Lunar Meteorite: Miller Range 05035

Miller Range 05035 in the field (142 g). Photo credit: NASA/JSC
Two side of MIL 05035. Photo credit: NASA/JSC
Four views of a lab sample of MIL 05035. Photo credit: Randy Korotev
Photomicrograph of a thin section of MIL 05035 showing mainly plagioclase and pyroxene, with a small amount of ilmenite. Field of view: 14 mm wide. Compare with Asuka 881757. Photo credit: Randy Korotev

Listed in The Meteoritical Bulletin, No. 92

from Antarctic Meteorite Newsletter, vol. 29, No. 2, 2006

Miller Range 05035 (MIL 05035)

Miller Range, Transantarctic Mountains, Antarctica
Dimensions (cm): 4.5 x 4.0 x 3.5
Found: 2005 December or 2006 January
Weight (g): 142.216 (1 piece)

Lunar-Basalt

Macroscopic Description: Kathleen McBride. The exterior has about 95% black, shiny fusion crust. The interior is pinkish-tan in color with no rusting. The rock is moderately hard and has an unusual granular texture with a vague resemblance to granite. There are numerous inclusions; linear white features a few mm in length, melted appearing black, glassy inclusions with an iridescent “peacock ore” opalescent sheen, a transparent, glass like mineral, and a few clay-like powdery areas.

Thin Section (,2) Description: Tim McCoy. The section exhibits a n unbrecciated texture of coarse-grained (several mm) pyroxene and maskelynite with interstitial sulfides, iron-titanium oxides, intergrowths of fayalite-silicate-augite, and other late-stage glasses and minerals (including BaO-enriched potassium feldspar). Pyroxenes are strongly zoned and include pigeonites and augites with a range of compositions Fs31-55Wo15-42 and Fe/Mn of ~60. Plagioclase is An83-92Or0-2. The meteorite is a lunar basalt, although it exhibits some properties (e.g., maskelynite) unusual among known lunar samples.

Randy Says…

MIL 05035 is an unbrecciated basalt that is unlike any basalt from the Apollo or Luna missions.  It is compositionally and mineralogically very similar to Asuka 881757 and Yamato 793169, however. All three were likely launched from the same crater on the Moon, probably along with breccia MET 01210. Ramlat Fasad 532 (Oman) appears to be another member of the launch pair group.

More Information

Meteoritical Bulletin Database

MIL 05035

Map

ANSMET Location Map

References

Anand M., Tartèse R., Barnes J. J., Starkey N. A., Franchi I. A., and Russell S. S. (2013) Abundance, distribution, and isotopic composition of water in the Moon as revealed by basaltic lunar meteorites (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1957.

Arai T., Misawa K., and Kojima H. (2007) Lunar meteorite MIL 05035: mare basalt paired with Asuka-881757 (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1582, 38th Lunar and Planetary Science Conference, Houston.

Arai T., Hawke B. R., and Giguere T. A. (2008) Antarctic lunar meteorites from cryptomaria of the Moon (abstract). In Lunar and Planetary Science XXXIX, abstract no. 2423, 39th Lunar and Planetary Science Conference, Houston.

Arai T. , Hawke B. R., Giguere T. A., Misawa K., Miyamoto M., and Kojima H. (2010) Antarctic lunar meteorites Yamato-793169, Asuka-881757, MIL 05035, and MET 01210 (YAMM): Launch pairing and possible cryptomare originGeochimica et Cosmochimica Acta 74, 2231-2248.

Basilevsky A. T., Neukum G., and Nyquist L. (2010) Lunar meteorites: What they tell us about the spatial and temporal distribution of mare basalts (abstract). In Lunar and Planetary Science XLI, abstract no. 1214, 41st Lunar and Planetary Science Conference, Houston.

Calzada-Diaz A., Joy K. H., Crawford I. A., and Nordheim T. A. (2015) Constraining the source regions of lunar meteorites using orbital geochemical dataMeteoritics & Planetary Science 50, 214-228.

Carpenter P. K., North S. N., Jolliff B. L., and Donovan J. J. (2013) EPMA quantitative compo-sitional mapping and analysis of lunar samples (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1827.

Day J. M. D. and Paquet M. (2020) Highly siderophile element abundances in mare basalts reflect late accretion to the Moon’s interior. 51st Lunar and Planetary Science Conference, abstract no. 1071.

Distel A. G., Davidson J., Wadhwa M., and Hervig R. L. (2024) The H2O-δD systematics of nominally anhydrous minerals in the shocked lunar basaltic meteorites Miller Range 05035 and Asuka 881757. 86th Annual Meeting of the Meteoritical Society, abstract no. 6205.

Fernandes V. A., Burgess R., and Morris A. (2009) 40Ar-39Ar age determinations of lunar basalt meteorites Asuka 881757, Yamato 793169, Miller Range 05035, LaPaz Icefield 02205, Northwest Africa 479, and basaltic breccia Elephant Moraine 96008Meteoritics & Planetary Science 44, 805–821.

Fernandes V. A. S. M., Fritz J. P., Wünnemann K., and Hornemann U. (2010) K-Ar ages and shock effects in lunar meteorites (abstract). EPSC Abstracts, Vol. 5, EPSC2010-237.

Isaacson P. J., Liu Y., Patchen A., Pieters C. M., and Taylor L. A. (2009) Integrated analyses of lunar meteorites: Expanded data for lunar ground truth (abstract). In Lunar and Planetary Science XL, abstract no. 2119, 40th Lunar and Planetary Science Conference, Houston.

Isaacson P. J., Liu Y., Patchen A. D., Pieters C. M., and Taylor L. A. (2010) Spectroscopy of lunar meteorites as constraints for ground truth: Expanded sample collection diversity (abstract). In Lunar and Planetary Science XLI, abstract no. 1927, 41st Lunar and Planetary Science Conference, Houston.

Joy K. H., Anand M., Crawford I. A., and Russell S. S. (2007) Petrography and bulk composition of Miller Range 05035: A new lunar VLT gabbro (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1867, 38th Lunar and Planetary Science Conference, Houston.

Joy K. H., Crawford I.A., Anand M., Greenwood R. C., Franch, I. A., Russell S.S. (2008) The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteoriteGeochimica et Cosmochimica Acta 72, 3822–3844.

Korotev R. L. and Zeigler R. A. (2007) Keeping up with the lunar meteorites (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1340, Lunar and Planetary Institute, Houston.

Korotev R. L. and Zeigler R. A. (2014) Chapter 6. ANSMET Meteorites from the Moon, Thirty-five Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection (editors K. Righter, R.P. Harvey, C.M. Corrigan, and T.J. McCoy), 101–130, Special Publications 68, American Geophysical Union, Washington, D. C., 296 pages, ISBN: 978-1-118-79832-4.

Liu Y., Hill E., Patchen A., and Taylor L.A. (2007) New lunar meteorite MIL 05035: Petrography and mineralogy (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 2103, 38th Lunar and Planetary Science Conference, Houston.

Liu Y., Floss C., Day J. M. D, Hill E., and Taylor L. A. (2009) Petrogenesis of lunar mare basalt meteorite Miller Range 05035Meteoritics & Planetary Science 44, 261-284.

Miao B., Chen H., Xia Z., Xie L., and Yao J. (2013) The type, occurrence and origin of symplectites in lunar meteorites (abstract). 76th Annual Meeting of the Meteoritical Society, abstract no. 5234.

Morris A., Fernandes V., and Burgess R. (2008) Ar-Ar ages for lunar basalt meteorites: A 881757, Y 793169, MIL 05035, LAP 02205, NWA479 and EET 96008. Goldschmidt Conference Abstracts 2008, Geochimica et Cosmochimica Acta 72, 12S, p. A652.

Nyquist L. E., Shih C-Y., and Reese Y. D. (2007) Sm-Nd and Rb-Sr ages for MIL 05035: Implications for surface and mantle sources (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1702, 38th Lunar and Planetary Science Conference, Houston.

Thaisen K. G. and Taylor L. A. (2009) Meteorite fusion crust variabilityMeteoritics & Planetary Science 44, 871-878.

Wang Y., Guan Y., Hsu W., and Eiler J. M. (2012) Water content, chlorine and hydrogen isotope compositions of lunar apatite (abstract). 75th Annual Meeting of the Meteoritical Society, abstract no. 5170.

Zeigler R. A., Korotev R. L., and Jolliff B. L. (2007) Miller Range 05035 and Meteorite Hills 01210: Two basaltic lunar meteorites, both likely source-crater paired with Asuka 881757 and Yamato 793169 (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 2110. Lunar and Planetary Institute, Houston.

Zeigler R. A., Jolliff B. L., Korotev R. L., and Carpenter P. K. (2008) Determination of Sr concentrations in lunar plagioclase by electron microprobe analysis. Goldschmidt Conference Abstracts 2008, Geochimica et Cosmochimica Acta 72, 12S, p. 1072.

Zhang A, Hsu W., Li Q., Liu Y., Jiang Y., & Tang G. (2010) SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the petrogenesis of mare basaltScience China Earth Sciences 53, 327–334. doi: 10.1007/s11430-010-0041-z.