Lunar Meteorite: Queen Alexandra Range 93069 & 94269
paired stones
Listed in The Meteoritical Bulletin, No. 79 from Antarctic Meteorite Newsletter, vol. 17, No. 2, 1994 (PDF p. 3) Queen Alexandra Range 93069 (QUE 93069)Queen Alexandra Range, Transantarctic Mountains, AntarcticaDimensions (cm): 5.0 x 2.2 x 2.3 Meteorite Type: Lunar-anorthositic breccia Macroscopic Description: Cecilia Satterwhite and Marilyn Lindstrom. The overall shape of this lunar meteorite is approximately one third of a flat ovoid. Thick gray-green frothy fusion crust covers the top while thin granular medium olive green-brown fusion crust covers the bottom. The north face is a fractured surface with exposed interior matrix and abundant fractures. This surface consists of black matrix with abundant millimeter sized white/ gray clasts. Some clasts have weathered to a yellowish color. One gray clast is visible in a fracture. Cleaving this meteorite revealed a lighter gray matrix with small clasts of various sizes. One white, friable clast (3 x 2 mm) is directly below the fusion crust. An area 2 x 2 mm near this clast has a uniform, dusty-gray appearance with an indistinguishable border. All of the clasts present are small and friable and unfortunately may not be extractable. Thin Section (,5) Description: Brian Mason. The section shows a microbreccia of small plagioclase grains and granular clasts, up to 0.6 mm across, in a translucent to semi-opaque brown glassy matrix; colorless vesicular fusion crust is present on one edge. There is one large clast, 2.4 x 3.6 mm, of pale brown partly devitrified glass. Traces of metallic iron, as irregular grains up to 40 microns, are present. Microprobe analyses show that the plagioclase is almost pure anorthite (Na2O 0.3-0.4%, K2O less than 0.1%). The composition of the fusion crust, probably a reasonable approximation for the bulk meteorite, is (weight percent): SiO2 44, Al2O3 27, FeO 4.4, MgO 4.5, CaO 16, Na2O 0.32, K2O less than 0.1 %, TiO2 0.24, MnO 0.10. The FeO : MnO ratio is high, 44-75, characteristic of lunar material. The meteorite is an anorthositic microbreccia, presumably of lunar origin. In thin section, it is very similar to MAC 88105 (Antarctic Meteorite Newsletter 12(2), 1989). |
Listed in The Meteoritical Bulletin, No. 79 from Antarctic Meteorite Newsletter, vol. 18, No. 2, 1995 Queen Alexandra Range 94269 (QUE 94269)Queen Alexandra Range, Transantarctic Mountains, AntarcticaDimensions (cm): 1.9 x 1.4 x 1.3 Meteorite Type: Lunar-Anorthositic Breccia Macroscopic Description: Roberta Score. This lunar meteorite is identical to QUE93069 and would probably fit together if QUE93069 was still in one piece. One side of this flat stone has thick gray-green, frothy fusion crust. The other side has thin, weathered, dull green-brown fusion crust. A fractured surface reveals the interior matrix which is dark gray to black with abundant inclusions. The largest inclusion is white and measures 1.0 x 0.2 cm. The newly exposed interior surface has a lighter gray-colored matrix and abundant white and gray clasts. One white clast measures 0.4 x 0.2 cm. Other inclusions present include fine-grained, buff-colored clasts, several brecciated gray clasts, and smaller white clasts. Many clasts have weathered to a yellowish color. As in QUE93069, most of the clasts are small and friable and, unfortunately, are not extractable. Thin Section (,5 and ,7) Description: Brian Mason. The sections show a microbreccia of granular clasts, up to 1.5 mm across, and small plagioclase grains, in a translucent to semi-opaque brown glassy matrix; one grain of metallic iron, 0.3 mm across, was noted. Most of the plagioclase is almost pure anorthite (Na2O 0.3-0.5%, K2O less than 0.1%), with a few grains with higher Na2O, up to 3.2%. QUE94269,7 has a 3 mm clast of subequal amounts of plagioclase and pyroxene; the plagioclase is anorthite (Na2O 0.3-0.5%), the pyroxene ranges from Wo5Fs39 to Wo34Fs22 with fairly uniform En content. This specimen is a lunar meteorite, very similar to QUE93069 (Antarctic Meteorite Newsletter 17(2), 1994), with which it is certainly paired. |
Randy Says… The regolith (soil) from which QUE 93069/94269 derives had more exposure at the surface of the Moon than that of most regolith breccias. That is why it has such a vesicular fusion crust and high concentrations of iridium from asteroidal meteorites. Compositionally, it is a typical feldspathic lunar meteorite. |
More InformationMeteoritical Bulletin DatabaseMapReferencesBischoff A. (1996) Lunar meteorite Queen Alexandra Range 93069: A lunar highland regolith breccia with very low abundances of mafic components, Meteoritics & Planetary Science 31, 849-855. Cohen B. A., Swindle T. D., and Kring D. A. (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754-1756. Cohen B. A., Swindle T. D., and Kring D. A. (2005) Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science 40, 755-777. Fritz J. (2012) Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus 221, 1183-1186. Grier J. A., Kring D. A., and Swindle T. D. (1995) Impact melts and anorthositic clasts in lunar meteorites QUE93069 and MAC88105. Lunar and Planetary Science XXVI, 513-514. Isaacson P. J., Liu Y., Patchen A., Pieters C. M., and Taylor L. A. (2009) Integrated analyses of lunar meteorites: Expanded data for lunar ground truth. 40th Lunar and Planetary Science Conference, abstract no. 2119. Isaacson P. J., Liu Y., Patchen A. D., Pieters C. M., and Taylor L. A. (2010) Spectroscopy of lunar meteorites as constraints for ground truth: Expanded sample collection diversity. 41st Lunar and Planetary Science Conference, abstract no. 1927. Koeberl C., Kurat G., and Brandstätter F. (1996) Mineralogy and geochemistry of lunar meteorite Queen Alexandra Range 93069. Meteoritics & Planetary Science 31, 897-908. Korotev R. L. (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65, 297-346. Korotev R. L. and Zeigler R. A. (2014) Chapter 6. ANSMET Meteorites from the Moon, Thirty-five Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection (editors K. Righter, R. P. Harvey, C. M. Corrigan, and T. J. McCoy), 101–130, Special Publications 68, American Geophysical Union, Washington, D. C., 296 pages, ISBN: 978-1-118-79832-4. Korotev R. L., Jolliff B. L., and Rockow K. M. (1996) Lunar meteorite Queen Alexandra Range 93069 and the iron concentration of the lunar highlands surface. Meteoritics & Planetary Science 31, 909-924. Korotev R. L., Jolliff B. L., Zeigler R. A., Gillis J. J., and Haskin L. A. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochimica et Cosmochimica Acta 67, 4895-4923. Kring D. A., Hill D. H., and Boynton W. V. (1995) The geochemistry of a new lunar meteorite, QUE93069, a breccia with highland affinities. Lunar and Planetary Science XXVI, 801-802. Lindstrom M. M., Mittlefehldt D. W., Morris R. V., Martinez R. R., and Wentworth S. J. (1995) QUE93069, a more mature regolith breccia for the Apollo 25th anniversary, In Lunar and Planetary Science XXVI, 849-850. Nishiizumi K. (2003) Exposure histories of lunar meteorites. Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites, 104. Nishiizumi K., Caffee M. W., Finkel R. C., and Reedy R. C. (1995) Exposure history of lunar meteorite QUE93069. Lunar and Planetary Science XXVI, 1051-1052. Nishiizumi K., Caffee M. W., Jull A. J. T., and Reedy R. C. (1996) Exposure history of lunar meteorite Queen Alexandra Range 93069 and 94269. Meteoritics & Planetary Science 31, 893-896. Nyquist L. E., Wiesmann H., Shih C.-Y., Dasch J. (1996) Lunar meteorites and the lunar crustal Sr and Nd isotopic compositions. Lunar and Planetary Science XXVII, 971-972. Robinson K. L. and Treiman A. H. (2010) Mare basalt fragments in lunar highlands meteorites: Connecting measured Ti abundances with orbital remote sensing. 41st Lunar and Planetary Science Conference, abstract no. 1788. Robinson K. L., Treiman A. H., and Joy J. H. (2012) Basaltic fragments in lunar feldspathic meteorites: Connecting sample analyses to orbital remote sensing. Meteoritics & Planetary Science 43, 387-399. Spettel B., Dreibus G., Burghele A., Jochum K. P., Schultz L., Weber H. W., Wlotzka F., and Wänke H. (1995) Chemistry, petrology, and noble gases of lunar highland meteorite Queen Alexandra Range 93069. Meteoritics 30, 581-582. Thalmann Ch. and Eugster O. (1995) Lunar meteorite QUE 93069: History derived from cosmic-ray-produced and trapped noble gases. Meteoritics 30, 585-586. Thalmann C., Eugster O., Herzog G. F., Klein J., Krähenbühl U., Vogt S., and Xue S. (1996) History of lunar meteorites Queen Alexandra Range 93069, Asuka 881757, and Yamato 793169 based on noble gas isotopic abundances, radionuclide concentrations, and chemical composition. Meteoritics & Planetary Science 31, 857-858. Warren P. H. and Kallemeyn G. W. (1995) QUE93069: a lunar meteorite rich in HASP glasses. Lunar and Planetary Science XXVI, 1465-1466. Warren P. H., Ulff-Møller F., and Kallemeyn G. W. (2005) “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust. Meteoritics & Planetary Science 40, 989-1014. Wolf S. F., Wang M.S., and Lipschutz M. E. (2009) Labile trace elements in basaltic achondrites: Can they distinguish between meteorites from the Moon, Mars, and V-type asteroids? Meteoritics & Planetary Science 44, 891–903. |