Brooks DM, Bender CL, Kunkel BN. 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thalianaMol Plant Pathol 6: 629-639.  https://doi.org/10.1111/j.1364-3703.2005.00311.x

Brooks DM, Hernández-Guzmán G, Kloek AP, Alarcón-Chaidez F, Sreedharan A, Rangaswamy V, Peñaloza-Vázquez A, Bender CL, Kunkel BN. 2004. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato strain DC3000. Mol Plant-Microbe  Interact 17: 162-174. https://doi.org/10.1094/MPMI.2004.17.2.162

Chen Z, Agnew JL, Cohen JD, He P, Shan L, Sheen J, Kunkel BN. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl Acad Sci USA 104: 20131-20136. http://www.pnas.org/content/104/50/20131.full.pdf+html

Conway JM, Walton WG, Salas-González I, Law TF, Lindberg CA, Crook LE, Kosina SM, Fitzpatrick CR, Lietzan AD, Northen TR et al. 2022. Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome. Nature Microbiol 7: 1817-1833.

Djami-Tchatchou AT, Harrison GA, Harper CP, Wang R, Prigge MJ, Estelle M, Kunkel BN. 2020. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringaePtoDC3000 pathogenesis. Mol Plant Microbe Interact 33: 1059-1071. 10.1094/MPMI-02-20-0047-R

Djami-Tchatchou AT, Li ZA, Stodghill P, Filiatrault MJ, Kunkel BN. 2022. Identification of IAA-regulated genes in Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol 204: e00380-21 journals.asm.org/doi/10.1128/JB.00380-21

Duca D, Lorv J, Patten CL, Rose D, Glick BR. 2014. Indole-3-acetic acid in plant-microbe interactions.Antonie Van Leeuwenhoek 106: 85-125.

Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R. 2009. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chem Biol 5: 344-350.

Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26: 509-522. http://dx.doi.org/10.1046/j.1365-313x.2001.01050.x

Kunkel BN, Johnson JMB. 2021. Auxin plays multiple roles during plant–pathogen interactions. Cold Spring Harbor Perspectives in Biology. https://cshperspectives.cshlp.org/content/early/2021/03/29/cshperspect.a040022.full.pdf

Laurie-Berry N, Joardar V, Street IH, Kunkel BN. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringaeMolec Plant-Microbe Interact 19: 789-800. https://apsjournals.apsnet.org/doi/epdf/10.1094/MPMI-19-0789

Lee C-Y, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. 2024. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae-Arabidopsis thaliana pathogenesis. Front  Plant Sci 15. https://doi.org/10.3389/fpls.2024.1408833

McAtee PA, Brian L, Curran B, van der Linden O, Nieuwenhuizen NJ, Chen X, Henry-Kirk RA, Stroud EA, Nardozza S, Jayaraman J et al. 2018. Re-programming of Pseudomonas syringae pv. actinidiae gene expression during early stages of infection of kiwifruit. BMC Genomics 19: 822.

McClerklin SA, Lee SG, Harper CP, Nwumeh R, Jez JM, Kunkel BN. 2018. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLoS Pathog 14: e1006811. https://doi.org/10.1371/journal.ppat.1006811.

Melotto M, Kunkel BN. 2013. Virulence strategies of plant pathogenic bacteria. The PRokaryotes, 4th editionhttps://link.springer.com/referenceworkentry/10.1007/978-3-642-30141-4_62.

Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell 126: 12.

Mutka AM, Fawley S, Tsao T, Kunkel BN. 2013. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J 74: 746–754. Plant J. 74: 746–754. 

Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436-439.

Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current biology : CB 17: 1784-1790.

Xin XF, Kvitko B, He SY. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol16: 316-328.

Zhou JM, Zhang Y. 2020. Plant immunity: Danger perception and signaling. Cell 181: 978-989.