazinium cation J. J. Min-suk, C. G. Arges, & V. Ramani, Journal of Materials Chemistry, 21(17), pp. 6158-6160, (2011).

2010

(16) Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes S. Sambandam & V. Ramani, Physical Chemistry Chemical Physics, 12(23), pp. 6140-6149, (2010).

2009

(15) Model studies of the durability of a titania-modified nafion fuel cell membrane Y. Patil, S. Sambandam, V. Ramani, & K. Mauritz, Journal of The Electrochemical Society, 156(9), pp. B1092-B1098, (2009).

(14) Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications S. Sambandam, V. Valluri, W. Chanmanee, N. R. de Tacconi, W. A. Wampler, W. Y. Lin, T. F. Carlson, V. Rmani, & K. Rajeshwar, Journal of Chemical Sciences, 121(5), 655, (2009).

2008

(13) Effect of cathode binder IEC on kinetic and transport losses in all-SPEEK MEAs S. Sambandam & V. Ramani, Electrochimica Acta, 53(22), pp. 6328-6336, (2008).

(12) Photocatalytically generated Pt∕ C–TiO2 electrocatalysts with enhanced catalyst dispersion for improved membrane durability in polymer electrolyte fuel cells N. R. de Tacconi, C. R. Chenthamarakshan, K. Rajeshwar, W. Y. Lin, T. F. CarlsonL. NikielW. A. WamplerS. Sambandam, & V. Ramani, Journal of the Electrochemical Society, 155(11), pp. B1102-B1109, (2008).

(11) Degradation mitigation in polymer electrolyte membranes using free radical scavengers P. Trogadas, J. Parrondo, & V. Ramani, ECS Transactions, 16(2), pp. 1725-1733, (2008).

(10) Pt∕ C–WO3 Electrocatalysts for Degradation Mitigation in Polymer Electrolyte Fuel Cells P. Trogadas & V. Ramani, Journal of The Electrochemical Society, 155(7), pp. B696-B703, (2008).

(9) Membranes and MEAs based on sulfonated poly (ether ketone ketone) and heteropolyacids for polymer electrolyte fuel cells V. Ramani, S. Swier, M. T. Shaw, R. A. Weiss, H. R. Kunz, & J. M. Fenton, Journal of The Electrochemical Society, 155(6), pp. B532-B537, (2008).

2007

(8) Pt/C/MnO2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells P. Trogadas & V. Ramani, Journal of Power Sources, 174(1), pp. 159-163, (2007).

(7) SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells S. Sambandam & V. Ramani, Journal of Power Sources, 170(2), pp. 259-267, (2007).

2006

(6) Metal dioxide supported heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation V. Ramani, H. R. Kunz, & J. M. Fenton, Journal of Membrane Science, 279(1-2), pp. 506-512, (2006).

2005

(5) Effect of particle size reduction on the conductivity of Nafion®/phosphotungstic acid composite membranes V. Ramani, H. R. Kunz, & J. M. Fenton, Journal of Membrane Science, 266(1-2), pp. 10-114, (2005).

(4) Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation V. Ramani, H. R. Kunz, & J. M. Fenton, Journal of Power Sources, 152, pp. 182-188, (2005).

(3) Polymer blends based on sulfonated poly (ether ketone ketone) and poly (ether sulfone) as proton exchange membranes for fuel cells  S. Swier, V. Ramani, J. M. Fenton, H. R. Kunz, M. T. Shaw, & R. A. Weiss, Journal of Membrane Science, 256(1-2), pp. 122-133, (2005).

(2) Stabilized heteropolyacid/Nafion® composite membranes for elevated temperature/low relative humidity PEFC operation V. Ramani, H. R. Kunz, & J. M. Fenton, Electrochimica Acta, 50(5), pp. 1181-1187, (2005).

2004

(1) Investigation of Nafion®/HPA composite membranes for high temperature/low relative humidity PEMFC operation V. Ramani, H. R. Kunz, & J. M. Fenton, Journal of Membrane Science, 232(1-2), pp. 31-44, (2004).