One of the major challenges in atmospheric science is to improve emission inventories of environmentally deleterious gases and aerosol. Bottom-up inventories represent a considerable body of knowledge and use reported energy activity data (e.g., kg fuel consumed) and emission factors (e.g., kg emission / kg fuel) to estimate emissions as a function of compound, emission source, and location. Additional top-down constraints based on observations are vital to evaluate bottom-up inventories and to accurately represent spatial and temporal variations in emissions.

Bottom-Up

Objective: Develop a contemporary, global emissions inventory of key atmospheric pollutants (NOx, CO, SO2, NH3, NMVOCs, BC, OC) as a function of emission source sector and fuel type using the Community Emissions Data System (CEDS).

Top-Down

Objective: Evaluate and improve bottom-up emission inventories of NOx, NH3, and SO2 with additional top-down information from satellite instruments using mass balance and 4D-Var inverse modeling techniques.

Project Leaders:

References:

McDuffie, E.E., S. J. Smith, P. O’Rourke, K. Tibrewal, C. Venkataraman, E. A. Marais, B. Zheng, M. Crippa, M. Brauer, R.V. Martin, A global anthropogenic emissions inventory of atmospheric pollutants from sectors and fuel-specific sources (1970-2017): An application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-103, in review, 2020 [Link]

Meng, J., Martin, R. V., Ginoux, P., Hammer, M. S., Sulprizio, M. P., Ridley, D. A. and van Donkelaar, A., Grid-independent high-resolution dust emissions (v1.0) for chemical transport models: application to GEOS-Chem (12.5.0)., Geosci. Model Dev., doi:10.5194/gmd-14-4249-2021, 2021. [Link]

Li, C., R. V. Martin, M. W. Shephard, K. Cady‐Pereira, M. J. Cooper, J. Kaiser, C. J. Lee, L. Zhang, and D. K. Henze, Assessing the iterative finite difference mass balance and 4D‐Var methods to derive ammonia emissions over North America using synthetic observations, Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD030183, 2019. [Link]

Meng, J., R. V. Martin, C. Li, A. van Donkelaar, Z. A. Tzompa-Sosa, X. Yue, J.-W. Xu, C. L. Weagle, R. T. Burnett, Source Contributions to Ambient Fine Particulate Matter for Canada.Environ. Sci. Technol., doi: 10.1021/acs.est.9b02461, 2019. [Link]

McDuffie, E.E., S. J. Smith, P. O’Rourke, K. Tibrewal, C. Venkataraman, E. A. Marais, B. Zheng, M. Crippa, M. Brauer, R.V. Martin, A global anthropogenic emissions inventory of atmospheric pollutants from sectors and fuel-specific sources (1970-2017): An application of the Community Emissions Data System (CEDS)Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-103, in review, 2020 [Link]

Li, C., R. V. Martin, M. W. Shephard, K. Cady‐Pereira, M. J. Cooper, J. Kaiser, C. J. Lee, L. Zhang, and D. K. Henze, Assessing the iterative finite difference mass balance and 4D‐Var methods to derive ammonia emissions over North America using synthetic observations, J. Geophys. Res. Atmos., 124, doi:10.1029/2018JD030183, 2019 [Link]

Cooper, M.J., R. V. Martin, A. Padmanabhan, and D. K. Henze, Comparing Mass Balance and Adjoint Methods for Inverse Modeling of Nitrogen Dioxide Columns for Global Nitrogen Oxide EmissionsJ. Geophys. Res. Atmos., 122, doi:10.1002/2016JD025985, 2017 [Link]

Vinken, G. C. M., K. F. Boersma, A. van Donkelaar, and L. Zhang, Constraints on ship NOx emissions in Europe using GEOS-Chem and OMI satellite NO2 observationsAtmos. Chem. Phys., 14, 1353–1369, 2014, doi:10.5194/acp-14-1353-2014. [Full Text (PDF)]

Vinken, G.C.M., K.F. Boersma, J.D. Maasakkers, M. Adon, and R.V. Martin, Worldwide biogenic soil NOx emissions inferred from OMI NO2 observationsAtmos. Chem. Phys., 14, 10363-10381, 2014. [Link]

Wang, S. W., Zhang, Q., Streets, D. G., He, K. B., Martin, R. V., Lamsal, L. N., Chen, D., Lei, Y., and Lu, Z., Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observationsAtm. Chem. Phys. 12, 4429-4447, 2012. [Full Text (PDF)]

Lamsal, L.N., R.V. Martin, A. Padmanabhan, A. van Donkelaar, Q. Zhang, C.E. Sioris, K. Chance, T.P. Kurosu and M. J. Newchurch, Application of satellite observations for timely updates to global anthropogenic NOx emission inventoriesGeophys. Res. Lett., 38, L05810, doi:10.1029/2010GL046476, 2011. [Full Text (PDF)]

Lee, C.J., J.R. Brook, G.J. Evans, R.V. Martin, and C. Mihele, Novel application of satellite and in-situ measurements to map surface-level NO2 in the Great Lakes regionAtmos. Chem. Phys. , 11, 11761-11775, doi:10.5194/acp-11-11761-2011. [Full Text (PDF)]

Lee C., R. V. Martin, A. van Donkelaar, H. Lee, R. R. Dickerson, J. C. Hains, N. Krotkov, A. Richter, K. Vinnikov, J. J. Schwab, SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observationsJ. Geophys. Res., 116, D06304, doi: 10.1029/2010JD014758, 2011. [Link]

Napelenok, S.L., R.W. Pinder, A.B. Gilliland, and R.V. Martin, A method for evaluating spatially-resolved NOx emissions using Kalman filter inversion, direct sensitivities, and space-based NO2 observationsAtmos. Chem. Phys., 8, 5603-5614, 2008. [Full Text (PDF)]

Martin, R.V., C.E. Sioris, K. Chance, T.B. Ryerson, T.H. Bertram, P.J. Wooldridge, R.C. Cohen, J.A. Neuman, A. Swanson, and F.M. Flocke, Evaluation of space-based constraints on nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North AmericaJ. Geophys. Res., 111, D15308, doi:10.1029/2005JD006680, 2006. [Full Text (PDF)]