
96.48 A result on zigzag permutations: a combinatorial proof 

Author(s): JONATHAN WEINSTEIN 

Source: The Mathematical Gazette , July 2012, Vol. 96, No. 536 (July 2012), pp. 331-333  

Published by: The Mathematical Association 

Stable URL: http://www.jstor.com/stable/23248578

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

The Mathematical Association  is collaborating with JSTOR to digitize, preserve and extend 
access to The Mathematical Gazette

This content downloaded from 
�������������128.252.67.66 on Wed, 29 Jul 2020 21:27:23 UTC������������� 

All use subject to https://about.jstor.org/terms

http://www.jstor.com/stable/23248578


 NOTES  331

 References
 1. J. R. Branfield, An Investigation, Math. Gaz. 53 (October 1969),

 pp. 240-247
 2. Sequence A194154, The on-line encyclopedia of integer sequences,

 http://oeis.org.
 COLIN FOSTER

 King Henry VIII School, Warwick Road, Coventry CV3 6AQ
 e-mail: c@foster77.co.uk

 96.48 A result on zigzag permutations: a combinatorial proof
 Generating functions are an extremely powerful analytic tool for

 proving combinatorial identities, but combinatorial proofs typically provide
 a greater sense of insight and satisfaction. Finding a bijection, a direct
 correspondence between two sets, shows that they have the same size
 through something more than cosmic coincidence. Accordingly, Lewis [1],
 in this Gazette, after discovering a striking identity by matching generating
 functions, asked whether the identity might have a direct combinatorial
 proof. I shall provide one here.

 Fix an integer n and let S„ be the set of permutations of {1, 2, ... , n).
 It will be convenient throughout to write ct(0) = o{n + 1) = n+ 1 for all
 o e S„. With this convention, the zigzag permutations, those which alternate
 upward and downward steps (beginning upward), can be defined by

 Z„ = {ct e S„ : o{k) < min(or(£- 1 ),o{k + 1)),A: = 1, 3, 5,... }. (1)

 That is, all of the odd-indexed values should be 'valleys' in a graph of the
 permutation. I frame the definition this way because violations of this 'odd
 valley rule' play a key role in the later proof. We let Y„ = S„ - Z„ be the
 non-zigzag permutations. Also, let On be the permutations with an odd
 number of upward steps, i.e.

 On = {a 6 Sn : |{( e {1, l} : o(i) < a(i + 1)} | is odd}
 and let E„ = S„ - On. (These sets bear no relation to the usual odd and
 even permutations.) Lewis found this surprising relationship:

 Theorem 1: For odd n,\Z„\ = | | On \ - \ E„ \ \.

 In attacking this result, I first noticed an easy proof that for even n,
 | 0„ | = | En |, The operation 0 of reversing a permutation (i.e. 6(o) = o ° t
 where r (i) = n + 1 - i) changes the direction of each of the n - 1 steps
 and is self-inverse, so it forms a bijection between 0„ and E„. This led me
 to hope that for odd n I could find a map 0 which reverses an even-length
 subsequence of each o e Y„. This would, ideally, pair off the non-zigzag
 permutations into odd-even pairs, showing that j Yn n On | = | Y„ n E„\.
 The zigzag permutations themselves all have the same sign, so this would
 complete the proof. The challenge was to choose the subsequence so that the
 directions of the steps at its boundary are unaffected by the reversal, and so

This content downloaded from 
�������������128.252.67.66 on Wed, 29 Jul 2020 21:27:23 UTC������������� 

All use subject to https://about.jstor.org/terms



 332 THE MATHEMATICAL GAZETTE

 that the same subsequence will be selected from (f> (a) as from a, making 0
 self-inverse. That is, whichever landmarks are used to select the
 subsequence must be unaffected by the reversal. I now show that this can be
 accomplished, by using 'high-elevation' landmarks whose prominence is
 unaffected by reversing lower-lying elements.

 Proof of Theorem 1: Given o e Y„, define <p (a) by the following algorithm:

 1. Let k be the odd integer violating (1) for which o (k) is largest.
 2. We subdivide into two cases, according to whether the violation

 occurs between k and k + 1 or between k and k - 1. (If both, we
 arbitrarily give precedence to the former.)

 (a) If o(k + 1) < a{k), let I be the smallest index among
 k + 2, , n + 1 for which a (I) > o (k).

 (b) Otherwise (so that a(k - 1) < o (k)), let I be the largest
 index among 0, 2 for which a (I) > a (k).

 3. Form (p(o) from o by reversing the subsequence strictly between
 indices k and /.

 Now we make the following observations:

 • If / were odd, it would violate (1), which would contradict the
 definition of k because a (I) > o(k). Hence / is even*, and
 k — I is odd. (This includes the cases 1 = 0 and n + 1; here is
 where we use the fact that n is odd.) Also | k - I \ > 1.

 • Reversing the indicated subsequence switches the direction of
 each of the | k - I | - 2 internal steps, without affecting those
 at the boundary (since o(k) and o (/) are greater than all
 elements between them). Therefore, (f> maps elements of E„ to
 On and vice versa.

 • The reversal does not affect the defining properties of k or I
 (since the elements being reversed are smaller than o(k) or
 a (/)). This ensures that <f> (o) e Yn, and that 4> ((p (o)) = a.

 • We conclude that <j> gives a bijection between Y„ n 0„ and
 Y„ n E„, completing the proof via the simple calculation

 11 On | -1 E„ 11 = | \Yn n On\ + |Z„ n On\ -\Y„ nE„\ - \Z„ n E„\ \

 = | |Z„ n On| - |Z„ n E„\ \

 = 1 Z„\

 where the last step holds because (for any fixed ri) the zigzag
 permutations all have the same number of upward steps, hence
 are either all odd or all even.

 This includes the cases / = 0 or n + 1; here is where we use the fact that n is odd.
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 Example 1: If a-1 (n) is odd, we always have k = a'1 («), I = n + 1. In
 this case 0 simply reverses the sequence after the appearance of n. So for
 n = 5,0(5,2,3,4,1) = (5,1,4,3,2) (and vice versa), where k = 1,/ = 6.

 Example 2: For o = (3,2,4,5,1), we enter case (2b) and have k = 3,
 / = 0, giving 0 (a) = (2,3,4,5,1).

 Reference

 1. Barry Lewis, Some odd permutations, Math. Gaz. 93 (November 2009)
 pp. 441-448.

 JONATHAN WEINSTEIN

 Kellogg School of Management, Evanston, 1L, USA 60208-2001

 96.49 On the diagonals of a Stirling number triangle
 Stirling numbers come in two varieties, namely those of the first and

 second kind. In this note we are interested only in the latter. The Stirling
 numbers of the second kind S(n, k) enumerate the partitions of a set of n
 labelled objects, {l, 2say, into exactly k non-empty disjoint parts.
 For example, the partitions of {l, 2, 3, 4} into exactly 3 non-empty parts
 are given by

 {{1}, {2}, {3, 4}}, {{1}, {3}, {2, 4}}, {{1}, {4}, {2, 3}},
 {{2}, {3}, {1, 4}}, {{2}, {4}, {1, 3}}, {{3}, {4}, {1, 2}},

 from which we see that 5(4, 3) = 6. Table 1 gives the Stirling numbers of
 second kind up to n - 7. Note that, since S (n, k) = 0 when k > n, we
 refer to this as a 'number triangle'.

 n S(n, 1) S(n, 2) S(n, 3) S(n, 4) S(n, 5) S(n, 6) S(n, 7)

 2 1 1

 3 1  3  1

 4 1  7  6  1

 5 1  15  25  10  1

 6 1  31  90  65  15  1

 7 1  63  301  350  140  21

 TABLE 1: Stirling numbers of the second kind S(n, k)

 It is well known [1] that the exponential generating function of the
 sequence in the Arth column of Table 1 is given by

 Fk(x) = 77(e* - l/. k\

 In other words, the n th term of the k th column is the coefficient of x" /«! in
 Fk (x), which is

 si-"'"#"'
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