Lunar Meteorite: Northwest Africa 032 & 479
paired stones





from The Meteoritical Bulletin, No. 84 Northwest Africa 032Morocco, near Algerian border Lunar meteorite (olivine-pyroxene basalt) Classification and mineralogy (T. Fagan, UHaw; T. Bunch and J. Wittke, NAU): olivine, pyroxene, and chromite phenocrysts occur in a groundmass of elongate, zoned pyroxene (En1-25Wo15-25) and feldspar (~An85) crystals radiating from common nucleation sites; opaque phases include elongate, skeletal ilmenite, troilite, and trace metal; olivine phenocrysts (~12 vol%) up to 300 µm are zoned from Fo65 (cores) to Fo60 (rims), and commonly have chromite inclusions; pyroxene phenocrysts (~5 vol%) are complexly zoned, with En40-50Wo20-40 and En15-25Wo10-20 domains; both olivine and pyroxene phenocrysts surrounded by Fe-rich quenched margins (olivines, ~Fo30; pyroxenes, En5-25Wo15-30); glass with ~45.7 wt% SiO2 occurs in semi-continuous shock veins up to 50 µm wide; some terrestrial weathering products are present in fractures, but primary assemblage is essentially unaltered. Oxygen isotope compositions (R. Clayton, UChi): δ18O = +5.63 ‰, δ17O = +2.92‰. Bulk composition (in wt%, E. Jarosewich, SI): SiO2 = 44.7; TiO2 = 3.08; Al2O3 = 8.74; FeO = 23.0; MnO = 0.33; MgO = 8.45; CaO = 10.9; Na2O = 0.37; K2O = 0.11; H2O = 0.06. Specimens: Type specimen, ~5-6 g, contact T. Bunch, NAU; 1.1 g plus thin section, UHaw; main mass, 260 g, Radomsky. |
from The Meteoritical Bulletin, No. 85 Northwest Africa 479Possibly Khter n’Aït Khebbach, Morocco Lunar meteorite (mare basalt) A 156 g stone was collected in Morocco in the area of Khter n’Aït Khebbach, however, the exact location is unknown. Classification and mineralogy (J.-A. Barrat, UAng, A. Jambon, UPVI, Violaine Sautter, MNHNP, Ph. Gillet, ENSL): consists of phenocrysts of olivine, pyroxene and chromite in a groundmass of pyroxene and calcic plagioclase; texture closely resembles that of NWA 032; mineral compositions are identical to those reported for NWA 032 (see Met. Bull. 84). Specimens: main mass with anonymous finder; type specimen, 8 g and 1 thin section, ENSL; 3.6 g, NHMV. |
Randy Says… NWA 032 is the first lunar meteorite to be recognized from Africa. NWA 479 is compositionally indistinguishable (Korotev and Irving (2021). NWA 032/479 is distinct from Apollo and Luna basalts. It is one of the youngest basalts known from the Moon, ~3000 Ma (Borg et al., 2007; Merle et al., 2024). There is both compositional and geochronological evidence that it is launch paired with NWA 4734/10597 and the LAP pairs (Antarctica; Zeigler et al., 2005; Merle et al., 2024). |
More InformationMeteoritical Bulletin Database References Barrat J. A., Gillet Ph., Jambon A., Sautter V., Javoy M., Petit E., and Lesourd M. (2001) News from the Moon and Mars: preliminary examinations of two new Saharan finds. Lunar and Planetary Science XXXII, abstract no. 1713. Barrat J. A., Chaussidon M., Bohn M., Gillet Ph., Göpel C., Lesourd M. (2005) Lithium behavior during cooling of a dry basalt: An ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochimica et Cosmochimica Acta 69, 5597-5609. Basilevsky A. T., Neukum G., and Nyquist L. (2010) Lunar meteorites: What they tell us about the spatial and temporal distribution of mare basalts. 41st Lunar and Planetary Science Conference, abstract no. 1214. Borg L., Gaffney A., and DePaolo D. (2007) Rb-Sr & Sm-Nd isotopic systematics of NWA032. 70th Annual Meeting of the Meteoritical Society, abstract no. 5232. Borg L. E., Gaffney A. M., Shearer C. K., DePaolo D. J., Hutcheon I. D., Owens T. L., Ramon E., and Brennecka G. (2009) Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochimica et Cosmochimica Acta 73, 3963-3980. Burger P. V., Shearer C. K., and Papike J. J. (2009) The multi-stage cooling history of lunar meteorite NWA 032 as recorded by phenocrystic olivine and pyroxene. 40th Lunar and Planetary Science, abstract no. 2043. Chiu I.-H., Terada K., Osawa T., Park C., Takeshita S., Miyake Y., and Ninomiya K. (2023) Non-destructive elemental analysis of lunar meteorites using a negative muon beam. Meteoritics & Planetary Science, 1333-1344. doi.org/10.1111/maps.14059 Day J. M. D. and Taylor L. A. (2007) On the structure of mare basalt lava flows from textural analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites. Meteoritics & Planetary Science 42, 3-17. Elardo S. M. and Shearer C. K. (2013) The origin of oscillatory zoning of major and minor elements in pyroxene phenocrysts in lunar basaltic meteorite NWA 032/479. 44th Lunar and Planetary Science Conference, abstract no. 1701. Elardo S. M. and Shearer C. K. (2014) Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in lunar basaltic meteorite NWA 032. American Mineralogist 99, 355-368. Elardo S. M., Shearer C. K. Jr., Fagan A. L., Neal C. R., Burger P. V., and Borg L. E. (2012) Diversity in low-Ti mare magmatism and mantle sources: A Perspective from lunar meteorites NWA 4734, NWA 032, and LAP 02205. 43rd Lunar and Planetary Science Conference, abstract no. 2648. Elardo S. M., Shearer C. K., Fagan A. L., Borg L. E., Gaffney A. M., Burger P. V., Neal C. R., and McCubbin F. M. (2013) The origin of young mare basalts inferred from lunar meteorites NWA 4734, NWA 032, and LAP 02205. 44th Lunar and Planetary Science Conference, abstract no. 2762. Elardo S. M., Shearer C. K. Jr., Fagan A. L., Borg L. E., Gaffney A. M., Burger P. V., Neal C. R., Fernandes V. A., and McCubbin F. M. (2013) The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics & Planetary Science 49, 261–291. Fagan T. J., Bunch T. E., Wittke J. H., Jarosewich E., Clayton R. N., Mayeda T., Eugster O., Lorenzetti S., Keil K., and Taylor G. J. (2000) Northwest Africa 032: A new lunar mare basalt, Meteoritics & Planetary Science 35, A51. Fagan T. J., Taylor G. J., Keil K., Bunch T. E., Wittke J. H., Korotev R. L., Jolliff B. L., Gillis J. J., Haskin L. A., Jarosewich E., Clayton R. N., Mayeda T. K., Fernandes V. A., Burgess R., Turner G., Eugster O., and Lorenzetti S. (2002) Northwest Africa 032: Product of lunar volcanism. Meteoritics & Planetary Science 37, 371-394. Fernandes V. A. (2006) Lunar volcanism during the Erastothenian II: NWA 479. 69th Annual Meeting of the Meteoritical Society, abstract no. 5312. Fernandes V. A. and Burgess R. (2006) Ar-Ar studies of two lunar mare rocks: LAP02205 and EET96008. Lunar and Planetary Science XXXVII, abstract no. 1145. Fernandes V. A., Burgess R., and Turner G. (2001) North West Africa 032 (NWA032): Evidence for lunar volcanism at 2.80 Ga (abstract), 64th Annual Meteoritical Society Meeting, abstract no. 5304. Fernandes V. A., Burgess R. and Turner G. (2003) 40Ar-39Ar chronology of lunar meteorites Northwest Africa 032 and 773. Meteoritics & Planetary Science 38, 555-564. Fernandes V. A. S. M., Fritz J. P., Wünnemann K., and Hornemann U. (2010) K-Ar ages and shock effects in lunar meteorites. EPSC Abstracts, Vol. 5, EPSC2010-237. Fernandes V. A., Burgess R., and Morris A. (2009) 40Ar-39Ar age determinations of lunar basalt meteorites Asuka 881757, Yamato 793169, Miller Range 05035, LaPaz Icefield 02205, Northwest Africa 479, and basaltic breccia Elephant Moraine 96008. Meteoritics & Planetary Science 44, 805-821. Fritz J. (2012) Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus 221, 1183-1186. Gaffney A. and Borg L. (2008) What we are learning about the Moon from lunar meteorites. Geochimica et Cosmochimica Acta 72, 12S, A287. Hidaka H. and Yoneda S. (2006) Neodymium, samarium and gadolinium isotopic studies of lunar meteorites Dhofar 489 and NWA 032. 69th Annual Meeting of the Meteoritical Society, abstract no. 5169. Hidaka H. and Yoneda S. (2013) Isotopic studies of radiogenic and neutron-captured REE of lunar meteorites. 76th Annual Meeting of the Meteoritical Society, abstract no. 5042. Kerrison N. A. Wilbur Z. E., and Barnes J. J. (2023) 2D and 3D identification and characterization of melt inclusions in basaltic lunar meteorites. 86th Annual Meeting of the Meteoritical Society, abstract no. 6289. Koizumi E., Mikouchi T., Chokai J., and Miyamoto M. (2006) Crystallization of lunar basaltic meteorites Northwest Africa 032 and 479: Preservation of the parent melt composition and relationship to LAP 02205. Lunar and Planetary Science XXXVII, abstract no. 1586. Korotev R. L. (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65, 297-346. Korotev R. L. and Irving A. J. (2021) Lunar meteorites from northern Africa. Meteoritics & Planetary Science, 206–240. Korotev R. L., Jolliff B. L., Zeigler R. A., and Haskin L. A. (2003) Compositional constraints on the launch pairing of three brecciated lunar meteorites of basaltic composition. Antarctic Meteorite Research 16, 152-175. Lorenzetti S., Busemann H., and Eugster O. (2005) Regolith history of lunar meteorites. Meteoritics & Planetary Science 40, 315-327. Masahiro M., Tomioka N., Ohtani E., Seto Y., Nagaoka H, Götze J, Miyake A., Ozawa S., Sekine T., Miyahara M., Tomeoka K., Matsumoto M., Shoda N., Hirao N., and Kobayashi T. (2018) Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Science Advances, 4, eaar4378 Merle R. E., Whitehouse M. J., Nemchin A. A., Deligny C., Kenny G. C., Larsen K. K., and Connelly J. N. (2024) Deciphering the origin of the chemical characteristics of the 3000 Ma-old chemical group of lunar basalts. 86th Annual Meeting of the Meteoritical Society, abstract no. 6317. Mijajlovic T., Xue X., and Walton E. L. (2020) A revised shock history for the youngest unbrecciated lunar basalt – Northwest Africa 032. 51st Lunar and Planetary Science Conference, abstract no. 1554. Mijajlovic T., Xue X., and Walton E. L. (2020) A revised shock history for the youngest unbrecciated lunar basalt—Northwest Africa 032 and paired meteorites. Meteoritics & Planetary Science, 55, 2267-2286. Miyahara M., Kozuma K., Ohtani E., Yamaguchi A., Sakai T., Ohfuji H., Tomioka N., Kodama Y. (2019) Shock-induced melting and high-pressure polymorphs in lunar basaltic meteorites. 82nd Annual Meeting of the Meteoritical Society, abstract no. 6014. Morris A., Fernandes V., and Burgess R. (2008) Ar-Ar ages for lunar basalt meteorites: A 881757, Y 793169, MIL 05035, LAP 02205, NWA479 and EET 96008. Goldschmidt Conference Abstracts 2008, Geochimica et Cosmochimica Acta 72, 12S, A652. Nishiizumi K. (2003) Exposure histories of lunar meteorites. Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites, 104. Ogura A. J., Yumoto K., Cho Y., Niihara T., Kameda S., and Sugita S. (2021) Elemental analysis of lunar meteorites using laser-induced breakdown spectroscopy. 52nd Lunar and Planetary Science Conference, abstract no. 1729. Rochette P., Gattacceca J., Ivanov A. V., Nazarov M. A., and Bezaeva N. S. (2010) Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples. Earth and Planetary Science Letters 292, 383-391. Zeigler R. A., Korotev R. L., Jolliff B. L., and Haskin L. A. (2005) Petrology and geochemistry of the LaPaz icefield basaltic lunar meteorite and source-crater pairing with Northwest Africa 032. Meteoritics & Planetary Science 40, 1073-1102. |