Software available at:

https://github.com/jin-wash-u

https://github.com/ChrisMaherLab/

https://sites.google.com/site/jinzhangwebsite

GAiN: An Integrative Tool Utilizing Generative Adversarial Neural Networks for Augmented Gene Expression Analysis

Download Now

Waters MR, Inkman M, Jayachandran K, Kowalchuk RM, Robinson C, Schwarz JK, Swamidass SJ, Griffith OL, Szymanski JJ, Zhang J. GAiN: An integrative tool utilizing generative adversarial neural networks for augmented gene expression analysis. Patterns. Patterns. 2024 Jan 8;5(2):100910. PMID: 38370125.

HPV-EM: an accurate HPV detection and genotyping tool

Download Now

Inkman MJ, Jayachandran K, Ellis TM, Ruiz F, McLellan MD, Miller CA, Wu Y, Ojesina AI, Schwarz JK, Zhang J. HPV-EM: an accurate HPV detection and genotyping EM algorithm. Sci Rep. 2020 Aug 31;10(1):14340. doi: 10.1038/s41598-020-71300-7. PMID: 32868873; PMCID: PMC7459114.

INTEGRATE: A tool for calling gene fusions with exact fusion junctions and genomic breakpoints by combining RNA-Seq and WGS data.

Download Now

Zhang J, White NM, Schmidt HK, Fulton RS, Tomlinson C, Warren WC, Wilson RK, Maher CA. INTEGRATE: gene fusion discovery using whole genome and transcriptome data. Genome Res. 2016 Jan;26(1):108-18. doi: 10.1101/gr.186114.114. Epub 2015 Nov 10. PubMed PMID: 26556708; PubMed Central PMCID: PMC4691743.

Best paper in Bioinformatics and Translational Informatics – IMIA Yearbook of Medical Informatics 2017

INTEGRATE-Neo: A tool for gene fusion neoantigen discovering tool using next-generation sequencing data. 

Download Now

Zhang J, Mardis ER, Maher CA. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics. 2016 Oct 24. pii: btw674. [Epub ahead of print] PubMed PMID: 27797777.

INTEGRATE-Vis: A tool for comprehensive gene fusion visualization using next-generation sequencing data

Download Now

Zhang J, Gao T, Maher CA. INTEGRATE-Vis: a tool for comprehensive gene fusion visualization. Sci Rep. 2017 Dec 19;7(1):17808. doi: 10.1038/s41598-017-18257-2. PMID: 29259323; PMCID: PMC5736641.

SVSeq2: Accurate and efficient detection of structural variations with low-coverage sequencing data

Download Now

Zhang J, Wang J, Wu Y. An improved approach for accurate and efficient calling of structural variations with low-coverage sequence data. BMC Bioinformatics. 2012 Apr 19;13 Suppl 6(Suppl 6):S6. doi: 10.1186/1471-2105-13-S6-S6. PMID: 22537045; PMCID: PMC3358659.

SVseq: Detection of exact breakpoints with low-coverage sequencing data

Download Now

Zhang J, Wu Y. SVseq: an approach for detecting exact breakpoints of deletions with low-coverage sequence data. Bioinformatics. 2011 Dec 1;27(23):3228-34. doi: 10.1093/bioinformatics/btr563. Epub 2011 Oct 12. PMID: 21994222.

HapReads: Haplotype inference from short sequence reads using a population genealogical history model

Download Now

Zhang J, Wu Y. Haplotype inference from short sequence reads using a population genealogical history model. Pac Symp Biocomput. 2011:288-99. doi: 10.1142/9789814335058_0030. PMID: 21121056.

Book chapter on SVseq 1 and 2: 

Computational approaches for finding long insertions and deletions with next generation sequencing data

J Zhang, C Chu, Y Wu
Computational Methods for Next Generation Sequencing Data Analysis, 175-195

Book chapter on INTEGRATE tools: 

Gene Fusion Discovery with INTEGRATE

J Zhang, C Maher
Methods in Molecular Biology, 41-68
PMID: 31728961

ICGC-TCGA DREAM Somatic Mutation Calling – RNA Challenge

https://www.synapse.org/#!Synapse:syn2813589

https://github.com/Sage-Bionetworks-Challenges/SMC-RNA-Challenge