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Abstract A long tradition suggests a fundamental distinction between situations of
risk, where true objective probabilities are known, and unmeasurable uncertainties
where no such probabilities are given. This distinction can be captured in a Bayesian
model where uncertainty is represented by the agent’s subjective belief over the para-
meter governing future income streams. Whether uncertainty reduces to ordinary risk
depends on the agent’s ability to smooth consumption. Uncertainty can have a major
behavioral and economic impact, including precautionary behavior that may appear
overly conservative to an outside observer. We argue that one of the main character-
istics of uncertain beliefs is that they are not empirical, in the sense that they cannot
be objectively tested to determine whether they are right or wrong. This can confound
empirical methods that assume rational expectations.

Keywords Knightian uncertainty · Risk

1 Introduction

Knight (1921)’s idea of a fundamental difference between “measurable risk and an
unmeasurable uncertainty” has generated both interest and controversy. Standard mod-
els in economics assume that agents use probabilities to quantify all uncertainties
regardless of their source or nature. No distinction is drawn between actuarial and
strategic risks, or between risks associated with repetitive versus singular events. Yet
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2 N. I. Al-Najjar, J. Weinstein

there is a compelling intuition that some probability judgments are less “obvious” or
“objective” than others. Betting on events like the unraveling of the European Monetary
Union or global warming seems qualitatively different from betting on the outcome of
a coin toss or whether it rains tomorrow. The first type of event represents, in Knight’s
words, unmeasurable uncertainties that should be treated differently from measurable
risks.

This paper suggests that a Bayesian framework can capture the distinction between
situations with known probabilities, or “risk,” and Knightian uncertainty where objec-
tive probabilities are unknown.1 We illustrate the distinction in a consumption–saving
model where uncertainty is represented by the agent’s subjective belief about the
parameter governing future income. We relate the impact of uncertainty to the agent’s
ability to intertemporally smooth consumption and show that this leads to precaution-
ary behavior that may appear overly conservative to an outside observer. We also point
to the potential tension between subjective uncertainty and empirical methods that use
rational expectations for econometric identification.

Consider an agent with time-separable utility over (finite or infinite) consumption
streams. The agent receives an i.i.d.income stream with unknown parameter θ.2 Uncer-
tainty is lack of knowledge represented by a prior belief μ over θ. Uncertainty does not
necessarily lead to measurable consequences on behavior. For example, if uncertainty
is defined on consumption streams directly, then discounted expected utility is unaf-
fected by replacing the uncertain belief μ by a parameter with the same marginal as μ.

In this case, uncertainty reduces to ordinary risk. The role of uncertainty is manifested
in the indirect utility the agent derives from income streams when he has (perhaps
limited) freedom to save or borrow.

We first illustrate this point in a simple setting where consumption occurs after
an initial phase of payoff accumulation. For example, a retirement portfolio generates
dividends each period, but the agent cares only about its value at the time of retirement.
Another example is a start-up that accumulates gains and losses over a period of time,
but whose value is realized only when the entrepreneur sells the firm. In these examples,
separating consumption from payoff accumulation simplifies the calculation of indirect
utility, making the impact of uncertainty transparent and striking.

We then turn to a richer consumption–saving problem where consumption and
wealth can change as uncertainty about income resolves. Using exponential utility for
tractability, we derive the evolution of consumption and show that uncertainty results
in precautionary behavior that may appear overly conservative to an outside observer.
Consumption is more volatile under uncertainty because the agent perceives short-run
income variations to be potentially informative about his long-run income prospects.
Under risk, by contrast, all income realizations are viewed as transitory.

1 Keynes (1937) characterized uncertain beliefs as follows: “The sense in which I am using the term
[uncertainty] is that in which the prospect of a European war is uncertain, or the price of copper and the rate
of interest twenty years hence, or the obsolescence of a new invention, or the position of private wealth-
owners in the social system in 1970. About these matters there is no scientific basis on which to form any
calculable probability whatever. We simply do not know.”
2 The i.i.d.assumption simplifies the analysis, but is not essential to our point. We discuss this point in
Sect. 4.
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A Bayesian model of Knightian uncertainty 3

A Bayesian framework represents any lack of knowledge in terms of probabilities.
What then justifies treating uncertainty differently from other situations of imperfect
information? Our main point is that the key difference between risk and uncertainty is
that uncertain beliefs are not empirical. Section 4 introduces two arguments to support
this point.

First, we formalize the intuition that the probabilities of uncertain events are sub-
jective opinions about which, in Keynes’ words, “there is no scientific basis to form
any calculable probability whatever.” We capture this intuition using statistical tests
that compare agents’ subjective beliefs with the actual sequence of realized outcomes.
Consider asymptotic tests for simplicity. A natural property to require in such tests
is to be free of Type I error: if the agent knows the true probabilities, he must pass
the test almost surely. Proposition 4.1 says that an agent who is uncertain about the
true parameter, and who has subjective belief μ, must also believe that there is an
alternative belief μ′ �= μ such that no Type I error free test could reject μ′ regard-
less of the amount of data used. Bayesian agents assign probabilities to all events,
whether risky or uncertain. What distinguishes beliefs about uncertain events is that
they cannot be objectively tested to determine whether they are right or wrong. By
contrast, it is easy to test beliefs under risk by comparing them with the observed
frequencies.

The second sense in which uncertain beliefs are not empirical concerns the difficulty
of estimating their impact using standard econometric methods. Beliefs influence
decisions regardless of whether they reflect risk or uncertainty. But since beliefs are
not directly observable, econometric identification assumptions are needed to recover
them from data. A standard assumption is rational expectations which identifies beliefs
with the observed empirical frequencies. While this assumption offers considerable
advantages, it also rules out subjective model-uncertainty as a factor in decisions, a
point made by Weitzman (2007) among others. In Sect. 4 we suggest that the perceived
failure of equilibrium models to capture Knightian uncertainty may have more to do
with the use of rational expectations in their econometric estimation than with the
Bayesian rational choice paradigm.

There is a growing interest in the economic role of Knightian uncertainty.3 One
motivation is the discrepancy between the observed behavioral patterns (e.g., in
asset prices) and the predictions of models where agents are assumed to know
the true data generating process. Introducing uncertainty about fundamentals is
a natural way to bring models closer to reality. Pástor and Veronesi (2009) sur-
vey asset pricing anomalies that could be explained with the introduction of
uncertainty about fundamental parameters. They conclude that “[m]any facts that
appear baffling at first sight seem less puzzling once we recognize that parame-
ters are uncertain and subject to learning.” Hansen and Sargent (2001) discuss
the importance of model mis-specification and parameter-uncertainty in macroeco-
nomic modeling. Connections to these works are discussed in greater detail in
Sect. 4.

3 The terms parameter-uncertainty, model-uncertainty, or model mis-specification are often used instead
of what we simply call “uncertainty.”
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4 N. I. Al-Najjar, J. Weinstein

Two seminal papers, Gilboa and Schmeidler (1989) and Bewley (1986), formalize
the concept of Knightian uncertainty as lack of full Bayesian belief. In Bewley (1986),
uncertainty is modeled as an incomplete ranking over acts. Gilboa and Schmeidler
(1989)’s ambiguity averse agents use a maxmin criterion with respect to a set of
priors to incorporate caution in their decisions. Both approaches focus on the typical
pattern of choices in static Ellsberg experiments as a key behavioral manifestation of
uncertainty.

The present paper argues that a distinction between risk and Knightian uncertainty
can be made within the Bayesian framework. This point of view follows a number
of authors, including Halevy and Feltkamp (2005) and Weitzman (2007), who pur-
sue Bayesian approaches to uncertainty. LeRoy and Singell (1987) suggest that such
approach can be traced to Knight (1921)’s original work, noting that “Knight shared
the modern view that agents can be assumed always to act as if they have subjective
probabilities.” Similarly, Keynes (1937) writes that, even in situations of uncertainty,
“the necessity for action and for decision compels us [..] to behave exactly as we
should if we had […] a series of prospective advantages and disadvantages, each mul-
tiplied by its appropriate probability, waiting to be summed.” Knight and Keynes,
writing decades before modern subjective expected utility theory, seemed to believe
that decision making under uncertainty is not necessarily in conflict with probabilistic
reasoning.

We find it useful to distinguish Knightian uncertainty from ambiguity aversion. We
take uncertainty to mean probabilities that cannot be objectively measured, an intuition
we formalize in terms of statistical tests. Ambiguity aversion, on the other hand, refers
to non-probabilistic beliefs, exemplified by the static Ellsberg choices. Although both
lead to precautionary behavior, there are profound differences. In a Bayesian model,
the implications of uncertainty appear in connection with intertemporal choice and the
constraints on consumption smoothing. In static settings, such as Ellsberg’s choices,
risk and uncertainty are indistinguishable. This is consistent with Knight (1921)’s view:
“when an individual instance only is at issue, there is no difference for conduct between
a measurable risk and an unmeasurable uncertainty. The individual […] throws his
estimate of the value of an opinion into the probability form of ‘a successes in b
trials’ […] and ‘feels’ toward it as toward any other probability situation.” In modern
Bayesian language, agents care only about the prizes they receive, not whether they
were the result of risk rather than uncertainty.

The outline of the rest of the paper is as follows. Section 2 introduces the basic
setup and defines the uncertainty premium. This section also introduces a very simple
model where the value function can be easily computed and the impact of uncertainty
is obvious. This simple model is inspired by Halevy and Feltkamp (2005), which we
discuss in detail below. Section 3 introduces a more complete consumption–saving
model and derives the stochastic laws of consumption under risk and uncertainty.
Uncertainty leads to precautionary behavior and greater sensitivity to information.
Section 4 discusses the empirical implications of uncertainty. We begin with a simple
argument illustrating that uncertain beliefs are not testable, then discuss the poten-
tial tension between uncertainty and rational expectations econometrics. We discuss
in detail the relationship of our work to Weitzman (2007) and Cogley and Sargent
(2008).
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A Bayesian model of Knightian uncertainty 5

2 Risk and uncertainty

2.1 Model and notation

We consider infinite horizon decision problems (finite horizon problems can be
obtained as a special case). In each period, an outcome in a finite set S = {s1, . . . , sk}
is realized. The set of infinite sequences of outcomes is denoted S∞. We use subscripts
to indicate time periods and superscripts to indicate outcomes. For example, si is the
outcome at time i while s j is the j outcome.

An agent has a time-separable discounted utility for consumption streams:

U (c1, . . .) =
∞∑

i=1

δi u (ci ) , (1)

where δ ∈ [0, 1] is a discount factor and u : R → R is a concave von Neumann–
Morgenstern utility.

Let Θ be the set of all probability distributions θ = (θ1, . . . , θk) on S. In this paper,
a parameter is an i.i.d.distribution Pθ on S∞ obtained by independently sampling
from S according to θ. We will refer to either θ or Pθ as “parameter.”4 We do not
consider more general parametric models, such as Markov processes, for tractability
and expositional simplicity.

The agent’s uncertainty about θ is represented by a prior μ over Θ. Let Pμ represent
the implied belief about infinite samples, defined by Pμ(B) ≡ ∫

Θ
Pθ (B)dμ(θ),

for every event B.5 From the perspective of the agent, the parameter θ is a random
variable with distribution μ. Expectations with respect to μ and θ are denoted Eμ, Eθ ,

respectively.
It will be useful to define the “average” parameter θ̄μ by θ̄μ(si ) = Eμθ(si ). For

example, if si is “Heads” in a coin toss, then the space of parameters is [0, 1] and μ

is a distribution on [0, 1]. In this case, Eμθ i is the expected value of the probability

of heads. Although Pμ and P θ̄μ
share the same marginal on any single coordinate,

P θ̄μ
is always independent, while Pμ is independent only when μ concentrates all its

mass on a single parameter.

2.2 Risk, uncertainty, and the value function

A Bayesian agent who is uncertain about the “true” parameter θ represents this lack
of knowledge in terms of a prior μ. His expected utility on consumption streams is:

EμEθU (c1, . . .) .

4 All events in S∞ are assumed to be Borel sets. The space of probability measures on S∞ is itself endowed
with the weak* topology and the Borel sigma-algebra of events. All functions used in the paper are assumed
measurable.
5 There is a 1–1 correspondence between Pμ and μ, yet they are different objects: the former is a distribution
on Sn , while μ is a distribution on Θ.
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6 N. I. Al-Najjar, J. Weinstein

It is easy to see that this equals Eθ̄μU (c1, . . .), so the agent is indifferent between
uncertainty about the parameter and certain knowledge of the average parameter.6

This makes a simple but important reference point: how confident an agent “feels”
about his knowledge of the true θ is irrelevant in ranking consumption streams. This
apparent failure of the standard framework to capture uncertainty about the true prob-
abilities may be behind the perception that Knightian uncertainty requires a departure
from probability-based reasoning. For instance, consider an agent A who believes that
his consumption stream will either be high forever or low forever with equal proba-
bility, versus an agent B who believes that each day there is an independent 50–50
draw between high and low. Our standard utility function evaluates these as equal,
because agent B does not derive any hedging benefit from the independent draws, but
is forced to “starve” on bad days. It is more natural, though to consider the case that
some intertemporal smoothing is possible.7

While a Bayesian framework cannot distinguish risk and uncertainty in consumption
streams, this distinction is possible, indeed natural, in evaluating the indirect utility of
payoff streams. To make this idea formal, define a consumption plan c as a sequence
of functions:

ci : Ri → R, i = 1, . . . ,

with the interpretation that ci is period i consumption given the payoffs realized up to
that period. The agent chooses a consumption plan from a non-empty subset C which
we interpret as the set of feasible plans. The specification of C will vary with the
problem considered.

Given a random payoff stream fi , i = 1, . . . , an agent with belief μ solves:

max
c∈C

EμEθ

∞∑

i=1

δi u (ci ) . (2)

Let c∗(μ, f, C) be a solution to this problem. The indirect utility function is the
value V (μ, f, C) of the above problem. That is,

V (μ, f, C) = EμEθ

∞∑

i=1

δi u
(
c∗

i ( f1, . . . , fi )
)
.

We suppress references to f and C when they are clear from the context. In many
applications, C has a recursive structure, and the impact of past payoff realizations can
be summarized by a vector of state variables.

6 This follows from the linearity of probabilities and the time-separability of utility:∫
Θ

∫
Sn

∑∞
i=1 δi u(ci )dPθ dμ = ∑∞

i=1 δi Eθ̄μ u(ci ) = Eθ̄μU (c1, . . . , cn).

7 For example, Hansen and Sargent (2001) write: “Knight (1921) distinguished risky events, which could
be described by a probability distribution, from a worse type of ignorance that he called uncertainty and that
could not be described by a probability distribution. […] A person behaving according to Savage’s axioms
has a well-defined personal probability distribution. […] Savage’s system undermined Knight by removing
the agents possible model misspecification as a concern of the model builder.”
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A Bayesian model of Knightian uncertainty 7

A basic intuition is that agents prefer prospects with known probabilities to ones
where the probabilities are unknown. In fact, Knight’s original motivation was that
economic profits are paid to bearing uncertainty. The first criterion to measure the
impact of uncertainty is in terms of the expected utility improvement if the agent
knew the true parameter:

EμV (θ) − V (μ). (3)

This term is strictly positive if V is strictly convex in θ. It captures the value of
information in helping the agent make better consumption decisions. We examine
consumption smoothing under uncertainty in greater detail in Sect. 3. For now, we
simply note that uncertainty has no impact when considering preferences over con-
sumption streams, since there is no decision to be made. Formally, a constraint set C
precludes intertemporal smoothing if ci = f (si ) for all i and s.

Proposition 2.1 If C precludes intertemporal smoothing then for every f, V (μ) =
V (θ̄μ).

Precluding intertemporal smoothing means that the agent consumes his endowment,
so indirect utility reduces to utility over consumption streams. The agent cannot, for
example, open a checking account, store consumption goods, or put money under the
proverbial mattress. In realistic economic environments, some degree of intertemporal
smoothing is possible, and uncertainty potentially has an impact on behavior.

The second criterion to measure the impact of uncertainty is to use, as a reference
point, the agent’s utility under the average parameter:

V
(
θ̄μ

) − V (μ), (4)

and define the uncertainty premium as:

u−1 (
V

(
θ̄μ, f

)) − u−1(V (μ, f )).

To illustrate these concepts, we focus on a concrete class of examples:

Example 1 [Deferred Consumption] There are n + 1 periods and δ = 1. The set C
consists of a single consumption plan: ci = 0, i �= n + 1 and cn+1 = ∑n

i=1 fi .

One interpretation of the utility of consumption in period n + 1 is that it represents
the indirect utility of consumption in subsequent periods with initial wealth given
by the lump-sum payment

∑n
i=1 fi . Many important problems fit this description,

including assets that generate payoffs each period but pay the cumulative dividend at
time n + 1.8

8 For example, a start-up company which accumulates gains and losses to its value over a period of time,
but investors are paid when the company is sold or goes public. Another example is a retirement portfolio
that generates dividends each period, but the agent cares only about its value at the time of retirement.
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8 N. I. Al-Najjar, J. Weinstein

The separation of consumption (period n + 1) and payoff accumulation (periods
i = 1, . . . , n) makes the problem tractable. Assuming u(0) = 0, indirect utility is
simply:

V (μ) = EμEθ u

(
n∑

i=1
fi

)
.

Note that the term (3) is zero, so that criterion cannot separate risk and uncertainty.
The separation is possible under criterion (4). However, when u is strictly concave and
n > 1, the distribution of the sum

∑n
i=1 fi has more variability under the uncertain

belief μ than under the i.i.d.parameter θ̄μ. This suggests that an agent will prefer a
project with known probability θ̄μ to a project with uncertain probability represented
by μ.

This intuition is confirmed by Halevy and Feltkamp (2005) in the case of n = 2. They
consider an agent whose utility depends on the sum f (s1) + f (s2) of two draws from
an urn with fixed but unknown composition. They show that this creates sensitivity to
uncertainty: a risk averse agent would prefer to bet on an urn with known composition
θ̄μ to an uncertain urn with subjective distribution μ, so (4) holds strictly. Halevy and
Feltkamp (2005)’s key insight is that many real-world situations involve multiple draws
and that utility may depend on the sum of these draws. They suggest that agents may
develop heuristics that make them appear sensitive to uncertainty even in one-draw
experimental settings.

Halevy and Feltkamp (2005)’s study shows that analyzing even the n = 2 case can
be quite involved. We gain additional intuition by considering large n. Imagine a
partnership where each partner owns (conveniently) a 1

n share of the final value of the
firm. This normalization eliminates the effect of possible changes in risk attitude as
n grows. The agent has a choice between two projects: one with known odds θ̄μ and
another with uncertain odds μ.

Proposition 2.2 Suppose that u is strictly concave and μ is non-degenerate. Then for
all sufficiently large n, the agent strictly prefers the project with known odds.

This says that V (θ̄μ) > V (μ) and the uncertainty premium is strictly positive.
With large n, the intuition is simple: the law of large numbersimplies that for any θ

there is high probability that the average is close to the expectation Eθ f, hence the
approximate equality:

Eθ u

(
1

n

∞∑

i=1

fi

)
	 u

(
1

n
Eθ

∞∑

i=1

fi

)
.

The distinction between parameters and subjective beliefs about parameters is key:
while the variability implied by θ tends to average out, uncertainty is unaffected
by n. We finally note that uncertainty is irrelevant in a one-period problem. With
n = 1, P θ̄μ

and Pμ induce identical distributions on outcomes, and are, therefore,
indistinguishable. Our model is, therefore, inconsistent with behavioral anomalies
that arise in one-period choice problems.

123

Author's personal copy



A Bayesian model of Knightian uncertainty 9

3 Uncertainty and precautionary behavior

In the simple model above, consumption occurs after all uncertainty is revealed and
depends on the sum of past income realizations. This implicitly assumes perfect
smoothing of past income. In this section, we study the impact of uncertainty in a
richer model where consumption decisions and income realizations occur each period.
The setting is standard, making it possible to contrast the evolution of consumption
under uncertainty with the rational expectations benchmark.

3.1 Model

In each period t = 1, . . . , the agent starts with a level of wealth wt and belief μt

which represents the physical state and belief state of the system, respectively. His
consumption decision is a function of the state, ct (wt , μt ).

The physical state evolves according to:

wt+1 = (1 + r) (wt + ft − ct ) , (5)

where ct is consumption in period t and r > 0 is the net return on savings. Beliefs
evolve according to Bayes rule. Note that the transition of the physical state does
not depend on beliefs, and vice versa. The transitions on wealth and beliefs define a
feasible set C. The value function (indirect utility) and the policy function are denoted
V (μ, w) and c∗(μ, w).

To obtain an analytical expression for the evolution of consumption and wealth
under uncertainty, we assume that the agent has an exponential (CARA) utility function
u(x) = −e−ax and that δ = 1

1+r . Our analysis for the pure risk case is based on
Caballero (1990), while the results for uncertainty appear new. See Carroll and Kimball
(2008) for a recent survey.
The optimal solution to this problem must satisfy the Euler equation:

u′ (c∗
t

) = Et
[
u′ (c∗

t+1

)]
.

For the exponential utility, marginal utility is a constant multiple of the utility level.
Using this fact, and iterating expectations, we have:

u
(
c∗

t

) = Et
[
u

(
c∗

t+k

)]
,

for every k. This implies (by taking u−1 of both sides) that consumption today equals
the certainty equivalent of consumption at any future date. This in turn implies that
the value function satisfies:9

V (μt , wt ) = u
(
c∗

t

)
.

9 This follows from: V (μt , wt ) = (1 − δ)Eμt [
∑∞

l=t δl−t u(c∗
l )] = (1 − δ)

∑∞
l=t δl u(c∗

t ).
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10 N. I. Al-Najjar, J. Weinstein

3.2 Pure risk

The evolution of consumption under risk and exponential utility is well-known in the
literature on precautionary saving. We summarize these results for the benefit of the
reader:

Proposition 3.1 Given any parameter θ, the optimal consumption rule is:

c∗(θ, w) = r

1 + r
w + r−1CE(rf |θ), (6)

where

CE(rf |θ) ≡ u−1
(∫

u(rf )dθ

)
,

is the certainty equivalent of the random permanent impact r f on consumption from
the dividend implied by θ.

Furthermore, the evolution of consumption can be written

ct+1 = ct + Γ (θ) + r ( ft − E[ f |θ ]) , (7)

where Γ (θ) is the risk premium of the variable r f, defined by

Γ (θ) ≡ E(rf |θ) − CE(rf |θ) ≥ 0. (8)

Examining formula (7), we see that Γ is the drift of the consumption process (since
the last term has mean zero). Once again, Γ equals the standard risk premium of
the prospect rf . In particular, Γ is increased if the distribution on f is replaced by a
mean-preserving spread. It is strictly positive as long as θ is not a point mass, since
a certainty equivalent (under concave utility) is always less than the expected value.
It should be interpreted as due to “precautionary savings” since it would be absent if
future dividends were known. The term r( ft − E[ f |θ ]) is a mean-zero random shock
to consumption due to the wealth effect of the difference between the realized and
expected payoff.

We can also observe that, by inspection of the CARA utility form, the term
r−1CE(rf |θ) which appears in (6) is in fact the certainty equivalent of the prospect f
for an agent who has CARA utility with risk aversion of ra rather than a. Notice that
this must be larger than CE( f |θ) whenever r < 1; an agent who is less risk averse
has larger certainty equivalents. An equivalent statement is that for r < 1 :

CE(rf |θ) ≥ rCE( f |θ),

which is just the statement that there is less risk aversion at a smaller scale. The
inequality is strict whenever f takes on more than one value.
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A Bayesian model of Knightian uncertainty 11

3.3 Uncertainty

Here we let μ be a non-trivial distribution over the parameter θ. The following general
form, stating that adding wealth simply results in additional interest income being
consumed each period, follows intuitively from the fact that risk attitudes under CARA
are invariant to the wealth level:

Lemma 3.2

c∗(μ, w) = r

1 + r
w + c∗(μ, 0).

In light of the lemma, it makes sense to use the notations

c∗(μ) ≡ c∗(μ, 0) and V (μ) ≡ V (μ, 0).

The next result shows that the value and consumption functions are convex in μ; this
can be interpreted to mean that given any uncertainty, resolution of this uncertainty will
on average increase consumption. The last part states further that, for a fixed marginal
distribution on tomorrow’s return, we consume less under uncertainty than under pure
risk. That is, there is additional precautionary savings due to the uncertainty about θ.

To take an extreme example, we consume more if we know our returns will be i.i.d.
50–50, 0 or 1, forever, than if we think there is a 50 % chance they will be 0 forever
and a 50 % chance they will be 1 forever.

Proposition 3.3 For any w, V and c∗ are strictly convex in μ. That is, letting μ1 and
μ2 be any beliefs which result in distinct consumption plans,

(1) V (λμ1 + (1 − λ)μ2, w) < λV (μ1, w) + (1 − λ)V (μ2, w);
(2) c∗(λμ1 + (1 − λ)μ2, w) < λc∗(μ1, w) + (1 − λ)c∗(μ2, w).

Furthermore, for any μ with finite support, letting θ̄μ be the average of θ under μ, if
r < 1 then

V (μ) ≤ V
(
θ̄μ

)
,

with strict inequality whenever μ is not a point mass, implying also

c∗(μ) ≤ c∗ (
θ̄μ

)
.

The proof of the last statement makes it clear that there are two forces at work
in the preference for the risk represented by θ̄μ over the uncertainty represented by
μ. First, there is the value of information; it is better to have uncertainty resolved at
time 0, because it allows for superior consumption planning. Formally, this value of
information is equivalent to convexity with respect to μ. Second, there is the hedging
motive of having many independent gambles, which is valuable when consumption
can be smoothed.10

10 Formally, this is concavity with respect to θ as shown in Proposition 5.1.
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12 N. I. Al-Najjar, J. Weinstein

Lemma 3.2 implies that

ct+1 = ct + r

1 + r
(wt+1 − wt ) + c∗ (μt+1) − c∗ (μt )

= ct + r
(

ft − c∗ (μt )
) + c∗ (μt+1) − c∗ (μt ) .

To interpret the evolution of consumption under uncertainty, it is useful to write it
in a way that parallels that under risk (7). Let

Γ (μt ) ≡ r
(
E [ ft ] − c∗ (μt )

)
,

and note that this reduces to (8) when μ has support θ. This term is certain as of time
t and represents an upward drift in consumption similar to what we have seen under
risk.

Rearranging terms, the evolution of consumption can be written as:

ct+1 = ct + Γ (μt ) + r
[

ft − Eμt [ ft ]
]

+ [
Eμt

[
c∗ (μt+1)

] − c∗ (μt )
] + [

c∗ (μt+1) − Eμt

[
c∗ (μt+1)

]]
. (9)

The first line in (9) closely resembles behavior under risk. The second line includes a
new source of upwards drift and a new mean-zero random shock to consumption. Both
terms are due to the resolution of uncertainty and, therefore, absent under risk. The
upward drift in consumption is due to the resolution of uncertainty which implies less
precautionary savings in the future. This term is positive because Bayesian updating
implies that μt = Eμt [μt+1], and by Jensen’s inequality and the previous proposi-
tion, this means that Eμt [c∗(μt+1)] ≥ c∗(μt ), with strict inequality whenever μt is
not a point mass. The new source of randomness (second term in the second line)
is due to the persistent effect of the random resolution of uncertainty—that is, the
current dividend is informative about future dividends. This was not present under
risk.

4 Empirical implications of uncertainty

How is uncertainty different from other situations of imperfect information? In a
Bayesian setting, both “measurable risk” and an “unmeasurable uncertainty” corre-
spond to the agents’ probabilistic belief about his environment. We will argue, however,
that risk and uncertainty have sharply different empirical content.

4.1 Uncertain beliefs are untestable

A natural intuition is that the probabilities of uncertain events are, in a sense, subjective.
They are, in Keynes’ words, events “about [which] there is no scientific basis on
which to form any calculable probability whatever.” This has important implications
for disagreement and belief heterogeneity. One would expect most people to agree on
the probability of heads in a fair coin toss, but not on the probability of the outcome
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A Bayesian model of Knightian uncertainty 13

of a presidential election or the unraveling of a Monetary Union. We formalize the
distinction between objective risk and subjective uncertainty in terms of statistical
tests with suitable properties. We show that objective statistical tests cannot determine
whether uncertain beliefs are right or wrong.

Consider a simple setting where only two parameters, θ1 �= θ2, are relevant. Let �

be the set of beliefs μ with μ(θ1) + μ(θ2) = 1 and μ(θi ) > 0, i = 1, 2. Interpret a
function

T : {θ1, θ2} × S∞ → {0, 1},

as a statistical test, where T (θm, s∞) = 1 indicates that the infinite sequence of
observations s∞ confirms the hypothesis that the true data generating process is θm,

while T = 0 means that s∞ is inconsistent with θm . As an idealization of what is
in principle testable, consider asymptotic tests that make use of the entire infinite
sequence of data.11

With unlimited data, it is natural to require a test to have the following properties:

(1) T is free of Type I error on parameters:

Pθm
{
T

(
θm, s∞) = 1

} = 1 ∀m.

(2) T identifies the true parameter:

Pθm
{
T

(
θm′ , s∞) = 1

} = 0 ∀m �= m′.

A simple test with these properties is one that compares θm with the empirical fre-
quencies along the sequence of data. In the absence of uncertainty, such a test can be
used to objectively determine whether the belief that the true parameter is θm is right
or wrong.

This objective measurement of the correctness of beliefs is not possible under
uncertainty. To make this precise, fix a test T with the above properties and let T̂ :
� × S∞ → {0, 1} be any Type I error-free extension of T (that is, Pμ{T (μ, s∞) =
1} = 1 for all μ ∈ �). Requiring small Type I error (or zero, in the asymptotic limit)
reflects the priority given to controlling this type of error in statistical practice.

Proposition 4.1 Let μ, μ′ be any pair of beliefs in � and T̂ any test with the above
properties. Then

Pμ
{
T

(
μ′, s∞) = 1

} = Pμ′ {
T

(
μ, s∞) = 1

} = 1.

Consider agent i who believes the economy evolves according to μi . This agent is,
therefore, convinced that any other agent j who disagrees with him, μ j �= μi , must
be wrong. The proposition says that this agent must also believe that there is no Type
I error-free test that can objectively determine which belief is correct.

11 Footnote 12 below discusses finite tests.
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14 N. I. Al-Najjar, J. Weinstein

Proof We have

1 = Pμ′ {
T

(
μ′, s∞) = 1

} = Pθ1
{
T

(
μ′, s∞) = 1

}

×μ′ (θ1) + Pθ2
{
T

(
μ′, s∞) = 1

}
μ′ (θ2) .

This implies that Pθ1{T (μ′, s∞) = 1} = Pθ2{T (μ′, s∞) = 1} = 1. From this it
follows that:

Pμ
{
T

(
μ′, s∞) = 1

} = Pθ1
{
T

(
μ′, s∞) = 1

}

×μ (θ1) + Pθ2
{
T

(
μ′, s∞) = 1

}
μ (θ2) = 1.

The other equality is proved similarly. �
Parameters are objective in the sense that one can devise a powerful statistical test

that verifies the value of the true parameter. Uncertainty about parameters, by contrast,
is subjective because any unprejudiced test of these beliefs has no power, and thus
cannot be used to refute or confirm these beliefs. Uncertainty is different from risk not
because agents do not use probabilities in making decisions, but because it is difficult
to devise objective criteria to test them.12

4.2 Inference under uncertainty

The discussion above suggests that uncertainty is a state of beliefs whose correctness
cannot be objectively tested. On the other hand, uncertain beliefs influence decisions
and can have important observable implications. For concreteness, we use a simple
parametrized version of the consumption–saving model to show that incorporating
uncertainty in empirical studies raises special challenges.

4.2.1 The rational expectations benchmark

Empirical methods in dynamic economic models usually assume that agents have
rational expectations, i.e., beliefs coincide with the observed empirical frequencies. In
the stylized consumption–saving model of Sect. 3, we define the rational expectations
benchmark as an agent’s belief that coincides with the observed empirical frequencies
of the exogenous income process f.

Take the perspective of an outside modeler (an econometrician) who combines
restrictions inspired by an economic model with past observations of income realiza-
tions to estimate parameters such as θ and a. If the sequence of observations is long
enough, the modeler’s estimate, denoted θ̂ , will be close to the true parameter θ̄ with

12 A test T̂n based on n observations cannot distinguish between knowing θm with certainty and a belief μ

that puts arbitrarily large weight on θm . The argument in the proposition can be modified to cover finite tests.
We show this with an example: suppose that μ(θ1) = μ(θ2) = 0.50 and Pμ{T̂n(μ, s∞) = 1} ≥ 1 − ε,

where ε is a small positive number representing Type 1 error. This says that T̄n has small Type I error at μ.

Using the same argument as the proposition, it is easy to show that Pμ{T̄n(μ′, s∞) = 1} ≥ 1 − 2ε.
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A Bayesian model of Knightian uncertainty 15

high probability. Roughly, rational expectations econometrics estimates the remaining
model parameters by assuming that the agent’s decisions are optimal with respect to
the belief θ̂ . These “cross-equation restrictions” are a powerful empirical tool that
eliminates expectations as a free variable.

For our numerical example, assume that income takes just two values, f ∈ {0, 1},
the interest rate is r = 0.01, and that the true parameter is θ̄ = 0.50. After a long
sequence of observations, the modeler’s point estimate θ̂ will be close to 0.50 with
high probability. Since the inference of the econometrician is not our main concern
here, assume for convenience that his estimate is not subject to sampling error: θ̂ = θ̄ .

The simplest way to impose rational expectations is to assume that the agent’s belief
μ puts unit mass on the sample estimate:

μ(θ̂) = 1.

Rationality implies that past choices are optimal given this belief.
In this example, the hypothesis of rational expectations is a key identifying assump-

tion that pins down beliefs to observations. This leads the modeler to assume that
consumption evolves according to the autoregressive equation (7):

ct+1 = ct + Γ (θ̂) + r
(

ft − E[ f |θ̂]
)

,

where r( ft − E[ f |θ̂]) is a mean-zero i.i.d. disturbance and Γ (θ̂) is a drift term.
This model has a number of concrete empirical implications that can be tested

against income and consumption data. For example, the model predicts that the drift
term is Γ (θ̂), where θ̂ is estimated directly from observed income. Letting α̂ denote the
coefficient in a simple linear regression of ct+1 − ct on a constant term, the model’s
null hypothesis is that α̂ = Γ (θ̂), and that the residuals are generated by the i.i.d.
process r( ft − E[ f |θ ]). In particular, the residuals must be serially uncorrelated and
homoskedastic.

4.2.2 Consumption under uncertainty

The assumption that the agent’s beliefs equal the empirical distribution implicitly
assumes that: (1) the agent observed a long sequence of past realizations of the process
and (2) the agent believes that the future will be similar to the past, in the sense
that the same parameter that governed past income will continue to govern future
income. Uncertainty, in the form of a non-degenerate μ, may represent a “belief shock”
where the agent questions the stability of the parameter governing his environment
and the relevance of past data to estimating the new parameter.

Under uncertainty, consumption evolves according to (9):

ct+1 = ct + Γ (μ) + r
[

ft − Eμt [ ft ]
]

+ [
Eμt

[
c∗ (μt+1)

] − c∗ (μt )
] + [

c∗ (μt+1) − Eμt

[
c∗ (μt+1)

]]
.
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16 N. I. Al-Najjar, J. Weinstein

The belief state μt changes with the arrival of new information and plays a crucial
role in the decision problem. Under risk, by contrast, beliefs are not updated since the
agent is assumed to know the true parameter θ̄ .

Qualitatively, the introduction of uncertainty results in an additional drift term and
a new mean-zero disturbance. However, the evolution of consumption itself cannot be
derived analytically. To better understand the impact of uncertainty, we simulate the
model numerically. Continue to assume that the true parameter is θ̄ = 0.50 and that
it is estimated without error by the econometrician after observing a long sequence
of income realizations. The agent, who lacks this knowledge ex ante, quantifies his
uncertainty with a uniform prior μ over [0, 1]. Note that the agent is convinced that
the parameter is “on average” equal to θ̄μ = 0.50, in the sense that he believes the
marginal on income in any period to be 50/50.

To give a sense of how consumption evolves under risk (θ̄μ = 0.50) and uncer-
tainty (μ), four samples are shown in Fig. 1. In each sample, an income realization
is drawn under the true parameter θ̄ = 0.50. Given income, we compute the optimal
consumption under risk and uncertainty, using (7) and (9), respectively. In each of the
four samples, consumption under uncertainty is lower in period 1, has more upward
drift, and is more volatile.

Figure 2 summarizes the behavior of consumption averaged over 10,000 samples.
Under risk (assuming known θ̄ = 0.50), we have ct+1 − ct = Γ (θ), so ct increases
linearly from an initial value c1 that depends on θ, a, and r. An outside observer who
uses past income realizations to obtain an estimate θ̂ = 0.50 will expect consumption,
averaged over samples, to evolve according to this linear relationship.

Under uncertainty, consumption starts at a lower level. This reflects the increased
precautionary savings motive due to the agent’s uncertainty about the true value of θ.13

Under the assumption that the data are generated by the parameter value θ̄ = 0.50,

consumption rises, eventually exceeding RE consumption. The reason is that the agent,
who accumulated greater wealth initially, has more dividend income.

Take again the perspective of a modeler whose model incorporates the hypothesis
that the agent’s belief is equal to the sample estimate, θ̂ . If the agent is uncertain about
θ, his behavior will evolve according to (9) instead, and the model is misspecified.
The modeler will find, among other things, that residuals are serially correlated and
heteroskedastic. As evident from Fig. 2, serial correlation is a consequence of the
steeper consumption growth resulting from a more aggressive precautionary saving
early on.

4.3 Discussion and related literature

Lewellen and Shanken (2002) and Weitzman (2007) introduce learning-based models
to explain asset pricing anomalies in terms of parameter-uncertainty. A major focus
of these papers is the equity premium puzzle, namely that, for plausible levels of
risk aversion, asset prices seem to imply a volatility in payoffs that is significantly

13 Precautionary saving is also present under risk. The difference in period 1 consumption in the figure is
the additional precautionary saving due to uncertainty.
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A Bayesian model of Knightian uncertainty 17

Fig. 1 Four sample paths of consumption under risk and uncertainty. In each subplot, both lines come from
the same sequence of draws, with θ = 0.50. The blue line represents the consumption path under risk (known
θ ), while the green line represents consumption under uncertainty (the agent has uniform prior over θ ).
(Color figure online)
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18 N. I. Al-Najjar, J. Weinstein

Fig. 2 Average consumption under risk and uncertainty. The straight line is consumption under risk
averaged over 10,000 samples. The concave line is average consumption under uncertainty

higher than their empirical volatility (estimated, say, from the standard deviation of
past returns).14 These authors argue that a possible source of this and other related
puzzles is the econometric identification assumption that investors’ beliefs about the
future volatility of income and consumption are equal to these variables’ historical
volatility. As noted earlier, this rational expectations assumption implicitly requires
agents to believe that the parameter generating future outcomes is the same as the one
that generated past data.

Although we do not consider asset pricing in this paper, similar effects appear in
the precautionary saving model. Under our i.i.d.assumption, payoffs are generated
by one true parameter θ̄ , yet an agent who does not know its value will subjectively
expect greater volatility in future income. This uncertainty may be the result of the
agent fearing that a structural change in the income process might have occurred,
shaking his confidence that the future will be similar to the past. This uncertainty can
have important consequences for the behavior of endogenous variables but, as shown
earlier, it may be difficult to objectively demonstrate through statistical tests that such
uncertain beliefs are paranoid or irrational.

In Weitzman (2007)’s model, the data are generated by i.i.d.draws from a normal
distribution with known mean but unknown standard deviation. An agent’s subjective
uncertainty about the standard deviation implies that his belief is a Student t distribution
which, unlike the normal component distributions, has a fat tail. Weitzman shows
that agents’ concern about this tail risk can lead to significant implications for asset
pricing. There is a parallel with what we do: in our model, a subjective distribution

14 Equivalently, investors’ risk aversion implied by the observed asset prices is an order of magnitude
higher than what is considered reasonable.
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A Bayesian model of Knightian uncertainty 19

over i.i.d.parameters is not an i.i.d.distribution, while in Weitzman’s model uncertainty
over standard deviations of normals implies a subjective belief that is not itself normal.
A second difference is that Weitzman does not consider intertemporal smoothing.

There is an extensive literature on precautionary savings. That literature mainly
focuses on what we call risk (agents’ beliefs coincide with the ergodic probabili-
ties). An important exception is Cogley and Sargent (2008) who consider a model of
precautionary savings with parameter uncertainty. Cogley and Sargent (2008)’s main
focus is on whether behavior based on anticipated utility approximates well the full
Bayesian solution in simulations under power utility. They assume an income process
generated by a Markov matrix with unknown coefficients. The agent’s prior on these
coefficients is a Dirichlet distribution, a tractable modeling assumption that makes it
easy to represent the extent to which an agent trusts his prior. The uniform distribution
used in our simulation reported earlier is a binomial Dirichlet (i.e., Beta) distribution
with parameters n0 = n1 = 1. As with Cogley and Sargent (2008), we can model the
agent’s uncertainty by varying the parameter of his prior. Pure risk is then the limiting
case where n0 and n1 approach infinity. We may interpret this, as they do, that the
agent has observed a long history of the process and that he believes that the future will
look like the past. The advantage of CARA utility is that there are no wealth effects,
making the model more tractable. This allowed us to derive Eq. (9) which showed
clearly the relation between behavior under risk and uncertainty in an explicit equa-
tion and proved that uncertainty causes increased precautionary savings and increased
volatility. While power utility is considered more realistic, the differences are very
minor for any modest changes in wealth, and so we consider the ability to write down
the solution more explicitly worthwhile. Of course, we still had to solve the model
numerically to calculate V (μ), but the theory behind the calculation is made much
simpler by the separability of wealth in the CARA model.

Appendix

Proof of Proposition 2.2

V (μ) = EμEθu

(
1

n

n∑

i=1

fi

)
(10)

	 Eμu

(
1

n
Eθ

n∑

i=1

fi

)
(11)

	 Eμu

(
1

n
Eθ f

)

	 EμV

(
θ,

1

n
f

)

< V
(
θ̄μ

)
,

where the last inequality follows from the strict concavity of u.
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20 N. I. Al-Najjar, J. Weinstein

Proof of Proposition 3.1 We first note that since we are optimizing a concave function,
it suffices to show that the Euler and transversality conditions are satisfied. Applying
u−1 to both sides of u(c∗

t ) = Et [u(c∗
t+k)] and substituting in (5), we can express the

evolution of wealth as:

wt+1 = (1 + r)

[
wt + ft − r

1 + r
w − r−1CE(rf |θ)

]

= wt + (1 + r) ft − (1 + r)r−1CE(rf |θ),

implying

ct+1 = r

1 + r

[
wt + (1 + r) ft − (1 + r)r−1CE(rf |θ)

]
+ r−1CE(rf |θ)

= r

1 + r
wt + r ft − CE(rf |θ) + r−1CE(rf |θ)

= ct + r ft − CE(rf |θ).

Under CARA, certainty equivalents are independent of wealth, so the last equation
implies that ct+1 has a time t certainty equivalent of ct , which we argued earlier is
equivalent to the Euler equation.

To get the formula for the evolution of consumption, note that θ does not change
in time (this is the key property of lack of uncertainty) so we can deduce from Eq. (6)
that

ct+1 − ct = r

1 + r
(wt+1 − wt ) ,

after which substituting for wt+1 according to Eq. (5) and ct from Eq. (6) gives (7). It
shows that consumption, which is linear in wealth, can grow only linearly so long as f
is bounded, so wealth also grows at most linearly also and the transversality condition
limt→∞(1 + r)−twt is satisfied with probability 1. �

Next, we establish the concavity of the value function under risk. Note that for any
lottery over two outcomes, we have:

u−1 (λu (r f1) + (1 − λ)u (r f2)) ≥ ru−1 (λu ( f1) + (1 − λ)u ( f2)) . (12)

This observation, along with the previous proposition, allows us to show:

Proposition 5.1 For known θ,

(1) Optimal consumption is convex in θ.

(2) Value is concave in θ for any r < 1.

To illustrate the meaning of this proposition, assume that under distribution θ0 an
asset returns 0 for sure, under θ1 it returns 1 for sure, and thus under θ2 = 0.5θ0+0.5θ1
the asset returns 0 or 1 each period according to a series of i.i.d. coin flips. With zero
wealth, optimal consumption under θ0 is simply 0, with value u(0), and under θ1 is
1, with value u(1). The first point then states that consumption under θ2 is less than
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0.5; this is because there is a small precautionary saving to mitigate against the risk
of the next coin flip. However, value under θ2 is greater than the average of u(0) and
u(1); this is driven by consumption smoothing, as θ2 ensures many independent coin
flips and entails much less long-run risk than a lottery between θ0 and θ1. There are
two countervailing forces on the value, as taking a convex combination of θs increases
the need for precautionary savings but mitigates against long-run risk. The CARA
utility allows us to say that the second force dominates for r < 1. When r � 1 as
usual, the second force is much stronger and it is reasonable to think that the CARA
form is not essential to this claim. It is interesting to note that if we allow r > 1,

the precautionary-savings effect dominates, as discounting is fast and long-run risk is
unimportant (mostly the current period matters).

Proof of Proposition 5.1 Applying Proposition 3.1, the first item reduces to the state-
ment that the certainty equivalent of a compound lottery is less than the average of the
certainty equivalents of the nodes. That is,

CE (rf |λθ1 + (1 − λ)θ2) = u−1 E
[
u(rf )|λθ1 + (1 − λ)θ2

]

= u−1 (
λE

[
u(rf ) |θ1

] + (1 − λ)E
[
u(rf )|θ2

])

= u−1 (λu (CE (rf |θ1)) + (1 − λ)u (CE (rf |θ2)))

≤ λCE (rf |θ1) + (1 − λ)CE (rf |θ2) ,

where the last step follows from u being increasing and concave (take u of both sides
to get the definition of concavity). Along with Proposition 3.1 this yields the first
statement.

For the second statement, use V (θ) as shorthand for V (θ, 0). By earlier results,

V (θ) = u
(

r−1CE(rf |θ)
)

= u
(

r−1u−1 E(u(rf )|θ)
)

.

Now observe that

V (λθ1 + (1 − λ)θ2) = u
(

r−1CE (rf |λθ1 + (1 − λ)θ2)
)

= u
(

r−1u−1 (
E

[
u(rf )|λθ1 + (1 − λ)θ2

]))

= u
(

r−1u−1 (
λE

[
u(rf )|θ1

] + (1 − λ)E
[
u(rf )|θ2

]))

= u
(

r−1u−1
(
λu

(
ru−1V (θ1)

)
+ (1 − λ)u

(
ru−1V (θ2)

)))

≥ λV (θ1) + (1 − λ)V (θ2) ,

where the last step uses (12). This shows concavity of V in θ for w = 0. For general w,
Eqs. (3.1) and (6) show that

V (θ, w) = e−a r
1+r wV (θ),

which implies the result. �
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Proof of Lemma 3.2 The Bellman equation tells us

V (μ, w) = (1 − δ)u(c∗(μ, w)) + δE[V (μ| f, (1 + r)(w − c∗(μ, w) + f ))],

and we showed earlier that V (μ, w) = u(c∗(μ, w)), so the Bellman equation reduces
to

u(c∗(μ, w)) = E[u(c∗(μ| f, (1 + r)(w − c∗(μ, w) + f )))],

and when we substitute the form in the lemma, this reduces algebraically to the Bellman
equation for w = 0. This proves the result. �
Proof of Proposition 3.3 The first inequality (in its weak form) is simply the statement
that information about θ has a non-negative value. Since the utility being optimized is
strictly concave, optimal plans are unique and it is strict whenever plans differ under
the two beliefs.

The second inequality follows from the first, given our earlier result that V (μ, w) =
u(c∗(μ, w)) and the fact that u is increasing and concave. (Assume it is false, apply
u to both sides, then apply concavity to contradict the first inequality.)

The final statement follows from expressing μ as a convex combination of point
masses θi , applying convexity of V with respect to μ, then applying concavity of V
with respect to θ (Proposition 5.1). �
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