Lunar Meteorite: Dar al Gani 400 & 1058
paired stones
from The Meteoritical Bulletin, No. 82 Dar al Gani 400 (DaG 400)Libya Lunar meteorite (anorthositic breccia) A 1.425 kg stone was found in Dar al Gani in the Libyan Sahara. Classification and description (J. Zipfel, MPI): the meteorite is partly covered with a brownish fusion crust; fresh surfaces are gray to dark gray; matrix is well consolidated; clasts include subophitic and fine-grained to microporphyritic impact-melt breccias, granulitic fragments, intergranularly recrystallized anorthosites, and mineral fragments; chemical and O isotope composition is characteristic of lunar highland meteorites (Zipfel et al., 1998b); abundances and composition of noble gases do not suggest a pairing with DaG 262 (Scherer et al., 1998b). For further details, see Zipfel et al. (1998b). Type specimen and two polished sections are with the MPI; main mass with finder. |
from The Meteoritical Bulletin, No. 101 Dar al Gani 1058 (DaG 1058)Al Jufrah, Libya Lunar meteorite (feldspathic breccia) History: A fairly large stone was found in 1998 September on the Dar al Gani plateau, Libya, near the find site of Dar al Gani 400. Physical characteristics: Compact, fine grained gray stone (1815 g) with visible whitish to pale gray clasts and partially coated by orange-brown weathering products. Petrography: (A. Irving and S. Kuehner, UWS) Very fine grained melt matrix breccia with larger feldspathic clasts. Minerals are anorthite, olivine, low-Ca pyroxene, more calcic pigeonite, Ti-bearing chromite, ilmenite and troilite. Geochemistry: Olivine (Fa16.0-33.9; FeO/MnO = 90-108), low-Ca pyroxene (Fs29.8-30.3Wo4.8-6.4, FeO/MnO = 50-57), pigeonite (Fs33.7Wo10.2; Fs43.6Wo7.3; FeO/MnO = 59-61). Bulk composition (R. Korotev, WUSL): mean values from INAA of subsamples are 3.0 wt.% FeO, 5.1 ppm Sc, 80 ppm Ni, 1.4 ppm La, 0.6 ppm Sm, 0.69 ppm Eu, 0.48 ppm Yb, 0.2 ppm Th. Classification: Lunar (feldspathic breccia). This specimen was found close to Dar al Gani 400, and similarities in mineralogy and bulk composition indicate that these are likely paired. Specimens: A total of 25 g of type material is on deposit at UWS. The remainder is held by an anonymous collector. |
Randy Says… Compositionally, Dar al Gani 400/1058 is a typical feldspathic lunar meteorite. It is a regolith breccia dominated by clasts of impact-melt rock and granulitic breccia. |
More InformationMeteoritical Bulletin Database References Arai T., Yamamoto A., Ohtake M., Matsunaga T., Haruyama J., Hiroi T., Sasaki S., and Matsui T. (2011) Lunar crustal mineralogy inferred from lunar meteorites and Kaguya data. The 34rd Symposium on Antarctic Meteorites, 3-4. Arai T., Hiroi T., Sasaki S., and Matsui T. (2013) Origin of the lunar crust inferred from mineralogy and reflectance spectra of lunar meteorites. 44th Lunar and Planetary Science Conference, abstract no. 1016. Bogard D.D., Garrison D. H., and Nyquist L. E. (2000) Argon-39-argon-40 ages of lunar highland rocks and meteorites. Lunar and Planetary Science XXXI, abstract no. 1138. Bukovanska M., Dobosi G., Brandstätter F., and Kurat G. (1999) Dar al Gani 400: Petrology and geochemistry of some major lithologies. Meteoritics & Planetary Science 34, A21. Cahill J. T., Floss C., Anand M., Taylor L. A., Nazarov M. A., and Cohen B. A. (2004) Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and Dar al Gani 400. Meteoritics & Planetary Science 39, 503-530. Calzada-Diaz A., Joy K. H., Crawford I. A., and Nordheim T. A. (2015) Constraining the source regions of lunar meteorites using orbital geochemical data. Meteoritics & Planetary Science 50, 214-228. Cohen B. A., Swindle T. D., and Kring D. A. (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754-1756. Cohen B. A., Swindle T. D., Kring D. A., and Olson E. K. (2005) Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in lunar meteorites Dar al Gani 262 and Calcalong Creek. Lunar and Planetary Science XXXVI, abstract no. 1481, 36th Lunar and Planetary Science Conference. Consolmagno G. J., Russell S. S., and Jeffries T. E. (2004) An in-situ study of REE abundances in three anorthositic impact melt lunar highland meteorites. Lunar and Planetary Science XXXV, abstract no. 1370. Fischer-Gödde M., Becker H., Wombacher F. (2010) Highly siderophile element abundances and 187Os/188Os in lunar impact melt rocks: Implications for late accretion processes in the Earth-Moon system meteorites. 41st Lunar and Planetary Science Conference, abstract no. 2262. Fritz J. (2012) Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus 221, 1183-1186. Joy K. H. (2013) Trace elements in lunar plagioclase as indicators of source lithology. 44th Lunar and Planetary Science Conference, abstract no. 1033. Joy K. H., Crawford I. A., Russell S. S., Swinyard B., Kellett B., and Grande M. (2006) Lunar regolith breccias MET 01210, PCA 02007 and DAG 400: Their importance in understanding the lunar surface and implications for the scientific analysis of D-CIXS data. Lunar and Planetary Science XXXVII, abstract no. 1274. Joy K. H., Crawford I. A., Russell S. S., and Kearsley A. T. (2010) Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust. Meteoritics & Planetary Science 45, 917-946. Korotev R. L. (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65, 297-346. Korotev R. L. and Irving A. J. (2013) Keeping up with the lunar meteorites – 2013. 44th Lunar and Planetary Science Conference, abstract no. 1216. Korotev R. L. and Irving A. J. (2021) Lunar meteorites from northern Africa. Meteoritics & Planetary Science, 206–240. Korotev R. L., Jolliff B. L., Zeigler R. A., Gillis J. J., and Haskin L. A. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochimica et Cosmochimica Acta 67, 4895-4923. Masahiro M., Tomioka N., Ohtani E., Seto Y., Nagaoka H, Götze J, Miyake A., Ozawa S., Sekine T., Miyahara M., Tomeoka K., Matsumoto M., Shoda N., Hirao N., and Kobayashi T. (2018) Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Science Advances, 4, eaar4378 Nishiizumi K. (2003) Exposure histories of lunar meteorites. Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites, 104. Rochette P., Gattacceca J., Ivanov A. V., Nazarov M. A., and Bezaeva N. S. (2010) Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples. Earth and Planetary Science Letters 292, 383-391. Scherer P., Pätsch M., and Schultz L. (1998) Noble-gas study of the new lunar meteorite Dar al Gani 400. Meteoritics & Planetary Science 33, A135-A136. Schlüter J., Schultz L., Thiedig F., Al-Mahdi B. O., and Abu Aghreb A. E. (2002) The Dar al Gani meteorite field (Libyan Sahara): Geological setting, pairing of meteorites, and recovery density. Meteoritics & Planetary Science 37, 1079-1093. Semenova A. S., Nazarov M. A., Kononkova N. N., Patchen A., Taylor L. A. (2000) Mineral chemistry of lunar meteorite Dar al Gani 400. Lunar and Planetary Science XXXI, abstract no. 1252. Warren P. H., Ulff-Møller F., and Kallemeyn G. W. (2005) “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust. Meteoritics & Planetary Science 40, 989-1014. |