Metal, Iron, & Nickel
Take-Home MessageThe metal in meteorites strongly attracts a magnet. If you have a piece of metal or a rock that contains metal but it does not attract a magnet, then it is not a meteorite. Meteorites do not contain visible grains or chunks of nonferrous metals like aluminum, manganese, chromium, copper, brass, or gold.If you have a piece of metal that does attract a magnet and want to know if it is an iron meteorite, obtain a chemical analysis for the elements iron (Fe), cobalt (Co), nickel (Ni), chromium (Cr), and manganese (Mn). Iron meteorites will have 75-95% Fe, 5-25% Ni, 0.2-2% Co, and <0.05 % (<500 ppm) each of Cr and Mn. A metallurgical testing lab can provide this analysis. I recommend testing for Cr and Mn because most industrial (man-made) iron contains higher concentrations of these elements than does metal in meteorites. If the metal contains more than 0.05% chromium or manganese, then it is not a meteorite. |
Iron-Nickel Metal

More than 95% of all meteorites contain iron-nickel (FeNi) metal. As a consequence, meteorites have concentrations of nickel that are much greater than that of nearly any terrestrial rock.
“Iron-nickel” means that the metal is mostly iron but it also contains 5-30% nickel. The metal occurs as two different alloys known as kamacite (lower nickel concentration) and taenite (higher nickel concentration). Both alloys strongly attract magnets. Neither alloy occurs naturally in Earth rocks, so a natural rock that contains kamacite or taenite is a meteorite.
The metal in meteorites also contains a few tenths of a percent cobalt; the nickel/cobalt ratio in meteoritic metal is usually in the 10-25 range. Iron-nickel metal in meteorites also has high concentrations (by terrestrial standards) of rare metals like gold, platinum, and iridium. It is usually easiest and cheapest to test for nickel, however, because it is more abundant and easier to measure than the rare metals.
Ordinary Chondrites

Most metal-bearing meteorites are stony meteorites known as ordinary chondrites; the rest are other types of chondrites, brecciated achondrites, irons, and stony irons (see statistics). Among ordinary chondrites, the most common type, H-group chondrites (45%), have the most metal, 15-20% by mass. L-group chondrites (40%) have some metal, 7-11%. LL-group chondrites (15%) have the least metal among ordinary chondrites, 3-5%. Because chondrites are rich in metal and the metal is rich in nickel, all chondrites have bulk (whole-rock) concentrations of nickel of 1.0-1.8% (i.e., 10,000-18,000 ppm). That is 100-1000 times greater than practically any terrestrial (Earth) rock. An Earth rock with as much as 1.0-1.8% Ni would be a nickel ore. In terrestrial rocks the nickel is not contained in metal, however, but in silicate and sulfide minerals.
One cannot determine if a rock contains high concentrations of nickel just “by looking.” FeNi metal looks just like Fe metal. A chemical analysis is required. Metal detectors cannot determine if a rock contains 1-2% Ni or that a chunk of metal contains 5-30% nickel. |
Many people have told me, “But, it contains metal!” when there really isn’t any. Sometimes it is hard to tell the difference between metal and shiny nonmetals like some sulfide and oxide minerals or micas. If the “metal” is yellowish, then it is not metal but pyrite (“fool’s gold”). If the rock contains shiny bits but it does not attract a cheap ceramic magnet, then it is not a meteorite.
One easy test for grains or slabs that are at least a few millimeters in size is simply to measure the electrical resistance with an ohmmeter. You can buy handheld multimeters in any good hardware store for $30. (They are useful for checking the voltage on partially used batteries.) In resistance mode (ohms), putting the leads some distance apart on any of these iron meteorites would give a low resistance – <100 or probably <10 ohms. This test may not work on an ordinary chondrite because the iron grains are not connected. A shiny hematite or pyrite aggregate will have high electrical resistance because they do not conduct electricity.

Some rare meteorites do not contain any appreciable metal and, consequently, they have low concentrations of Ni. Unbrecciated achondrites are poor in metal. In other words, many of the rarest types of meteorites contain little or no metal and have low nickel concentrations, just like Earth rocks.
Iron Meteorites and Pallasites
Iron meteorites, of course, are nearly 100% metal, although many contain the iron sulfide mineral troilite. Pallasites, a rare type of stony-iron meteorite, consist of olivine grains embedded in an iron-nickel metal matrix. Because they contain much iron-nickel metal, all metal-bearing meteorites are attracted to a magnet. The concentration of nickel in iron meteorites and the metallic part of pallasites, typically 5-30%, is much greater than that in industrial metals except for high-nickel steels. The concentration of nickel in industrial iron is usually <1%.


Widmanstätten patterns do not occur in stony meteorites. They only seen in iron meteorites that have been cut, polished, and etched. |







Industrial Slag

With a few rare and exceptions, naturally occurring terrestrial rock do not contain iron metal or iron-nickel metal. There are two reasons. First, the Earth formed from the same kind of material as the asteroids but early in Earth’s history the iron-nickel metal that it contained sank to form the Earth’s core. Second, any metal that did not sink has oxidized (rusted) over Earth’s long history. The Earth’s environment is far more oxidizing (oxygen atmosphere and water) than space, where meteorites originate. Earth rocks do contain iron and nickel, but only in oxidized (non-metallic) form. Therefore, if you find a rock that contains iron-nickel metal, then it is almost certainly a meteorite.

Many people find slags, other by-products of metal manufacturing, and man-made metal things. Some may have been from forges or blacksmith shops that are more than 100 years old. Others appear to have fallen from the sky for unknown reasons (see Getafe). Metal in slags and industrial by-products is mostly iron. Such materials will probably contain little nickel (much less than 1%). So, if you can determine that the sample has little or no nickel, then the sample is not a meteorite. Also, as noted above, the metal in meteorites has very low concentrations of chromium and manganese, <0.05%. These two elements are common in man-made metals, however.
Look at how metal grains are distributed in these photos of ordinary chondrites. The metal does not occur in big round globules. Globs are typical of slags. Notice that the metal is sufficiently soft that saw marks and smearing can be seen on the sawn faces. Sulfide minerals do not do that. Note that the meteorites do not contain vesicles. Vesicles (gas bubbles) are typical of slags, however.
Bottom LineIf you have a chunk of metal or a rock that contains metal and the metal contains >5% nickel (Ni), then it is probably a meteorite. If the metal contains <5% nickel, then the metal chunk or rock is not a meteorite. If the metal contains >0.1% chromium (Cr) or manganese (Mn), then it is not a meteorite, however.If you have a rock that contains between 1.0 and 1.8% nickel (whole-rock analysis), whether or not it appears to contain metal, then the rock might be a meteorite (ordinary chondrite).If you have a rock that does not contain metal and has a low concentration of nickel (<1% = <10,000 ppm), then it could still be a rare type of meteorite, an unbrecciated achondrite. The probability is exceedingly small, however, because nearly all (guesstimate: >99.999%) Earth rocks have the same properties – no iron-nickel metal and low concentrations of nickel (<0.3%). |