2021-present

Chung, K. M., Demianski, A. J., Harrison, G. J., Laurie-Berry, N., Mitsuda, N., Kunkel, B. N.  2022. Jasmonate Hypersensitive 3 (JAH3) negatively regulates both jasmonate and ethylene-mediated responses in Arabidopsis. J. Exp. Bot. In Press. erac208,  https://doi.org/10.1093/jxb/erac208

Djami-Tchatchou, A. T., Li, A., Li, Stodghill, P., Filiatrault, M. J. and Kunkel, B. N. Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strainDC3000. 2022. J. Bacteriol. 204. e00380-21 journals.asm.org/doi/10.1128/JB.00380-21.

B. N. Kunkel and J. Johnson.  2021. Auxin plays multiple roles during plant-pathogen interactions. Cold Spring Harbor Perspectives: Auxin Signaling. Editors: Dolf Weijers, Karin Ljung, Mark Estelle, and Ottoline Leyser.Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a040022.

2011-2020

Zhang K, Lee JS, Liu R, Chan ZT, Dawson TJ, De Togni ES, Edwards CT, Eng IK, Gao AR, Goicouria LA, Hall EM, Hu KA, Huang L, Kizhner A, Kodama KC, Lin AZ, Liu JY, Lu AY, Peng OW, Ryu EP, Shi S, Sorkin ML, Walker PL, Wang GJ, Xu MC, Yang RS, Cascella B, Cruz W, Holland, CK, McClerkin SA, Kunkel BN, Lee SG, Jez JM. 2020. Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen Pseudomonas syringae PtoDC300. Biosci Rep. 40: BSR20202959. doi.org/10.1042/BSR20202959 

Lee, S.G., Harline, K., Abar, O., Akadri, S.O., Bastian, A.G., Chen, H.Y., Duan, M., Focht, C.M., Groziak, A.R., Kao, J., Kottapalli, J.S., Leong, M.C., Lin, J.J., Liu, R., Luo, J.O., Meyer, C.M., Mo, A.F., Pahgn, S.H., Penna, V., Raciti, C.D., Srinath, A., Sudhakur, S., Tang, J.D., Cox, B.R., Holland, C.K., Cascella, B., Cruz, W., McClerklin, S.A., Kunkel, B. N., Jez, J. M.  2020. The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase.  J. Biol. Chem. 295, 13914-26. https://www.jbc.org/content/295/40/13914.

Djami-Tchatchou, A.  Harrison, G., Harper, C., Wang,R., Prigge, M. J.,  Estelle, M. and Kunkel, B. N. 2020. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. Molec. Plant-Microbe Interact. 33: pp. 1059–1071. https://doi.org/10.1094/MPMI-02-20-0047-R.  ***Editors Pick for August 2020***

Lee, S.G., Harline, K., Abar, O., Akadri, S.O., Bastian, A.G., Chen, H.Y., Duan, M., Focht, C.M., Groziak, A.R., Kao, J., Kottapalli, J.S., Leong, M.C., Lin, J.J., Liu, R., Luo, J.O., Meyer, C.M., Mo, A.F., Pahgn, S.H., Penna, V., Raciti, C.D., Srinath, A., Sudhakur, S., Tang, J.D., Cox, B.R., Holland, C.K., Cascella, B., Cruz, W., McClerklin, S.A., Kunkel, B. N., Jez, J. M.  2020. The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase.  J. Biol. Chem. 295, 13914-26. AldC is a long-chain aliphatic aldehyde dehydrogenase.  J. Biol. Chem. 295, 13914-26. https://www.jbc.org/content/295/40/13914

Kunkel, B. N.and Harper, C. P. 2018. The roles of auxin during interactions between bacterial plant pathogens and their hosts. J. Exp. Bot. 69:245-254. https://doi.org/10.1093/jxb/erx447

McClerklin, S. A., Lee, S. G., Harper, C. P., Nwumeh, R., Jez, J.M. and Kunkel, B.N. 2018.Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringaestrain DC3000. PLoS Pathog. 2018 Jan 2;14(1):e1006811. https://www.ncbi.nlm.nih.gov/pubmed/29293681

Prigge, M., Greenham, K., Zhang, Y., Santner, A., Castillejo, C., Mutka, A. M., O’Malley, R. C., Ecker, J.R., Kunkel, B. N., and Estelle, M. 2016. The Arabidopsis Auxin Receptor F-box proteins AFB4 and AFB5 are Required for Response to the Synthetic Auxin Picloram. Genes|Genomes|Genetics. 2016 Mar 14.  g3.115.025585  http://www.g3journal.org/content/early/2016/03/23/g3.115.025585.long

Shi, W., Zeng, Q., Kunkel, B.N.,and Running, M.P. 2016. Arabidopsis Rab Geranylgeranyltransferases Demonstrate Redundancy and Broad Substrate Specificity in vitroJournal of Biological Chemistry, pii: jbc.M115.673491. https://doi.org/10.1074/jbc.M115.673491

Cui, F., Wu, S., Sun, W., Coaker, G.,B. N. Kunkel, He, P. and Shan, L. 2013. Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis Aux/IAA protein turnover. Plant Physiol. 162: 1018–1029.

Mutka, A. M., Fawley, S., Tsao, T., and B. N. Kunkel, 2013. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J. 74: 746–754. 

Melotto, M. and B. N. Kunkel, 2013. Virulence strategies of plant pathogenic bacteria. In: The Prokaryotes, 4th Ed. Rosenberg E, Stackebrand E, DeLong EF, Thompson F, Lory S (eds). Springer-Verlag, Berlin. http://link.springer.com/referenceworkentry/10.1007%2F978-3-642-30141-4_62.

Demianski. A. J. Chung, K. Mi, B. N. Kunkel, 2011. Analysis of JAZ gene expression during Pseudomonas syringae pathogenesis reveals that JIN1/AtMYC2regulates only a subset of JAZ genes and that JAZ10 is a negative regulator of disease symptom development. Mol. Plant Pathol. 13: 46-57. https://doi.org/10.1111/j.1364-3703.2011.00727.x

2001-2010

Mellgren, E. M., Kloek, Andrew P. and B. N. Kunkel, 2009. Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. tomato strain DC3000 on Arabidopsis thaliana. J. Bacteriol. 191:3132-3141. 
Link to Abstract/PDF: http://www.ncbi.nlm.nih.gov:80/pmc/articles/PMC2681806

Chen, Z., Agnew, J. L., Cohen, J. D., He, P., Shan, L.,Sheen, J. and B. N. Kunkel. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Nat. Acad. Sci. USA. 104: 20131-20136. 
Link to Abstract/PDF: http://www.pnas.org/content/104/50/20131.full.pdf+html

Uppalapati, S. R, Ishiga, Y. Wangdi, W., Kunkel, B. N. Anand, A., Mysore, K. S and C. L. Bender. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Molec. Plant-Microbe Interact. 20:955-965. 
Link to Abstract: http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-20-8-0955

Sreedharan, A., Penaloza-Vazquez, A., Kunkel, B. N., and Bender, C. L. 2006. CorR regulates multiple components of virulence in Pseudomonas syringae pv.tomato DC3000. Molec. Plant-Microbe Interact. 19: 768-779. 
Link to abstract: http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-19-0768

Laurie-Berry, N., Joardar, V., Street, I. H., and B. N. Kunkel. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Molec. Plant-Microbe Interact. 19: 789-800. https://doi.org/10.1094/MPMI-19-0789

Kunkel, B. N. and Z. Chen. 2006. Virulence strategies of plant pathogenic bacteria. In M. Dworkin et al., eds., The Prokaryotes, Vol. 2 pp. 421-440. M. Dworkin et al., eds. Springer, New York. https://link.springer.com/referenceworkentry/10.1007/0-387-30742-7_14

Preiter, K., Brooks, D. M., Penaloza-Vazquez, A., Sreedharan, A., Bender, C. L., and B. N. Kunkel. 2005. Novel virulence gene of Pseudomonas syringae pathovar tomato strain DC3000. J. Bacteriol. 187: 7805-14.
http://jb.asm.org/cgi/content/abstract/187/22/7805

Brooks, D. M., Bender, C. L., and B. N. Kunkel. 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6: 629-639. https://doi.org/10.1111/j.1364-3703.2005.00311.x

Lim, M. T. S. and B. N. Kunkel. 2005. The Pseudomonas syringae gene avrRpt2 contributes to virulence on tomato. Molec. Plant-Microbe Interact. 18: 626-633. 
https://doi.org/10.1094/MPMI-18-0626

Kover, P. X., Wolf, J. B., Kunkel, B. N., and J. M. Cheverud. 2005. The genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. Heredity. 94:507-517. https://doi.org/10.1038/sj.hdy.6800651

Kunkel, B. N., Agnew, J., Collins, J. J., Cohen, J. and Chen, Z. 2004. Molecular Genetic Analysis of AvrRpt2 Activity in Promoting Virulence of Pseudomonas syringae. In: Genomic and Genetic Analysis of Plant Parasitism and Defense. S. Tsuyumu, J. Leach, T. Shiraishi and T. Wolpert (eds.), The American Phytopath. Society Press, Saint Paul, MN, pp. 92-102.

Lim, M. T. S., and B. N. Kunkel. 2004b The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. Plant J. 40: 790-798. 
http://dx.doi.org/10.1111/j.1365-313X.2004.02251.x

Lim, M. and B. N. Kunkel. 2004a. Mutations in the Pseudomonas syringae avrRpt2gene that dissociate its virulence and avirulence activities lead to decreased efficiency in the AvrRpt2-induced disappearance of RIN4. Molec. Plant-Microbe Interact. 17:313-321. 
https://doi.org/10.1094/MPMI.2004.17.3.313

He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B. N, Alfano, J. R., Tang, Z., and J. Zhou. 2004. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J. 37:589-602. https://doi.org/10.1111/j.1365-313X.2003.01986.x

Chen, Z., Kloek, A. P., Cuzick, A., Moeder, W., Tang, D., Innes, R. W., Klessig, D.F., McDowell, J. M. and B. N. Kunkel. 2004. The Pseudomonas syringae  type III effector AvrRpt2 functions down stream or independently of SA to promote virulence on Arabidopsis. Plant J. 37: 494-504.
http://dx.doi.org/10.1111/j.1365-313X.2003.01984.x

Brooks, D. M, G. Hernandez-Guzman, A. P. Kloek, F. Alarcon-Chaidez, A. Sreedharan, V. Rangaswamy, A. Penaloza-Vazquez, C. L. Bender and B. N. Kunkel. 2004. Identification and characterization of a well-defined series coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Molec. Plant-Microbe Interact. 17:162-274. https://doi.org/10.1094/MPMI.2004.17.2.162

Kunkel, BN. and D. M Brooks. 2002 Cross talk between signaling pathways in pathogen defense. Current Opin Plant Biology 5: 325-332.
http://dx.doi.org/10.1016/S1369-5266(02)00275-3

Stokes, T. L., B. N. Kunkel and E. J. Richards. 2002. Epigenetic variation in Arabidopsis disease resistance. Genes and Development 16: 171-182.
http://www.genesdev.org/cgi/reprint/16/2/171

Boch, J., V. Joardar, L. Gao, T. L. Robertson, M. Lim, and B. N. Kunkel. 2002. Identification of Pseudomonas syringae genes induced during infection of Arabidopsis thaliana. Mol. Microbiol. 2002 44: 73-88. 
http://dx.doi.org/10.1046/j.1365-2958.2002.02877.x

Zweisler-Vollick, J. A. Plovanich-Jones, K. Nomura, S. Bandyopadhyay, V. Joardar, B. N. Kunkel and S. Y. He. 2002.  Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome.  Mol. Microbiol. 45: 1207. https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2002.02964.x

Kloek, A. P., M. L. Verbsky, S. B. Sharma, J. E. Schoelz, J. Vogel, D. F. Klessig, and B. N. Kunkel. 2001. Resistance to Pseudomonas syringae conferred by anArabidopsis thaliana coronatine insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26:509-522. http://dx.doi.org/10.1046/j.1365-313x.2001.01050.x

1996-2000

Chen, Z., A. P. Kloek, J. Boch, F. Katagiri and B. N. Kunkel. 2000. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Molec. Plant-Microbe Interact. 13:1312-1321.  https://doi.org/10.1094/MPMI.2000.13.12.1312

Kloek, A., D. M. Brooks and B. N. Kunkel.  2000.  A dsbA mutant of P. syringae exhibits reduced virulence and partial impairment of Type III secretion. Mol. Plant Pathol. 1: 139-150. https://doi.org/10.1046/j.1364-3703.2000.00016.x

Mobley, E., B. N. Kunkel and B. Keith.  1999.  Identification, characterization and comparative analysis of a novel chorismate mutase gene in Arabidopsis thaliana.  Gene. 240:115-23. https://doi.org/10.1016/S0378-1119(99)00423-0

Caicedo, A. L., B. A. Schaal and B. N. Kunkel. 1999.  Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 96: 302-306. https://doi.org/10.1073/pnas.96.1.302

Boch, J., M. L. Verbsky, T. L. Robertson, J. C. Larkin and B. N. Kunkel.  1998.  Analysis of resistance gene-mediated defense responses in Arabidopsis thaliana plants carrying a mutation in CPR5. Molec. Plant-Microbe. Interact. 11: 1196-1206. https://doi.org/10.1094/MPMI.1998.11.12.1196

Kunkel, B. N. 1996.  A Useful Weed put to work: Genetic analysis of disease resistance in Arabidopsis thaliana. Trends in Genetics. 12: 63-69 https://doi.org/10.1016/0168-9525(96)81402-8

Decatur, A. L., M. T. McMurray, B. N. Kunkel, and R. Losick.  1996.  Translation of the messenger RNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon the translation of a small upstream open-reading frame. J. Bacteriol. 179:1324-28. https://doi.org/10.1128/jb.179.4.1324-1328.1997

1986-1994 (Prior to moving to WUSTL)

Bent, A. F., B. N. Kunkel, D.  Dahlbeck, K. L. Brown, R. Schmidt, J. Giraudat, J. Leung, and B. J. Staskawicz.  1994.  RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes.  Science 265: 1856-1860. https://doi.org/10.1126/science.8091210

Innes, R. W., A. F. Bent, B. N. Kunkel, S. Bisgrove and B. J. Staskawicz. 1993.  Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes.  J. Bacteriol.  175: 4859-4896 https://doi.org/10.1128/jb.175.15.4859-4869.1993

Kunkel, B. N., A. F. Bent, D. Dahlbeck, R. W. Innes and B. J. Staskawicz. 1993.  RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas  syringae strains expressing the avirulence gene avrRpt2.  The Plant Cell.  5: 865-875. https://doi.org/10.1105/tpc.5.8.865

Kunkel, B. N., A. F. Bent, D. Dahlbeck, R. W. Innes and B. J. Staskawicz. 1993. Identification of an Arabidopsis locus that governs avirulence gene-specific disease resistance. In  Advances in Molecular Genetics of Plant-Microbe Interactions. Volume 2.  Eds E. Nester and D. Verma.  Kluver Academic Publishers, Dordrecht, The Netherlands. pp. 417-421. https://doi.org/10.1007/978-94-017-0651-3_45

R. W. Innes, A. F. Bent, B. N. Kunkel and B. J. Staskawicz. 1992.  Identifying genes controlling disease resistance in Arabidopsis.  Pages 48-59 in: In Arabidopsis thaliana as a Model system for studying plant-pathogen interactions.  Davis, K. R. and Hammerschmidt, R., eds.  American Phytopathological Society, St. Paul, MN.

Kunkel, B. 1991.  Compartmentalized gene expression during sporulation in Bacillus subtilis.  Trends Genet. 7: 167-172. https://doi.org/10.1016/0168-9525(91)90381-Y

Cutting, S., A. Driks, R. Schmidt, B. Kunkel and R. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sK processing in Bacillus subtilis.  Genes. Dev. 5: 456-466. http://genesdev.cshlp.org/content/5/3/456.long

Kunkel, B., R. Losick, and P. Stragier. 1990. The Bacillus subtilis gene for the developmental transcription factor sK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes. Dev. 4: 525-535. http://genesdev.cshlp.org/content/4/4/525.full.pdf+html

Kunkel, B., L. Kroos, H. Poth, P. Youngman, and R. Losick. 1989.  Temporal and Spatial Control of the Mother-cell RegulatoryGene spoIIID of Bacillus subtilis. Genes Dev. 3: 1735-1744. http://genesdev.cshlp.org/content/3/11/1735.full.pdf+html

Stragier, P., B. Kunkel, L. Kroos and R. Losick. 1989.  Chromosomal Rearrangement Generating a Composite Gene for a Developmental Transcription Factor.  Science 243: 507-512. https://doi.org/10.1126/science.2536191

Kroos, L., B. Kunkel, and R. Losick.  1989. Switch Protein Alters Specificity of RNA Polymerase Containing a Compartment-Specific Sigma Factor.  Science 243: 526-529. https://doi.org/10.1126/science.2492118

Kunkel, B., K. Sandman, S. Panzer, P. Youngman, and R. Losick. 1988.  The Promoter for a Sporulation Gene in the spoIVC  Locus of Bacillus subtilis  and Its Use in Studies of Temporal and Spatial Control of Gene Expression.  J. Bacteriol. 170: 3513-3522. https://doi.org/10.1128/jb.170.8.3513-3522.1988

Finan, T. M., B. Kunkel, G.F. De Vos, and E. R. Signer. 1986.  Second Symbiotic Megaplasmid in Rhizobium meliloti Carrying Exopolysaccharide and Thiamine Synthesis Genes.  J. Bacteriol. 167:  66-72. https://dx.doi.org/10.1128%2Fjb.167.1.66-72.1986

NOTE: In accordance with Washington University’s Open Access Resolution, all possible effort is made to make our publications freely available to the public. We are posting what we can at the Washington University Open Scholarship repository.