(108) Fuel and oxygen harvesting from Martian regolithic brine P. Gayen, S. Sankarasubramanian, & V. K. Ramani, Proceedings of the National Academy of Sciences, 117(50), pp. 31685-31689, (2020).
(107) Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells X. Xie, C. He, B. Li, Y. He, D. A. Cullen, E. C. Wegener, A. J. Kropf, U. Martinez, Y. Cheng, M. H. Engelhard, M. E. Bowden, M. Song, T. Lemmon, X. S. Li, Z. Nie, J. Liu, D. J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, & Y. Shao, Nature Catalysis, 3(12), pp. 1044-1054, (2020).
(106) Facet‐dependent Chlorine and Oxygen Evolution Selectivity on RuO2: An Ab initio Atomistic Thermodynamic Study S. Saha, P. Gayen, & V. K. Ramani, ChemCatChem, 12(19), pp. 4922-4929, (2020).
(105) Alkaline Stability of Pure Aliphatic-based Anion Exchange Membranes Containing Cycloaliphatic Quaternary Ammonium Cations Z. Wang, J. Parrondo, S. Sankarasubramanian, K. Bhattacharyya, M. Ghosh, & V. Ramani, Journal of The Electrochemical Society, 167(12), 124504, (2020).
(104) Reactant-transport engineering approach to high-power direct borohydride fuel cells Z. Wang, S. Sankarasubramanian, & V. Ramani, Cell Reports Physical Science, 1(7), 100084, (2020).
(103) Oxidation state and oxygen-vacancy-induced work function controls bifunctional oxygen electrocatalytic activity P. Gayen, S. Saha, K. Bhattacharyya, & V. K. Ramani, ACS Catalysis, 10(14), pp. 7734-7746, (2020).
(102) Highly Durable and Active Pt/Sb-Doped SnO2 Oxygen Reduction Reaction Electrocatalysts Produced by Atomic Layer Deposition C. He, X. Wang, S. Sankarasubramanian, A. Yadav, K. Bhattacharyya, X. Liang, & V. Ramani, ACS Applied Energy Materials, 3(6), pp. 5774-5783, (2020).
(101) Influence of water transport across microscale bipolar interfaces on the performance of direct borohydride fuel cells Z.Wang, M. Mandal, S. Sankarasubramanian, G. Huang, P. A. Kohl, & V. K. Ramani, ACS Applied Energy Materials, 3(5), pp. 4449-4456, (2020).
(100) Selective seawater splitting using pyrochlore electrocatalyst P. Gayen, S. Saha, & V. Ramani, ACS Applied Energy Materials, 3(4), pp. 3978-3983, (2020).
(99) Enhanced methane electrooxidation by ceria and nickel oxide impregnated perovskite anodes in solid oxide fuel cells M. Shahid, C. He, S. Sankarasubramanian, V. Ramani, & S. Basu, International Journal of Hydrogen Energy, 45(19), pp. 11287-11296, (2020).
(98) Co₃O₄-Impregnated NiO–YSZ: An Efficient Catalyst for Direct Methane Electrooxidation M., Shahid, C. He, S. Sankarasubramanian, V. Ramani, & S. Basu, ACS Applied Materials & Interfaces, 2020, 12(29), pp. 32578-32590, (2020).
(97) Anisotropy of Pt nanoparticles on carbon-and oxide-support and their structural response to electrochemical oxidation probed by in situ techniques H. Schmies, A. Bergmann, E. Hornberger, J. Drnec, G. Wang, F. Dionigi, S. Kühl, D. Sandbeck, K. Mayrhofer, V. Ramani, S. Cherevko, & P. Strasse, Physical Chemistry Chemical Physics, 22(39), pp. 22260-22270, (2020).
(96) A high performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes G. Braesch, Z. Wang, S. Sankarasubramanian, A. G. Oshchepkov, A. Bonnefont, E. R. Savinova, V. Ramani, & M. Chatnet, Journal of Materials Chemistry A, 8(39), pp. 20543-20552, (2020).
(95) Kinetics of methane electrooxidation in pure and composite anodes of La0.3Y0.1Sr0.4TiO3−δ M. Shahid, V. Ramani, & S. Basu, Journal of Solid State Electrochemistry, 24(1), pp. 145-156, (2020).
(94) Predicting operational capacity of redox flow battery using a generalized empirical correlation derived from dimensional analysis M. Kapoor, R. K. Gautam, V. K. Ramani, & A. Verma, Chemical Engineering Journal, 379, 122300, (2020).