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 A STRUCTURE THEOREM FOR RATIONALIZABILITY WITH
 APPLICATION TO ROBUST PREDICTIONS OF REFINEMENTS

 BY JONATHAN WEINSTEIN AND MUHAMET YILDIZ1

 Rationalizability is a central solution concept of game theory. Economic models of-
 ten have many rationalizable outcomes, motivating economists to use refinements of
 rationalizability, including equilibrium refinements. In this paper we try to achieve a
 general understanding of when this multiplicity occurs and how one should deal with
 it. Assuming that the set of possible payoff functions and belief structures is sufficiently
 rich, we establish a revealing structure of the correspondence of beliefs to sets of ratio-
 nalizable outcomes. We show that, for any rationalizable action a of any type, we can
 perturb the beliefs of the type in such a way that a is uniquely rationalizable for the new
 type. This unique outcome will be robust to further small changes. When multiplicity
 occurs, then we are in a "knife-edge" case, where the unique rationalizable outcome
 changes, sandwiched between open sets of types where each of the rationalizable ac-
 tions is uniquely rationalizable. As an immediate application of this result, we charac-
 terize, for any refinement of rationalizability, the predictions that are robust to small
 misspecifications of interim beliefs. These are only those predictions that are true for
 all rationalizable strategies, that is, the predictions that could have been made without
 the refinement.

 KEYWORDS: Rationalizability, incomplete information, robustness, refinement,
 higher order beliefs, dominance solvability.

 1. INTRODUCTION

 IN ECONOMIC MODELS, there are often many Nash equilibria and a very large
 number of rationalizable outcomes. To be able to make sharp predictions,
 game theorists therefore developed stronger solution concepts, which led to
 a multitude of refinements, such as perfect and robust equilibrium. In appli-
 cations, researchers typically use these refinements, often applying them to
 Bayesian games in which specific type spaces are chosen to model the play-
 ers' incomplete information. In this paper, we examine the premises of this
 program when there is no common-knowledge restriction on payoff functions.
 Using existing ideas developed in specific contexts, we take a general approach

 'The results in this paper were presented in the working papers by Weinstein and Yildiz (2004)
 and Yildiz (2005). We thank Daron Acemoglu, Pierpaolo Battigalli, Adam Brandenburger, Glenn
 Ellison, Jeffrey Ely, Drew Fudenberg, Aviad Heifetz, Bart Lipman, Casey Rothschild, Dov Samet,
 and the seminar participants at UAB, Berkeley, Bogazici, Caltech, UCL, Econometric Society
 Winter Meeting 2004, Econometric Society World Congress 2005, ESSET Meeting, Georgetown,
 Harvard, Koc, LSE, MIT, Northwestern, NYU, Penn State, UPenn, Sabanci, Stanford, Wash-
 ington University, University of Wisconsin-Madison, University of Tokyo, and Yale for helpful
 comments. We thank a co-editor and three anonymous referees for detailed comments. We are
 especially grateful to Stephen Morris for extensive discussions that led to numerous improve-
 ments and some new results. The first version was written while Yildiz was visiting the Cowles
 Foundation at Yale University, and he is thankful for the generous support and hospitality he
 received.
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 366 J. WEINSTEIN AND M. YILDIZ

 so as to understand when and why there are multiple rationalizable outcomes
 and how we should address such multiplicity when it occurs.
 The solution of this problem also allows us to determine which predictions

 of refinements retain their validity when we actually have only partial knowl-
 edge of the players' incomplete information. We show that, for any refinement
 of rationalizability, these are only those predictions that are true for all ra-
 tionalizable strategies, thus undoing anything accomplished by the refinement
 (to the extent that our robustness notion is compelling). This substantially ex-
 tends, using a robustness notion that is more demanding but in the same spirit,
 the work of Fudenberg, Kreps, and Levine (1988) and Dekel and Fudenberg
 (1990). They showed that we can make any equilibrium strict by perturbing the
 payoffs, thereby establishing a result similar to ours for those refinements that
 eliminate no strict equilibria.
 We start with the observation that modeling a given situation inherently in-

 volves abstracting away from details and making strong simplifying assump-
 tions that are meant to capture the essence of its true underlying features. In
 particular, game-theoretical models often assume that a particular information
 structure is common knowledge. These assumptions are meant to be satisfied
 only approximately in the actual situation. They may nevertheless have a sig-
 nificant impact on the conclusions (see Kreps, Milgrom, Roberts, and Wilson
 (1982) and, more similar to our paper, Rubinstein (1989)). Carlsson and van
 Damme (1993) illustrated that multiplicity may sometimes be a direct result of
 the implicit simplifying assumptions of our models. To be concrete, consider
 their well known example.

 EXAMPLE 1-Carlsson and van Damme (1993): Consider the payoff matrix

 Attack No Attack

 Attack 0, 0-1, O0

 No Attack 0, 0- 1 0, 0

 where 0 is a real number. Assume that 0 is unknown but each player i E {1, 21
 observes a noisy signal xi = 0 + e-ri, where ('rq, rq2) is distributed indepen-
 dently from 0, and the support of 0 contains an interval [a, b], where a < 0 <
 1 < b. When e = 0, 0 is common knowledge. If it is also the case that 0 e (0, 1),
 there exist two Nash equilibria in pure strategies and one Nash equilibrium in
 mixed strategies. Under mild conditions, Carlsson and van Damme showed
 that when e is small but positive, multiplicity disappears: when xi Y 1/2, there
 is a unique rationalizable action. The rationalizable action is No Attack when
 xi < 1/2 and Attack when xi > 1/2.

 The model in which 8 = 0 - 1/2 is common knowledge (i.e., e = 0), ide- alizes the situation in which incomplete information is small (i.e., e is small
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 RATIONALIZABILITY AND ROBUSTNESS 367

 but positive), and each xi is close to 0 in the following sense. In the interim
 stage, observing xi, the player forms beliefs about 0, which are called first-
 order beliefs, beliefs about the other player's belief about 0, which are called
 second-order beliefs, and so on. For any k, as e goes to zero and xi goes to 6,
 the player's belief at order k converges to the kth-order belief under e = 0
 and xi = 8, that is, 0 is equal to 0, the other player knows this, and so on. We
 modelers use the idealized model of e = 0 as an approximation of this small
 incomplete information to simplify our model. The simplification weakens our
 ability to make predictions, because the "more complete" model, in which we
 relax our assumptions and allow for incomplete information, has fewer ratio-
 nalizable outcomes. This argues that accounting for incomplete information
 will actually be helpful in the refinements program.

 Our main result in this paper will ultimately argue emphatically that this is
 not so and that accounting for incomplete information actually casts doubt on
 all refinements. Ironically, though, we will begin to make our case by substan-
 tially generalizing the intuition of Carlsson and van Damme. Indeed, take any
 situation with multiple rationalizable outcomes. Under their assumption that
 each action is dominant at some parameter value, we show that, by introducing
 a small2 amount of incomplete information, we can always relax the implicit as-
 sumptions of the model and obtain an open set of situations in which there is
 a unique rationalizable outcome, which is the same across all these situations.
 Therefore, without very precise knowledge of the actual situation, we cannot
 rule out the possibility that we could accurately predict the rationalizable out-
 come by learning more about the situation. In contrast, when there is a unique
 rationalizable outcome, slight relaxations of the assumptions will not have any
 effect.

 In Example 1, all the perturbations lead to the same rationalizable strat-
 egy as e -- 0, the strategy in which the player takes the risk-dominant action.
 Carlsson and van Damme used this observation to argue for the selection of
 risk-dominant equilibrium in the complete-information game. This particular
 selection is, however, a property of the specific perturbations considered. In-
 deed, if we allow the ex ante variance of 0 to depend on e, we can select any
 outcome we want. This is illustrated in the following example, which is based
 on Morris and Shin (2000). (Complete details of this example can be found in
 the Appendix.)

 EXAMPLE 2-Morris and Shin (2000): In Example 1, assume that 0 is nor-

 mally distributed with mean y and variance e/ 2r, and that rqi is normally dis-
 tributed with zero mean and unit variance, where 0, r 1, and 'q2 are all indepen-
 dent. Such a prior belief on 6 arises if players observe a normally distributed

 "public" signal y in addition to their "private" signals xl and x2. As e -+ 0, the

 2The notion of small is obviously important; it is based on the notion of convergence at each
 order described in the previous paragraph. We will discuss this much further in Section 2.
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 368 J. WEINSTEIN AND M. YILDIZ

 interim beliefs of any type xi converge to the complete-information game with

 0 = xi. Morris and Shin (2000) showed that when e > 0, there is a unique ra-
 tionalizable action: No Attack when xi < I-(e, y) and Attack when xi > -(E, y),
 where i(e, y) is a decreasing function of y, approaching 1 as y -+ -oc and 0 as
 y -- oc. Now consider any 0 e (0, 1)--with multiple equilibria under complete
 information. We can select y so small that X(e, y) > 0 for small e, so that all
 nearby types (with xi 2 0 and e 2 0) play No Attack. Similarly, we can select
 y so large that -(e, y) < 0 for small e and hence all nearby types play Attack.
 The intuition behind this example is that although the private signals are much
 more informative about 0, the players put more weight on the public signal
 when they decide what to play.

 Our main result shows that the alternative selections we were able to achieve

 in Example 2 are also quite general: Consider any model with a finite type
 space and any rationalizable strategy s in this model. We can always introduce
 a suitable form of small incomplete information so that, for each type t in the
 original game, s(t) is the unique rationalizable action in an open set of situ-
 ations close to t. We can then select any rationalizable outcome we want by
 considering a suitable class of perturbations, and this outcome is robust to fur-
 ther small perturbations. Therefore, selection among rationalizable strategies
 becomes a matter of selecting among the information structures that look sim-
 ilar to the situation.

 To put this another way, multiplicity in the original model comes back in a
 stronger form when we have only limited information about the players' beliefs
 (in particular, when we do not have information concerning the entire infinite
 hierarchy of beliefs). Now, we know that our solution concept would lead to
 a unique solution in a more complete model where our assumptions are re-
 laxed, but we could not know what that outcome would be without knowing
 the way in which the model should be completed. This is a stronger form of
 multiplicity because it will be true for any nonempty refinement of rationaliz-
 ability, because the refinement must pick the unique outcome, which changes
 as we consider different ways to relax our assumptions. This immediately im-
 plies that for a prediction based on a refinement to be robust to alternative
 specifications of beliefs, it must be true for all rationalizable strategies, and the
 robust predictions of any refinement are merely the predictions of rationaliz-
 ability itself. (We will formally establish this characterization as an immediate
 application of our theory.)

 Formulating the foregoing results for general games inherently requires
 topological notions on large spaces, and interpretation of such results requires
 great care. In the next section, we will explain and justify our formulation,
 and describe and interpret our formal results. In Section 3, we introduce the
 model and preliminary results. We present our results about sensitivity of ra-
 tionalizable strategies to higher-order beliefs, generic uniqueness, structure of
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 RATIONALIZABILITY AND ROBUSTNESS 369

 rationalizability, and robustness of predictions of arbitrary refinements in Sec-
 tions 4, 5, 6, and 7, respectively. We discuss the literature in Section 8. Section 9
 concludes. Some proofs are relegated to the Appendix.

 2. A NONTECHNICAL EXPOSITION OF THE FORMULATION AND RESULTS

 Because of the nature of our results, our analysis and some of our terminol-
 ogy is technical, but our conclusions have important implications for applied
 game theory that, through careful interpretation, can be understood without
 technical jargon. In this section, we carefully describe our formulation and in-
 terpret our results in a way that is precise but does not require a heavy mathe-
 matical background.

 The seed concept of our paper is that common-knowledge assumptions play
 a crucial role in game-theoretical predictions. The predictions when it is com-
 mon knowledge that 0 = 0o may significantly differ from those when every-
 body knows that 0 = 00, everybody knows this, everybody knows that everybody
 knows this... only up to a large but finite order k. Rubinstein (1989) illustrated
 this with the e-mail game.

 EXAMPLE 3--E-mail Game (Rubinstein (1989)): In Example 1, assume that
 0 e = {-2/5, 2/5, 6/5}. Write T = {tCK(2/5)} for the model in which it is
 common knowledge that 0 = 2/5. Now imagine an incomplete-information
 game in which the players may find it possible that 0 = -2/5. Ex ante, players
 assign probability 1/2 to each of the values -2/5 and 2/5. Player 1 observes
 the value of 0 and automatically sends a message if 0 = 2/5. Each player auto-
 matically sends a message back whenever he receives one, and each message
 is lost, with probability 1/2. When a message is lost, the process automatically
 stops and each player takes one of the actions Attack or No Attack. This game

 can be modeled by the type space T = {-1, 1, 3, 5, ...} x {0, 2, 4, 6, ...}, where
 the type ti is the total number of messages sent or received by player i (ex-
 cept for type tl = -1, who knows that 0 = -2/5), and the common prior p on
 O x T, where p(O = -2/5, tl = -1, t2 = 0) = 1/2 and for each integer m > 1,
 p( = 2/5, tl = 2m - 1, t2 = 2m - 2) = 1/22m and p( = 2/5, tl = 2m - 1, t2 =
 2m) = 1/22m+1. Here, for k > 1, type k knows that 0 = 2/5, knows that the
 other player knows 0 = 2/5, and so on through k orders. Now, type t, = -1
 knows that 0 = -2/5 and, hence, his unique rationalizable action is No At-

 tack. Type t2 = 0 does not know 0 but puts probability 2/3 on type t- = -1,
 thus believing that player 1 will play No Attack with at least probability 2/3,
 so that No Attack is the only best reply and, hence, the only rationalizable ac-
 tion. Applying this argument inductively for each type k, one concludes that
 the new incomplete-information game is dominance-solvable and the unique
 rationalizable action for all types is No Attack.

 If we replace 0 = -2/5 with 0 = 6/5, we obtain another model, for
 which Attack is the unique rationalizable action. We consider type space
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 370 J. WEINSTEIN AND M. YILDIZ

 T = {-1, 1, 3, 5,...} x {0, 2, 4, 6, ...} and the common prior q on O x T, where
 q(O = 6/5, tl = -1, t2 = 0) = 1/2 and for each integer m > 1, q(O = 2/5, tl =
 2m - 1, t2 = 2m - 2) = 1/22m and q( = 2/5, tl = 2m - 1, t2 = 2m) = 1/22m+1
 One can easily check that this game is dominance-solvable and all types play
 Attack.

 In this example, for each action ai that is rationalizable in the complete-
 information case and each k, we found another model with a type who knows
 that 0 = 2/5, that each player knows that 0 = 2/5, that each player knows that
 each player knows that 0 = 2/5, ..., up to order k, but for this type, ai is the
 unique rationalizable action. In this paper, we generalize the construction of
 this example to arbitrary games, possibly with incomplete information. In an
 incomplete-information game, a player may not know 0, but each type always
 has a belief about 0, which we call his first-order belief, has also a belief about 0
 and the other players' first-order beliefs, which we call his second-order belief,
 and so on. Generalizing the construction in the preceding example, for each
 rationalizable action ai of each type ti and for each k, we construct another
 model with a type whose first k orders of beliefs are almost identical to those
 of ti, but for the new type, ai is the only rationalizable action.

 What does this imply for economic modeling? There are two distinct classes
 of situations with incomplete information. In certain problems, there is an ex
 ante stage during which each party observes a private signal about the payoffs,
 and the joint distribution of signals and payoffs is commonly known. These
 problems are naturally modeled using a standard type space. We focus on the
 alternative class of situations, namely genuine situations of incomplete infor-
 mation, which we believe to be prevalent. In these situations, there is no ex ante
 stage; each player begins with some first-order beliefs, some second-order be-
 liefs, and so on. It has become standard practice to follow Harsanyi (1967) and
 model these latter problems by introducing a hypothetical ex ante stage, lead-
 ing to a standard type space. In constructing a type space to model the players'
 beliefs, a researcher needs to make (implicit) assumptions about aspects of the
 beliefs that he cannot directly observe in the modeling stage, because standard
 type spaces exclude the possibility of some interim beliefs that are very close
 to those implied by the model. Our subsequent results on how the set of ra-
 tionalizable outcomes changes as we perturb the interim beliefs are therefore
 very revealing as to how the conclusions of the modeler are affected by these
 unverifiable assumptions we make whenever we construct a type space.

 Let us briefly return to Example 3 to illustrate how interim beliefs are the
 primary focus of our analysis even when we apply our ideas to standard type

 spaces that include an ex ante stage. In type spaces T and T, we consider
 types k, for k large, to be close to the complete-information type tCK because
 their interim beliefs are similar. On the other hand, the type spaces T and
 T assign only probability 1/2 to 6 = 2/5, which is assigned probability 1 by
 the complete-information model. Therefore, those researchers who focus on
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 RATIONALIZABILITY AND ROBUSTNESS 371

 the ex ante perspective, such as Kajii and Morris (1997), would consider these
 models to be far from the common-knowledge model, because they require the
 prior probabilities to be similar. Indeed, they obtain a different conclusion: in
 their framework, there is a nearby model that selects the risk-dominant out-
 come of No Attack, as does T, but not one that selects Attack, as does T. In

 other words, our construction of T would have inevitably failed if we had in-

 sisted on assigning a large prior probability to 0 = 0o. While their approach
 is important for applications where we have specific knowledge of an ex ante
 stage, we focus on genuine incomplete-information situations, where there is
 no commonly known ex ante stage, and the objective in constructing a model
 with prior beliefs is to describe the interim beliefs.
 Therefore, in our formulation, we directly consider interim belief hierar-

 chies, each of which corresponds to a type in some type space. The set of all
 such hierarchies is called the universal type space (Mertens and Zamir (1985),
 Brandenburger and Dekel (1993)). Our notion of which interim belief hierar-
 chies are close to one another, formally described by a topology on the uni-
 versal type space, will be crucial to our analysis. We have two important moti-
 vations for this choice, which serendipitously lead to the same topology. First,
 we envision a researcher who is restricted to observing only finitely many or-
 ders of beliefs. This is especially plausible because common sense suggests that
 the players themselves will have their beliefs only partially articulated in their
 own minds. Therefore, hierarchies should be considered close if they agree, or
 almost agree, at all orders up to order k for large k. Second, we would like
 our topology to capture the usual notion of continuity in standard models. For

 example, in Example 1, beliefs are continuous functions of (e, Xl, x2),3 and we

 would like to consider types that correspond to (e, x1, x2) and (e', x'l, x') close, when (e, x1, x2) and (e', x', x') are close to each other in the usual sense.
 Mertens and Zamir (1985) showed that the product topology is the topology

 just described. Consider a standard model with a compact state space and with
 any topology such that the beliefs are continuous functions of states. (In Exam-
 ple 1, a state is (e, 6, Xl, x2).) Assume that there are no two types with the same
 hierarchy. Then, when we put the product topology on the belief hierarchies,
 the function that maps the types to the corresponding belief hierarchies is an
 isomorphism (i.e., it is one-to-one, continuous, and has a continuous inverse).
 That is, taking limits on belief hierarchies with respect to the product topol-
 ogy is equivalent to taking limits in the original space on the types. Because we
 would like to be able to enlarge models in a manner in which beliefs remain
 continuous functions of the states, we will then use the product topology in the
 universal type space.

 The product topology also captures the previously discussed restriction on
 the researcher's ability to observe the players' beliefs as follows: Let T be the

 3Recall that beliefs are probability distributions, and we put the usual weak topology on prob-
 ability distributions-the topology that corresponds to convergence in distribution.
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 372 J. WEINSTEIN AND M. YILDIZ

 set of belief hierarchies generated by the models that he considers possible.
 Suppose that his observation indicates, for some k, that for each 1 < k, an
 open set of lth-order beliefs are possible (with respect to the weak topology on
 probability distributions). Then the set of types that he finds possible are those
 types in T whose first k orders of beliefs are in these open sets. The product
 topology relative to T is the smallest topology under which all such sets of
 types are open. In this topology, concepts such as openness and denseness have
 specific meanings:
 * Openness of a set U means that if the actual type is in U and the researcher's
 observation is sufficiently precise (i.e., k is large and the noise is small), then
 he would know that actual type is in U.

 * That a type t is on the boundary of an open set U means that whenever t is
 consistent with his observation, the researcher cannot rule out the possibility
 that by having more precise information he would come to learn that the
 actual situation is represented by a type in U.

 * Denseness of a set V means that he could never rule out the possibility that
 the actual case is represented by a type in V (even if k is very large and the
 noise is small).

 * If U is open and dense, then all types t ? U are on the boundary of U, that is,
 no matter how precise his information is, he cannot rule out the possibility
 that by having more precise information he would come to learn that the
 actual situation is represented by a type in U.
 We consider a finite set of players and a finite set A of actions. Following

 Carlsson and van Damme, we assume that each action is strictly dominant
 for some parameter value. We endow the game with the universal type space
 T* with the product topology. Under these conditions, we can give a detailed
 description of the rationalizability correspondence around finite types (types
 from finite type spaces).

 STRUCTURE OF RATIONALIZABILITY: Given any finite type t and any ratio-
 nalizable action a for t, there is an open set Ua of types for which a is uniquely
 rationalizable and t is on the boundary of Ua.

 That is, if t is consistent with the researcher's observation, then, no matter
 how precise his observation is (i.e., even if he knows arbitrarily many orders of
 beliefs with arbitrarily small noise), he could not rule out the possibility that, by
 having more precise information, he would come to learn that a is the unique
 rationalizable outcome. In particular, when there are multiple rationalizable
 actions at t, the researcher always finds it possible that with more information
 he could learn that any particular one is uniquely rationalizable, but he could
 not know in advance which one. This result immediately leads to a characteri-
 zation of the situations with multiplicity:
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 RATIONALIZABILITY AND ROBUSTNESS 373

 CHARACTERIZATION OF MULTIPLICITY: A finite type t has multiple rational-
 izable actions if and only if t is on the boundary of some two open sets Ua and Ub
 on which two distinct actions a and b are uniquely rationalizable, respectively.

 That is, a finite type has multiple rationalizable actions if and only if it can be
 thought of as idealizing multiple strategically distinct situations with unique ra-
 tionalizable actions. For example, in Example 1, a type with e > 0 and xi = 1/2
 can be thought of as idealizing two situations: (i) xi is close to 1/2 but smaller
 than 1/2 and (ii) xi is close to 1/2 but larger than 1/2. These two situations
 are strategically distinct: No Attack is the unique outcome in (i), while At-
 tack is the unique outcome in (ii). This leads to multiplicity at xi = 1/2. Our
 characterization states that the same picture applies to all cases of multiplicity
 (under our topology). This can explain why complete-information models tend
 to have a large number of rationalizable strategies. Such a model idealizes all
 of the situations in which private information is small, which can happen in
 many different information structures. The information structure may have a
 significant impact on the outcome even when players have small private infor-
 mation.

 Because the set of finite types is dense in the universal type space (Mertens
 and Zamir (1985)), the foregoing structure of rationalizability leads to the fol-
 lowing surprising result.

 GENERIC UNIQUENESS: The set U c T* of types with unique rationalizable
 action is open and dense, and the unique action is locally constant (i.e., each
 t e U has a neighborhood in which the unique rationalizable action is the same
 across all types).

 Under our topology, the interpretation of this statement is that no matter
 how precise the researcher's observation is, he could not rule out the possibility
 that, by having more precise information, he would come to learn that there is
 a unique rationalizable outcome and would learn what it is.
 In applications, we often use small type spaces, such as finite models with a

 common prior. Suppose that only a subset of models is considered to be pos-
 sible, and let T be the set of type profiles generated by these models. Assume
 that T is dense; that is, for each possible observation the researcher might
 have, there is a type profile t E T that is consistent with that observation. For
 example, the collection of all finite models with a common prior would be one
 such set (Mertens and Zamir (1985), Lipman (2003)). Then, because U is open
 and dense in T*, U n T is open and dense in the relative topology on T. Once
 again, within this smaller set of models, multiplicity occurs only on a nowhere
 dense set. (Recall that the complement of an open and dense set is nowhere
 dense.) Also, by the isomorphism of Mertens and Zamir (1985), if we enrich
 a model by allowing sufficiently many types and maintaining the preceding as-
 sumptions, then multiplicity will occur only on a nowhere-dense set of states in
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 the enriched model with respect to the topology on the model (see Section A.4
 in the Appendix).
 There is an immediate application of our results to robustness of the pre-

 dictions generated by refinements. Imagine that the previously mentioned re-
 searcher subscribes to a particular refinement. For each possible incomplete-
 information model, represented by a Bayesian game, the researcher can
 compute a set of possible strategies using the refinement. He wants to make
 predictions of the form "for every solution s that satisfies the refinement, Q(s)
 is true." For example, Q(s) might be "the type with zero valuation bids zero"
 or "the bidder with the highest valuation wins the object." Recall that when
 he wants to make a prediction, the researcher cannot observe the entire hier-
 archy of beliefs. There are many types from various models that can lead to
 interim beliefs that are consistent with his limited observation. We want pre-
 dictions to be robust to these modeling alternatives, in the sense that they will
 remain true for each of the models consistent with his observation, given that
 he would have used the refinement in all the alternative models as well. These

 are the predictions that can be verified by using the limited information. In the
 coordinated attack example, neither nontrivial prediction is robust in this way:

 EXAMPLE 4: In Examples 1 and 2, take any 0 E (0, 1/2). Suppose that a
 researcher subscribes to a refinement that selects the (Attack, Attack) equilib-
 rium in the complete information game, as Pareto dominance does. Based on
 this refinement and the complete-information model, the researcher predicts
 that player i will Attack. The researcher cannot rule out the possibility that the

 actual situation is as described by a type with xi - 0 and e - 0 in Example 1.
 For this specification, No Attack is the only rationalizable action and his re-
 finement must assign the action No Attack to this alternative type. Hence, he
 cannot make this prediction in this alternative specification using his refine-
 ment. Therefore, his prediction of Attack is not robust. The prediction that
 there will be no attack-as predicted by risk dominance-is not robust either,
 because the researcher cannot rule out that the actual situation is as described

 by a type with xi 2 0, e 8 0, and y very large in Example 2, when Attack is the
 only rationalizable action.

 More generally, by our result, given any rationalizable strategy in a finite
 type space, the researcher cannot rule out the possibility that under an alter-
 native specification the strategy would be uniquely rationalizable-and thus be
 the unique outcome of his, or any, refinement. This leads to a general char-
 acterization: a prediction of a refinement is robust if and only if it is true for all
 rationalizable strategies in the model. This characterization suggests that with-
 out making any common-knowledge assumption, one cannot make any predic-
 tion stronger than what is implied already by rationalizability, no matter how
 strong a refinement one uses. Of course, a researcher may be willing to make
 common-knowledge restrictions or very strong assumptions on possible infor-
 mation structures. In that case, he may be able to make sharper predictions by
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 RATIONALIZABILITY AND ROBUSTNESS 375

 subscribing to a stronger solution concept. Even then, our characterization will
 be useful: by considering all rationalizable strategies, the researcher can find
 out which of his predictions would remain valid if he relaxed these assump-
 tions.

 A complementary approach to ours is to study "strategic topologies" under
 which, by definition, nearby types have similar strategic behavior (see Mon-
 derer and Samet (1989) and Dekel, Fudenberg, and Morris (2006)). Certain
 types that might naturally appear to converge do not converge strategically
 in the sense that their strategic behavior would not converge.4 By discover-
 ing which sequences converge under the strategic topology, one then hopes to
 learn what precision of observation of types is required for accurate predictions
 of behavior. In this paper, conversely, we fix a natural topology that captures a
 reasonable restriction on a researcher's ability to observe players' beliefs. An-
 alyzing the properties of strategic behavior with respect to this topology, we
 determine which predictions the researcher can still make under the restric-
 tion. This general approach was promoted by Rubinstein (1989).

 3. MODEL

 We consider a finite set of players N = {1, 2, ..., n}. There is a possibly un-
 known payoff-relevant parameter 0 E 0*, where O* is a compact (and hence
 complete and separable) metric space. Each player i has a finite action space
 Ai and utility function ui: O* x A -- *R, where A = Hi Ai.5 We consider the set
 of games that differ in their specifications of the belief structure on 0 (i.e., their
 type spaces). By a model, we therefore mean a pair (0 x T, K), where 0 C 0*
 and T = T, x ... x T, is a type space associated with beliefs Kti 6 A(O X Ti)
 for each ti E Ti.

 Given any type t, in a model (0 x T, K), we can compute the belief of ti

 on 0* by first extending6 Kti to 0* x T_i and setting

 ti. = margo, Kti,

 4In Example 1, when e' > 0 and 0 - 1/2, (e = 0, 0, 8) is strategically distinct from any type
 (e', 6, 6). As e -+ 0, the types with xi = 0 would not converge to the common-knowledge case in
 strategic topologies. For another example, Dekel, Fudenberg, and Morris (2006) showed that the
 set of finite types is dense in their strategic topology, as it is in the product topology, but the set of
 finite types with common prior is not dense in their strategic topology because the behavior they
 exhibit cannot be close to some forms of betting behavior that non-CPA types would permit.

 5Our notation is standard. Specifically, given any list Y1,..., Y, of sets, write Y = Hi Yi, Y-i =

 fji Yj, Y-i = (Yl ..., Yi-1, Yi+l, ... , yn) E Y-i, and (yi, yi) = (l, ... Yi-, Yi-, yii+, .. ., y,). Like-

 wise, for any family of functions fj: Yj - Zj, we define fi: Y-i - Z_i by f-i(y-i) = (f'(yj))j;i" Given any metric space (Y, d), we write A(Y) for the space of probability distributions on Y, en-
 dowed with Borel o--algebra and weak topology. We use the product o--algebra in product spaces.
 We also write supp(7-) for the support of a probability distribution ir, margy r7 for the marginal
 of rr on Y, and projy for the projection mapping to Y.

 6The extension simply puts probability zero on the remaining set (O*\&) x Ti.
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 which is called the first-order belief of ti. We can compute the second-order belief

 of ti (i.e., his belief about (0, ti,..., tl)) by setting

 ti(F) = Kti({(O, t i)f(0, t1, tli) E F})

 for each measurable F c O* x Ad(*)n. We can compute an entire hierarchy of
 beliefs (ti1, t2, ..., tik,...) by proceeding in this way. Let us write hi(ti) for the
 resulting hierarchy. We say that a type space T does not have redundant types if
 each hi is one-to-one; that is, distinct types have distinct belief hierarchies.
 The universal type space is the type space that consists of such belief hierar-

 chies, as in the formulation of Brandenburger and Dekel (1993), which we will
 follow. In this type space, a type of a player i is an infinite hierarchy of beliefs

 ti = (t, t, t[ ...),
 where t/ E A(O*) is a probability distribution on O*, representing the beliefs of

 i about 0, t2 e A(O* x A(O*)") is a probability distribution for (0, t', t2, ..., t1), representing the beliefs of i about 0 and the other players' first-order beliefs,
 and so on. The set of all belief hierarchies for which it is common knowl-

 edge that the beliefs are coherent (i.e., each player knows his beliefs and his
 beliefs at different orders are consistent with each other) is denoted by T1*.

 T* = T7* x ... x Tn denotes the set of all type profiles t= (tj, ..., t,) and

 T*. = jzi TJ* denotes the set of profiles of types t_- for players other than i. Each 77 is endowed with the product topology, so that a sequence of types ti,m

 converges to a type ti, denoted by ti,m ti, if and only if and only if tim - ti for each k. A sequence of type profiles t(m) = (tm, ..., tn,m) converges to t if and
 only if ti,m ti for each i. For each type ti, let Kti E A(O* X T*i) be the unique
 probability distribution that represents the beliefs of ti about (0, ti). Mertens
 and Zamir (1985) showed that the mapping ti -+ Kti is an isomorphism. That
 is, it is one-to-one, and Kti,m -* Kti if and only if ti,m - ti. Finally, models with-
 out redundant types can be identified with certain subsets T of universal type
 space T* and, when it does not lead to confusion, we refer to such subsets of
 T* as models.7

 In our formulation, it is common knowledge that the payoffs are given
 by a fixed continuous function of parameters. This assumption is without
 loss of generality because we could take a parameter to be simply the func-
 tion that maps action profiles to payoff profiles. For example, we can take
 0* = Ot x ... x O,* where O0 = [0, 1]A for each i, and let ui(O, a) = 0i(a)
 for each (i, a, 0). This model allows all possible payoff functions and here 0 is
 simply an index for the profile of payoff functions. This model clearly satisfies
 the following richness assumption, which also was made by Carlsson and van
 Damme (1993).

 7For any model (O x T, K), the set h(T) c T* is belief-closed; that is, for each hi(ti) E hi(Ti),
 we have Khi(ti)(* X h-i(T-i)) = 1. Conversely, any belief-closed subset T E T* corresponds to a
 model.
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 ASSUMPTION 1-Richness: For each i and each ai, there exists 0ai E c* such
 that

 ui(0ai, ai, a_) > ui(ai, a,a_i) (Va ai, Va_i).

 That is, the space of possible payoff structures is rich enough so that each
 action can be strictly dominant for some parameter value. When there are no
 a priori restrictions on the domain of payoff structures and the game is static,
 Assumption 1 is automatically satisfied. In a dynamic game, one needs to in-
 troduce trembles and use a reduced form to satisfy this assumption.8 It would
 be important future work to extend our results to dynamic games without in-
 troducing trembles, because many traditional refinements play a role mainly in
 dynamic games.

 A strategy of a player i with respect to Ti is any function si: Ti -- Ai.9 When the domain of a strategy is omitted, it is understood to be Ti*. For each i e N
 and for each belief Er eA( x A_i), we write BRi(7I-) for the set of actions
 ai E Ai that maximize the expected value of ui(0, ai, a_i) under the probability
 distribution 7r.

 Interim Correlated Rationalizability

 For each i and ti, set Si[ti] = Ai, and define sets Si[ti] for k > 0 iteratively

 by letting ai E S [ti] if and only if ai E BRi(margoxA_i 7) for some 7 e A(O* x

 T*_ x A-i) such that marg,*x~ r = Kti and 7r(a_- e Sk'[t_i]) = 1. That is, ai is a best response to a belief of ti that puts positive probability only on the actions

 that survive the elimination in round k - 1. We write Skyl[t_i] = 1j kS -l[t]
 and Sk[t] = Sk[tl] x ... x Skn[t,]. The set of all rationalizable actions for player
 i (with type ti) is

 00

 SN[t;] = Sr)[t,].
 k=O

 A strategy si:T7 --* Ai is said to be rationalizable if and only if si(ti) e SiO[ti]
 for each ti.

 8Given any finite extensive-form game, two strategies are equivalent if they lead to the same
 outcome for each profile of the other players' strategies. Let Ai contain one strategy from each
 equivalence class. Introduce trembles, in the sense that after each move of a player, Nature moves
 and changes the player's action to some other action with a small probability. The other players
 can see the realized action, but not the intended one. Then, by varying the payoffs at the terminal

 nodes, we can make each ai E Ai dominant at some payoff function.
 9We do not restrict the strategies to be measurable; measurability is not needed in the present

 interim framework (cf. Simon (2003)).
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 For complete-information games, rationalizability was introduced by
 Bernheim (1984) and Pearce (1984). There are several notions of rational-
 izability for incomplete-information games. Interim correlated rationalizabil-
 ity (Battigalli (2003), Battigalli and Siniscalchi (2003), Dekel, Fudenberg,
 and Morris (2003)) is the weakest among these notions, as shown by Dekel,
 Fudenberg, and Morris (2003). Using such a weak notion of rationalizabil-
 ity strengthens our results; they will remain valid under any stronger notion
 of rationalizability. In the definition of rationalizability, we did not refer to a
 model because it only depends on the belief hierarchy of the type, as stated in
 the following lemma. This result shows that we can analyze the properties of
 rationalizability by focusing on the universal type space.'0

 LEMMA 1-Dekel, Fudenberg, and Morris (2003): Given any model (0 x

 T, K) and any t e T, S" [ti] = S'[ [hi(ti) ]. Moreover, for any ti, i e T* with ti = ti
 for all 1 < k, we have Si [ti] = Si [t i.

 We conclude this section by introducing some familiar concepts.

 DEFINITION 1-Finite Types, Models: A model (0 x T, K) is said to befinite
 if and only if 10 x TI < oc. Let T be the set of all profiles of belief hierarchies

 that correspond to a finite model, that is, ti EiT if and only if t, j hi(Ti) for
 some finite model (0 x T, K). Members of T are referred to asfinite types.

 DEFINITION 2 -Dominance-Solvability: A model T C T* is said to be
 dominance-solvable if and only if IS"[t]I = 1 for each t E T.

 DEFINITION 3-Common Prior: A finite model (0 x T, K) is said to admit
 a common prior (with full support) if and only if there exists a probability dis-
 tribution p E A(O x T) with support 0 x T and such that Kti = p(lIti) for each
 ti, Ti. Such a model is also denoted by (0 x T, p). The set of all profiles of
 belief hierarchies that come from a model with a common prior is denoted by

 TCPA = {hi(ti)Iti E Ti for some finite model (0 x T, K)

 with a common prior}.

 4. SENSITIVITY TO HIGHER-ORDER BELIEFS

 In this section we show that when there are multiple rationalizable actions
 at a finite type ti, all rationalizable strategies are highly sensitive to the per-
 turbations of beliefs at ti. In particular, given any rationalizable action ai, we
 can perturb the beliefs of ti slightly and obtain a type for which ai is uniquely
 rationalizable as stated in the following result.

 10Ely and Peski (2006) showed that if one wants to define a different concept-independent
 rationalizability-and there are redundant types, then one needs to consider a larger type space.
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 PROPOSITION 1: Under Assumption 1, for any te E and any a E S"[t], there

 exists a sequence of finite, dominance-solvable models Tm C T with type profiles
 t(m) E Tm such that i(m) - t as m -+ oo and S' [t(m)] = {a} for each m.

 That is, given any k, we can perturb the first k orders of beliefs slightly
 and vary the higher-order beliefs arbitrarily to find a type ti for which ai is
 the unique rationalizable action (i.e., So[ti] = {ai}). Hence, even if we have
 a very good idea about what the first k orders of beliefs are, by varying the
 higher-order beliefs we can still make any rationalizable action uniquely ra-
 tionalizable. Moreover, we can find such types in finite type spaces that are
 dominance-solvable.

 Our proof of this result is the heart of our technical contribution. It is nota-
 tionally involved and is relegated to the Appendix, but the key ideas are simple,
 as we will now summarize. As a preliminary step, we can perturb the beliefs of ti
 slightly to make a rationalizable action ai "strictly rationalizable," in the sense
 that it survives iterated elimination of actions that are never a strict best reply.
 This is possible because we can always break the ties for best reply in favor of
 a desired action by allowing the type to put slightly higher probability on the
 payoff function at which that action is dominant. Moreover, we can introduce
 the perturbations in such a way that the perturbed type space remains finite.
 We can then focus on the case that the action at hand is strictly rationalizable.

 Our main step shows that if an action ai survives the first k rounds of iter-
 ated elimination of actions that are never a strict best reply, we can change
 the beliefs at order k + 1 and higher in such a way that ai is the only action
 that survives the first k + 1 rounds of elimination of strictly dominated actions.
 Indeed, we can do this in such a way that the resulting type space is finite and
 dominance-solvable in k + 1 rounds, that is, Sk+1 [t] is singleton for each type
 profile t in the new type space. We can then conclude that if ai is strictly ra-
 tionalizable for a finite type ti, then for each k we can find a finite dominance-

 solvable model with a type ti such that the first k orders of beliefs coincide with
 those of ti (i.e., 1= = i for each 1 < k) and ai is the unique rationalizable action
 at ti (i.e., S [i] ti] {ai}).

 Our proof of the main step generalizes the construction in the e-mail game
 of Section 2 to arbitrary incomplete-information games with finite type spaces.
 To see the main idea, consider a two-player game. By Assumption 1, each
 action aj is dominant for some type tj[aj] who is certain that 0 = oaj, and
 S][tj[aj]] = {aj}. This is the k = 0 case. For the k = 1 case, now consider a
 type ti and an action ai that survives the first round of the elimination of ac-
 tions that are never a strict best reply. Then ai is the unique best reply to a
 belief p of t; on pairs (0, a.). Consider the type ti that puts probability p(6, a1)
 on (6, tj[a1]) for each pair (0, aj). Now, at the second round of elimination,
 ti can entertain only one belief about the actions of each type he finds possi-
 ble: t [a1] plays a1 with probability 1. He thus assigns the same probability to
 (8, aj) as to (8, t1[a1]), which is also exactly p(6, a1), but ai is the unique best
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 reply to this belief and therefore Si[ti1 = {ai}. Moreover, i1 = t1, that is, the
 beliefs of ti and ti on O are identical, because to any 0, type ti assigns probabil-

 ity aj p(O, tj[aj]) = aj p(O, aj), and the latter sum is the probability that t,
 assigns to 0 by definition of p. This completes the argument for k = 1; we are
 able to repeat this argument inductively on k.

 5. GENERICITY OF UNIQUENESS

 In this section, we show that the set

 U= {t c T*IIS00[t] =1}1

 of type profiles with unique rationalizable action profiles is open and dense. We
 first introduce the mathematical notions and existing results that are necessary
 to present our result.

 DEFINITION 4-Genericity: The closure of a set T C T*, denoted by T, is the
 smallest closed set that contains T. A set T is dense (in T*) if and only if T = T*,
 that is, for each t E T*, there exists a sequence of type profiles t(m) E T such
 that t(m) -+ t. A set T is said to be nowhere dense if and only if the interior of
 T is empty, that is, T does not contain any open set.

 An open and dense set T c T* is large in the sense that we can approximate
 each t E T*\T by type profiles t E T, and we cannot approximate any t E T
 by type profiles i e T*\T. In this case, T*\T is simply the boundary of T, de-
 noted by dT. Being open and dense is a strong topological notion of genericity.
 Topological notions of genericity may differ widely from measure-theoretical
 notions of genericity, which are about how commonly an event occurs under
 a measure (see Oxtoby (1980) for more on the relationship between these no-
 tions). They also depend on the topology. That is to say, our genericity result
 may not be true under other topologies or under measure-theoretical notions
 of genericity. Hence, one should be careful in interpreting it as saying that
 there are few types with multiple rationalizable actions, because the precise
 notion of "few" is crucial. The precise meaning of our particular notion of
 genericity was discussed in Section 2.
 Mertens and Zamir (1985) showed that finite types are dense (i.e., T = T*).

 Lipman (2003) further showed that, in finite models, the common-prior as-
 sumption does not put any restriction on finite-order beliefs other than full
 support"1 (see also Feinberg (2000)), proving the following result.

 11Consider any finite model (O x T, K), where each Kti has full support. For any k, Lipman

 constructed another finite model (0 x T', p) with common prior such that for each type ti e Ti
 there is a type r(ti) c Ti such that the first k orders of beliefs under ti and r(ti) are identical.
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 LEMMA 2-Mertens and Zamir (1985) and Lipman (2003): Sets T and TCPA

 are dense in the universal type space, that is, TCPA = T = T*.

 That is, the finite models with common prior, which are predominantly used
 in economic modeling, lead to a dense set of type profiles. We will also use the
 following properties of rationalizability.

 LEMMA 3-Dekel, Fudenberg, and Morris (2006): The correspondence S" is
 nonempty and upper semicontinuous. That is, each t e T* has a neighborhood 'q
 with S"[t'] C S"[[t] for each t' E 7q.

 Armed with these tools and our Proposition 1, we can now state and prove
 our main result in this section:

 PROPOSITION 2: UnderAssumption 1, the set

 U= {te T*l|S"[t]l= 1}
 of type profiles with unique rationalizable action profiles is open and dense. More-
 over, the unique rationalizable outcome is locally constant on U, that is, each
 t e U has an open neighborhood q on which S" is constant.

 PROOF: To show that U is dense, first observe that, by Proposition 1, for

 any t e T, there exists a sequence t(m) - t^ with S"[N(m)] = {a} for some a E

 S"0[]. By definition, t-(m) eU for each m. Hence, U T. However, T = T* by

 Lemma 2. Therefore, U D T = T*, showing that U is dense. On the other hand,
 Lemma 3 immediately implies that U is also open, as we show now. By upper
 semicontinuity of S", each t E U has a neighborhood r with S"[t'] 5 S"[t]
 for each t' e r. Because S"[t'] :A 0 and S"[t] is singleton, this implies that
 S"'[t'] = SI"[t] for each t' e rq, showing that 'q c U. Therefore, U is open. This
 also establishes the last statement in the proposition. Q.E.D.

 By Proposition 2, we can partition the universal type space into an open and
 dense set U and its nowhere-dense boundary T*\U. On U, each type has a
 unique rationalizable action and every rationalizable strategy is continuous.
 On the boundary, each type profile has multiple rationalizable action profiles.
 Assumption 1 is not superfluous. For example, a complete-information game
 can be modeled with 10* I = 1, when T* consists of a single common-knowledge
 type profile. When the original game is not dominance-solvable, U is empty.

 The main idea is that we can replace the belief differences in lower-order beliefs that are due
 to lack of a common prior with belief differences that come from informational differences. The
 higher-order beliefs in these two situations will differ, but Lipman showed that we can move these
 differences to arbitrarily high orders.
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 Harsanyi and Selten (1988, p. 341) sought "rational criteria for selecting one
 equilibrium point as the solution of any noncooperative game." This is in line
 with the more general perspective that a complete description of the environ-
 ment should lead to a unique outcome. Proposition 2 shows that there is a spe-
 cific sense in which common knowledge of rationality itself leads to a unique
 solution in generic situations. To reach such a unique solution, one does not
 need to assume any additional rationality criteria or include anything beyond
 the payoffs and the payoff-related information structure in the description of
 the environment.

 One may wonder if the genericity result applies to smaller type spaces of
 interest, such as the space of finite types and the space of finite types consis-
 tent with the common-prior assumption. The next result shows that the same
 genericity result is true for any dense type space, including these spaces.

 COROLLARY 1: Under Assumption 1, for any dense model T c T*, the set
 U n T is dense and open with respect to the relative topology on T. In particu-
 lar, U n (TCPA) is dense and open with respect to the relative topology on TCPA.

 PROOF: Because U is open and dense and T is dense, U n T is dense. Be-
 cause U is open, U n T is open with respect to the relative topology on T, by
 definition. Q.E.D.

 6. STRUCTURE OF RATIONALIZABILITY

 We will now turn to the major question of why a particular type may have
 multiple rationalizable actions. Focusing on finite models, we will provide an
 answer to this question and uncover a striking structure of the rationalizability
 correspondence on the universal type space. Toward this end, we first show
 that, for each finite model and for each rationalizable strategy profile sT in this
 model, we can perturb the beliefs and find a new dominance-solvable model
 such that sT is the unique rationalizable strategy profile for the perturbed types.

 PROPOSITION 3: Let T C T be any finite model and let sT : T -* A be any
 rationalizable strategyprofile. Then, underAssumption 1, there exist a sequence of
 finite dominance-solvable models TST,m and a sequence of one-to-one mappings

 r7(, ST, m) : T - TSTT, such that, for each t e T, (1) S"[r(t, ST, m)] = {sT(t)}
 and (2) r(t, ST, m) -- t as m - 00.

 PROOF: By Proposition 1, for each t e T and m, there exists a finite,
 dominance-solvable model Tt,sT,m with r(t, sT, m) e Tt,sr,m as in the proposi-
 tion. Define the finite model TsT,m by

 Tm = LU U sTm
 teT
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 Because r(t, ST, m) --+ t for each t E T and T is finite, there exists mt such that,
 for any distinct t, t' and any m > m-, we have r(t, ST, m) 7(t', ST, m). Hence,
 7(., ST, m) is one-to-one for m > h. (Consider only m > mI.) Q.E.D.

 This result extends the result of Carlsson and van Damme to arbitrary finite
 models (for extension to infinite models, see Yildiz (2005)): we can always per-
 turb a model by introducing a small noise in players' perceptions of the payoffs
 in such a way that the new model is dominance-solvable. Moreover, because U
 is open, the perturbed model will remain dominance-solvable when we intro-
 duce new small perturbations. However, unlike in Carlsson and van Damme,
 we can select any rationalizable strategy we want by introducing a suitable form
 of incomplete information. The dominance-solvable model TsT,m in our proof
 is a "collage" of disparate submodels and need not admit a common prior. One
 might think that our selection of arbitrary rationalizable strategies in nearby
 dominance-solvable models stems from lack of a common prior. Building on
 Lipman (2003), the next result shows that this is not the case.

 PROPOSITION 4: Let T C 7T be any finite model and let sT : T -+ A be any
 rationalizable strategy profile, with ST(t) E S'[t] for each t E T. Then, under
 Assumption 1, there exist sequences of finite models TST,m with common prior

 and one-to-one mappings T(., ST, m) : T -- Ts,m such that (1) S"[ (t, ST, m)] =
 {sr(t)}, and (2) f(t, ST, m) - t as m - co for each t E T.

 Because the proof of this result is somewhat involved, we present it in the
 Appendix. The key idea is simple: because the finite types with common prior
 are dense, for each 7(t, ST, m), we can find a nearby type profile that comes
 from a finite model with a common prior. Consider the "collage" of these mod-
 els, which admits a common prior. By introducing a further perturbation to this

 collage model, we obtain a model TST,m, where the common prior has full sup-
 port. Because the rationalizable actions are robust to small perturbations in
 dominance-solvable models (by the last statement in Proposition 1), the per-
 turbed type (t, ST, m) in the latter model has the same rationalizable action as
 the perturbed type 7(t, ST, m) in the dominance-solvable model, which is sT(t).

 Propositions 3 and 4 uncover a striking structure of rationalizability on the

 set T of finite types. This structure remains intact when one imposes the
 common-prior assumption (i.e., on TCPA). One can divide T into finitely many
 open sets

 Ua =-{TE IS[t]=-{a}} (aeA)
 and their boundaries Ua = Ua\Ua, where Ua is the closure of Ua, all with
 respect to the relative topology on T. The open sets form a partition of an

 open, dense set Un T, while their boundaries cover the boundary of Un T, that
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 is, T\U = UaEA dUa, which is a nowhere-dense set with respect to the relative
 topology. On each open set Ua, a is the unique rationalizable action profile.
 Because S" is upper semicontinuous, a E S"C[] for each ' dUa. Hence, at

 any E dUa n dUa' with distinct a and a', both a and a' are rationalizable. Here
 there are multiple rationalizable actions a and a' because t can be thought of
 as idealization of two strategically distinct relaxed assumptions, under which a
 and a' are unique solutions, respectively, and the set of rationalizable actions
 reflects this fact. Propositions 3 and 4 show that the converse is also true:

 t E n t (E T) .
 aeSOO[]

 That is, the set S"[I] tells us precisely which actions could be uniquely ratio-
 nalizable when we slightly relax the assumptions of t using various information
 structures. When I has multiple rationalizable actions, it cannot be in the inte-
 rior of any of these sets. This leads to the following result.

 COROLLARY 2: UnderAssumption 1,for any I E 7" with ISNtI]I > 1,

 t E n dU".

 In particular,for any I e 7T, IS"[0]i > 1 if and only if there exist distinct a, b E A
 such that t (8Ua) n (dUb).

 That is, whenever there are multiple rationalizable actions at ", i embodies
 an idealization of multiple possible relaxed assumptions with distinct strategic
 implications. For each rationalizable action a, there is such a relaxed assump-
 tion, which leads to a as the unique solution. Rationalizability is then a generi-
 cally unique and locally constant solution concept that yields multiple solutions
 at, and only at, the boundaries where the concept changes its prescribed behav-
 ior.

 Proposition 4 also provides a new perspective on refining rationalizability. It
 implies that a finite model summarizes various dominance-solvable situations
 by abstracting away from the details that would have mattered mostly for com-
 puting the beliefs at very high orders. By specifying these details appropriately,
 any rationalizable strategy could have been made uniquely rationalizable, but
 then refining rationalizability is tantamount to ruling out some of these nearby
 models as the true model. Hence, under the assumptions of our paper, selec-
 tion of a refinement is tied to the assumptions on mutual beliefs about payoff
 parameters-more so than to the assumptions typically made in refinements
 about mutual beliefs about strategies.
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 7. ROBUSTNESS TO HIGHER-ORDER BELIEFS

 In this section we will formalize our notion of robustness to higher-order be-
 liefs and characterize the set of robust predictions for arbitrary refinements of
 rationalizability, including equilibrium refinements. We find that the only ro-
 bust predictions are those that are true for all rationalizable strategies, that is,
 those that could have been made without the refinement. We start by formally
 presenting some basic definitions.

 DEFINITION 5: A solution concept is any mapping 2 that maps each model
 M = (0 x T, K) to a set 2(M) of distributions o- over strategy profiles with
 respect to T. An equilibrium refinement is any solution concept 2 such that for
 each M and Uo E (M), o is a Bayesian Nash equilibrium of M. A refinement of
 rationalizability is any solution concept 2 such that for each M and o E 2(M),
 o(s) > 0 implies that s(t) e S"O[t] for each t E T.

 We speak of distributions over strategy profiles so as to allow correlation
 between the strategies as in correlated equilibrium. Clearly, any equilibrium
 refinement is a refinement of rationalizability. Moreover, rationalizability, S",
 is a solution concept, yielding all possible distributions on the strategy profiles
 with s(t) e S'[t] for each t E T at each M = (0 x T, K).

 DEFINITION 6: Given a solution concept 2 and a model M = (0 x T, K), by
 a prediction of (2, M), we mean any formula Q with free variable s: T -+ A
 such that Q(s) is true for each s E supp(a) and each o- e (M).

 A prediction can be about the behavior of a particular type. In an auction,
 for example, a prediction could be "the type with zero valuation bids zero."
 A prediction can also be about a relationship between the behavior of different
 types, for example, "a player's bid is an increasing function of his valuation."

 We envision a researcher who subscribes to an equilibrium refinement 2
 and can observe players' beliefs up to an arbitrary but finite order k with some
 noise. We focus on the case that k is large and the noise is small. The researcher
 may also want to restrict the set of models by fiat. For example, it is customary
 in economics literature to assume that there is a common prior, and he may
 want to impose the common-prior assumption on possible models, ignoring
 the models without a common prior altogether. He may also want to focus
 on small models, such as finite type spaces. Taking these considerations into
 account, we will assume that the researcher considers only the finite models
 with common prior, so that he does not want to check whether his predictions
 would remain valid in models with infinite types or with noncommon priors.
 These are clearly unrealistically generous assumptions, but we will show that,
 despite this, the researcher cannot make very strong predictions.

 In our formulation the noise will be small in the sense that, for each 1 < k,
 the lth-order beliefs i that the researcher finds possible converge to the ob-
 served beliefs tj in the sense of convergence in distribution, that is, in the weak
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 topology. (Recall that ti' is a probability distribution.) To do this, we consider
 an arbitrary metric d on finite-order beliefs that metrizes the weak topology.
 Given the observed or estimated beliefs t4, 1 < k, the researcher finds the set

 of beliefs i with d(i, ti) < e for all 1/< k possible (or cannot reject them at a
 particular level of confidence) for some E > 0, where E is meant to measure the
 precision of the researcher's observations. Again, we focus on the limit E -- 0
 and k -+ oc.

 DEFINITION 7: Given a model M = (0 x T, K), a pair (T, r) of a model
 Tc T* and a mapping 7: T: T is said to be an (e, k)-perturbation of M if
 and only if (i) T is finite and has a common prior, and (ii) 7: T -* T is such
 that for each t E T and 1 < k, we have d(ti, 4) < E, where t= 7(t) and ? = h(t)
 is the belief hierarchy of t.

 The definition of an (E, k)-perturbation requires that whenever our re-
 searcher believes that a type profile t in T may describe the actual situation,
 he cannot rule out that the type profile r(t) in T describes the situation. That
 is, the researcher cannot reject the perturbation without rejecting the orig-
 inal model. A perturbation may result from relaxing the assumption that a
 certain fact is common knowledge, instead assuming that it is approximately
 mutually known only up to kth order and perhaps making some other assump-
 tion about the higher-order beliefs. Reflecting such a relaxation, the perturbed
 model will then have more type profiles. This is the case in the e-mail game

 in Section 2. As we discussed, type k (in T or in T) agrees with the common-

 knowledge type t(K(2/5) up to order k. Therefore, both (T, r) and (T, 7) are
 (0, k)-perturbations of the complete-information game T for any mapping 7
 whose values are both at least k.

 Our robustness condition will require that the prediction remains valid for
 all (E, k)-perturbations for some E and k. The motivation is clear. Imagine a
 researcher analyzing a model M, knowing that when he is asked to validate that
 his model applies to a particular situation, he will be able to observe only the
 first k orders of beliefs, with some noise. He knows that if he can verify that M
 is consistent with his observation, T will also be consistent with his observation.

 If a prediction of his model M does not remain true for the perturbation 7T,
 then he cannot verify that his prediction applies to the situation. Therefore,
 the researcher would like to focus on the predictions of M that are robust
 to alternative specifications, such as T, given that he was going to apply his
 solution concept in those alternative specifications as well. We therefore define
 robustness as follows.

 DEFINITION 8: A prediction Q of (1, M) is said to be (E, k)-robust (to higher-
 order beliefs) if and only if for each (E, k)-perturbation (T, 7) of M, for each

 a e (T), for each s E supp(o-), Q(s o 7) is true. Prediction Q is said to be
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 robust (to higher-order beliefs) if and only if it is (E, k)-robust for some E > 0
 and k <oo00.

 That is, a prediction is said to be (E, k)-robust if it remains true in mod-
 els where the first k orders of beliefs remain close to the original beliefs ac-
 cording to the perturbation mapping and we apply the same solution con-
 cept throughout. We could weaken our robustness requirement by requiring
 Q(s o 7) to be true only if s is the unique solution in the perturbed model, that
 is, supp(r(7(t))) = {s(t)} at each t e T. It will be clear that our results would
 remain valid under this substantially weaker requirement. Returning again to
 the e-mail game example, the prediction of no attack for the complete infor-
 mation game T = {tCK(2/5)} is not robust under any equilibrium refinement
 I because for each k, (T, 7) with T(tCK(2/5)) > (k, k) is a (0, k)-perturbation
 of T, and for the unique member o- of Y(T), o{((tCK(2/5))) assigns probabil-
 ity 1 to (Attack, Attack). Similarly, the prediction of Attack is not robust.
 Both of the nonrobustness results in this example are special cases of the up-

 coming proposition. Characterizing the robust predictions of any refinement,
 it states that no refinement can make robust predictions that are any more
 powerful than the predictions that are generated by rationalizability.

 PROPOSITION 5: Under Assumption 1, for any equilibrium refinement 2 that
 is nonempty on finite models with a common prior and any finite model M, a
 prediction Q of (2, M) is robust if and only if Q is a prediction of (S", M).

 PROOF: Consider a finite model M = (0 x T, K). We first show that any ro-
 bust prediction Q of (2, M) is a prediction of (S", M). Any such Q is an (e, k)-
 robust prediction of (2, M) for some E > 0 and k < oo. Take any s: T -* A
 with s(t) E S"[t] for each t E T. By Proposition 4, there exist a finite model

 T c TCPA with common prior and a mapping ": h(T) -> T such that for each
 t E T and t= #(h(t)) we have d(i, i') < E, where 1= h(t), and S"[i] = {s(t)}.
 Because I is a refinement of rationalizability, this implies that X(T) = I{},
 where a o a o h = s. Because (T, f o h) is an (E, k)-perturbation of M and Q is

 (E, k)-robust, this further implies that Q(s) = Q( o - o h) is true. Therefore, Q
 is a prediction of (S", M).
 For the converse, take any prediction Q of (S", M). By Lemma 3, there exist

 E > 0 and k < oo00 such that S"[i] c S"[t] whenever t E T and d(i', fi) for all

 1 < k, where ti = hi(ti). Hence, for any (E, k)-perturbation (iT, 7) of M and any
 s e supp(o-) with o E(T), we have s(7(t)) e S"[t] for each t e T. Given that
 Q is a prediction of (S", M), this shows that Q(s o 7) is true. Therefore, Q is
 an (e, k)-robust prediction of (2, M). Q.E.D.

 In our characterization, we only assume that 2 is nonempty on the finite
 models with a common prior. Because it is customary to prove such an exis-
 tence result whenever a refinement is proposed, this assumption allows most
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 equilibrium refinements. Moreover, our perturbation considers only the finite
 models with a common prior. Hence, the nonrobustness implied by our char-
 acterization is not due to large models or failure of the common-prior assump-
 tion.

 We must, however, emphasize that our characterization does rely on the in-
 terim perspective we take throughout the paper, because our formulation of
 predictions and robustness is based on that perspective. If there is an ex ante
 stage with a common prior, then the researchers will usually be interested in re-
 sults that hold with high probability under that prior, and they can also use the
 prior to form a belief about the actual type in the interim stage. In that case,
 they can make stronger predictions in the interim stage by using a solution
 concept that is stronger than rationalizability, as illustrated in the following
 example.

 EXAMPLE 5: In Example 3, assume that the researcher assigns prior proba-

 bility -r to T, r to T, and 1 - 7 -  > 0 to the complete-information case T. In the grander model the researcher considers, the probability of tCK(2/5) is

 1 - - - 7r; the probability of (0, tl, t2) from T is irp(0, t1, t2), and the proba-
 bility of (0, tl, t2) from T is 7rq(O, t1, t2). Notice that p and q are geometrically
 decreasing with t1 and t2. If a researcher is interested only in behavior that
 occurs with probability higher than some P, then he can ignore all the types

 ti from T or T that are higher than some integer K(P), the types that lead
 to the nonrobustness results in the e-mail game. The researcher can do more.
 Suppose that he observes the first k orders of beliefs for some large k. If the

 actual case is described by a type k' < k from either model T or T, then the
 researcher will know the type of the player, precisely. If the actual type is some
 k' > k or we are in the common-knowledge case, then he will observe kth-
 order mutual knowledge of 0 = 2/5. There are types from all three models
 that are consistent with this observation, but he will assign a probability that is
 nearly 1 to the common-knowledge case (by Bayes' rule). Then his refinement
 for the complete-information case will allow him to make sharper predictions
 (regardless of whether he subscribes to risk dominance or Pareto dominance).

 8. LITERATURE REVIEW

 Sensitivity to Higher-Order Beliefs and Global Games

 In the context of his e-mail game (Example 3), Rubinstein (1989) illustrated
 that the predictions of Pareto-dominant equilibrium may be highly sensitive
 to the specification of higher-order beliefs. Subsequently, Carlsson and van
 Damme (1993) showed for two-player-two-action supermodular games that
 when one introduces small incomplete information as in Example 1, the risk-
 dominant action becomes uniquely rationalizable. They then argued that we
 should select the risk-dominant equilibrium in the original game. This led
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 to many well known applications, such as Morris and Shin (1998). Frankel,
 Morris, and Pauzner (2003) extended the uniqueness result of Carlsson and
 van Damme to all supermodular games with complete information, but illus-
 trated in an example that the selected outcome may depend on the noise struc-
 ture. In the context of Example 2, Morris and Shin (2000) also illustrated that
 the selected outcome may depend on the prior when the noise in the private
 signal is not negligible with respect to the prior. In this paper, we general-
 ize both uniqueness and noise dependence results in a strong way: (i) we can
 make any game dominance-solvable by introducing a suitable form of small in-
 complete information, but (ii) by varying the form of incomplete information,
 we can select any rationalizable strategy in the original game, weakening the
 selection argument.

 Robust Equilibrium

 Kajii and Morris (1997) introduced a notion of robustness of a given equi-
 librium of a given complete-information game to incomplete information as
 follows. They defined an equilibrium of a complete-information game to be
 robust if and only if, in any incomplete-information model M with common
 prior assigning high probability to the event that the payoffs are as described
 in the complete-information game and everybody knows his payoffs, M will
 have an equilibrium in which most of the types will play according to the orig-
 inal equilibrium. This concept of robustness rules out incomplete-information
 games that involve large changes in prior, even if they lead to interim beliefs
 that are similar to the actual situation. For example, in Example 2, they require

 that y = xi. They also exclude the e-mail game if the probability of 0 A 2/5 is
 not close to zero. As we have shown, however, at the interim stage, a researcher
 could not know that probability without having knowledge of the entire infinite
 hierarchy of beliefs. Then the key difference between our notions of perturba-
 tion is that they focus on small changes to prior beliefs without regard to the
 size of changes to interim beliefs, while our focus is the reverse. Their approach
 is appropriate when there is an ex ante stage along with well understood infer-
 ence rules and we know the prior to some degree. As we discussed in Section 2,
 however, in genuine incomplete-information situations, the type spaces and ex
 ante stage are just tools for modeling interim beliefs. In that case, it is appro-
 priate to consider types with similar interim beliefs, even if they come from
 models that assign small prior probability to the actual situation.

 Payoff-Irrelevant or Epistemic Types

 Brandenburger and Dekel (1987) have shown that given a distribution on
 rationalizable strategy profiles of a given complete-information game, we can
 enrich the type space by adding payoff-irrelevant types and find an equilibrium
 in the new game that yields the same distribution on the strategy profiles of the
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 original game.12 That is, for a prediction to be robust with respect to the entire
 set of equilibria without any refinements, it must be true for all rationalizable
 strategies. We show that for any refinement of rationalizability (or equilibrium),
 when we allow other payoff-relevant types from alternative models that lead to
 similar interim beliefs, for a prediction gained by the refinement to be robust,
 it must be true for all rationalizable strategies.
 In this paper we drop all common-knowledge restrictions. Of course, some

 people may want to make explicit common-knowledge restrictions on players'
 payoffs and beliefs. Battigalli and Siniscalchi (2003) introduced a notion of
 A rationalizability, which corresponds to common knowledge of such assump-
 tions and rationality. Under such restrictions, it seems that an analysis similar
 to ours would show that the predictions of any refinement that remain valid
 with only partial knowledge of interim beliefs will be equivalent to that of A ra-
 tionalizability.

 Robustness of Equilibrium Refinements

 Our approach on robustness is closest to that of Fudenberg, Kreps, and
 Levine (1988) and Dekel and Fudenberg (1990). Using types in the spirit of
 Assumption 1, Fudenberg, Kreps, and Levine (1988) have shown that any equi-
 librium of any complete-information game can be made strict by perturbing the
 payoffs, showing that one cannot obtain any more predictions than those true
 for all equilibria by considering refinements that do not eliminate any strict
 equilibrium. Our result covers refinements that do eliminate some strict equi-
 libria, such as the popular risk dominance, and compares them to the larger set
 of all rationalizable strategies for arbitrary information structures.
 In the same vein, Dekel and Fudenberg (1990) analyzed the robustness

 of predictions based on iterated elimination of weakly dominated strategies
 when one allows payoff uncertainty as in this paper. Maintaining the common-
 prior assumption, they showed that with uncertainty about players' beliefs at
 all orders, the robust predictions gained from this procedure for a complete-
 information game are equivalent to those of iterated strict dominance after one
 round of eliminating weakly dominated strategies.'3 Dropping the common-
 prior assumption, they also showed that even if we know that each player's

 12This result was extended to incomplete-information games by Battigalli and Siniscalchi
 (2003) and Dekel, Fudenberg, and Morris (2003).

 13Borgers (1994) showed that the latter solution concept characterizes the strategies that are
 consistent with almost-common knowledge of players who do not play weakly dominated strate-
 gies. Here, almost-common knowledge is in the sense of common p-belief presented by Mon-
 derer and Samet (1989). Monderer and Samet showed that an equilibrium remains an approx-
 imate equilibrium (similar to the robust equilibrium of Kajii and Morris) if there is common
 p-belief of the original game for high p, but we cannot check this condition without knowledge
 of the infinite hierarchy of beliefs.

This content downloaded from 128.252.67.66 on Mon, 18 Dec 2017 21:28:51 UTC
All use subject to http://about.jstor.org/terms



 RATIONALIZABILITY AND ROBUSTNESS 391

 prior puts high probability on original payoffs, we cannot rule out the possibil-
 ity that a strategy that survives the latter elimination process is a strict equilib-
 rium action. Hence, under this limited knowledge, the "robust" predictions of
 a refinement that does not eliminate any strict equilibrium are only the predic-
 tions of the latter solution concept.

 Role of Common-Prior Assumption

 Our results in this paper remain the same whether the common-prior as-
 sumption holds or fails. Unlike here, the common-prior assumption plays a
 central role in many existing robustness results. For example, if we drop the
 common-prior assumption in the Kajii and Morris definition, then existence of
 a robust equilibrium implies that n - 1 players have dominant strategies (see
 Weinstein and Yildiz (2004) and Oyama and Tercieux (2005)). This is because
 without a common prior, their restrictions on prior beliefs have no implications
 for interim beliefs beyond second order. Likewise, if we impose the common-
 prior assumption from Brandenburger and Dekel, all types in their type spaces
 must play a correlated equilibrium strategy (by Aumann (1987)). Similarly, the
 construction of Dekel and Fudenberg for their second result crucially relies on
 their departure from the common-prior assumption (as in Brandenburger and
 Dekel).

 Sensitivity to Higher-Order Beliefs in Applications

 Following the critique of Wilson (1987), a sizeable literature has estab-
 lished that some central findings in economics, such as the full surplus extrac-
 tion property of Cremer and McLean (1988) in mechanism design (Neeman
 (2004) and Heifetz and Neeman (2006)) and the Coase conjecture in bargain-
 ing (Feinberg and Skrzypacz (2005)), crucially rely on the assumptions on the
 second-order beliefs and higher. In this paper, we show that this sensitivity is a
 general phenomenon.

 9. CONCLUSION

 We can sum up our main results by describing the following intuitive pic-
 ture, partitioning the universal type space (with a rich set of payoff functions)
 according to the set of rationalizable outcomes. Most of the space is taken up
 by a family of open sets, one for each action, namely the set of types for which
 this is the unique rationalizable action. These sets and their boundaries indeed
 constitute the entire space, and at each boundary we have multiple rationaliz-
 able actions, namely the actions that correspond to the neighboring open sets.
 This picture has two important implications for game theory, particularly for
 refinements. First, for an open and dense set of types, there is a unique ratio-
 nalizable action, implying that all refinements must agree on a unique solution.
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 This suggests that the ubiquity of large multiplicity of rationalizable outcomes
 in present models may be due to the special structure of these games, rather
 than being an inherent property of rationalizable behavior. Second, suppose a
 researcher is restricted to observing only finite-order beliefs with some noise.
 For any rationalizable action a, he cannot exclude the possibility that, with a
 more precise but still limited knowledge of beliefs, he would have learned that
 a is the unique rationalizable action. In that case, his refinement would neces-
 sarily select a as the unique solution. For a prediction based on his refinement
 to be verifiable (i.e., valid under all specifications consistent with his limited
 observation), it must therefore be true when the solution is a. Consequently, a
 prediction is verifiable, or robust, if and only if it could be deduced from ratio-
 nalizability alone. Therefore, without a common-knowledge restriction in the
 full infinite-order sense, refinements of rationalizability do not lead to any new
 robust predictions.
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 Evanston, IL 60208, U.S.A.; j-weinstein @kellogg.northwestern.edu; http://wwwl.
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 APPENDIX A: PROOFS AND FURTHER RESULTS

 In this appendix, we present the proofs and some other details that were
 omitted in the main text. The following existing result will be very useful in
 our proofs; it shows that any model with no redundant types is isomorphic to a
 subset of this space.

 LEMMA 4 -Mertens and Zamir (1985) and Brandenburger and Dekel
 (1993): Let (0 x T, K) be any model, endowed with any topology, such that 0 x T
 is complete and separable, and Kti is a continuous function of ti. Then h is con-
 tinuous. Moreover, if (0 x T, K) does not have redundant types and 0 x T is
 compact, then h is an isomorphism (i.e., both h and its inverse are continuous).

 A.1. The Details of Example 2

 Given any e > 0 and y, conditional on xi,

 (A.1) (O((rxi + (1- r)y e2])
 rxi + (1 - r)y '2r E2(r+-)
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 where r = 1/(1 + v -N2e). As e -- 0, r converges to 1 and the preceding distri-
 bution converges to the point mass at (xi, xi), according to which it is common
 knowledge that 0 = xj = xi. Lemma 4 implies that, as e -+ 0, the belief hier-
 archy of type xi converges to the belief hierarchy that states that it is common
 knowledge that 0 = xj = xi. By (A.1), the cutoff value 2(e, y) is the unique
 solution to the indifference equation

 (A.2) rx+ (1- r)y= (1 -r)(x y)

 where 4 is the cumulative distribution function of the standard normal distri-

 bution. When e is small, r 1 - V'2-er and, hence,

 i(E, y) -( (V/(-x(E, y) - y)).
 As we increase y to oo, lim,,0o 2(, y) decreases to 0, and as we decrease y

 to -oo, lim0 2(e, y) increases to 1.

 A.2. Proof of Proposition 1

 In our proof, we will refer to a strict version of rationalizability, denoted
 by W", where we eliminate an action if it is not a strict best reply to any
 belief. We define W" by setting Wo0[ti] = Ai and letting ai tE Wk[ti] if and
 only if BRi(margA-_i =) = {ai} for some I E A(O* x T*i x A_i) such that

 marge*xr 7r = Kti and i7(a-i E _ki-l[t_i]) = 1. The set of all strictly rationaliz-
 able actions for ti is

 00

 witi] =-l n Wkti]. k=O

 The set W" has the following familiar fixed point property.

 LEMMA 5: Given any model (0 x T, K), consider any family Vi[ti] C Ai, ti E
 Ti, i E N, such that each ai E Vi[ti] is a strict best reply to a belief rE A(( x T-i x

 A-i) of ti with margoxr_ 7r = Kti and ir(a_i E V_i[t_il) = 1. Then Vi[ti] _ Wi'[til for each ti.

 The first, and a preliminary, step of our proof is to show that by perturbing
 the beliefs in a finite model slightly, we can make all the rationalizable actions
 strictly rationalizable:

 LEMMA 6: Under Assumption 1, for any finite model T c T, there exists a
 sequence of finite models Tm, m = 1, 2,..., with bijections 7(., m) from the set
 of pairs (t, a) with t E T and a S[t] to Tm, such that (i) a E W00[r(t, a, m)]

 for each (t, a, m) and (ii) 7(t, a, m) -- t as m --+ 00 for each (t, a).
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 PROOF: Let 0' be the finite set of all parameter values that some type tj 1 Tj
 assigns positive probability. For each ai e SO[ti], there exists a belief Irtiai E

 A(O' x T-i x A_i) with ai E BRi(margoxAi T'tiai), 7Tti'ai(a_i E S"[t_i) = 1, and

 margOxv l "tiai = lti. Now, for each B E [0, 1], consider the model (O x T", K), where 0 = 0' U {Oailai E Ai, i E NJ and each TF consists of types Ti(ti, ai, e),
 i E N, ti E Ti, and ai E S"f[ti], defined by

 K-i(t,a,s) B (oai ,_i(i, iE)) + (1 -- )7,Tti'ai 0 -1
 where 8~ denotes the probability distribution that puts probability 1 on

 {x}, -_i(Li, _iL, e) is some fixed type profile in T0i, and ji,,: (0, t-i, a-i) H (0, _-i(t-i, ai, e)). For each ri(ti, ai, e), define the belief

 S= Ki(ti,ai,,) 0 e-1 E (Oe XTi X A_),

 where y: (0 t-i, ai, a, B)) -+ (0, -i(t-i, ai, B), a-i), so that #i(ti, ai, e) be-
 lieves that ai is played at each (0, "-i(t-i, a-i, 0)). Then, by construction,

 margxA_- i ( = E8ai,i_i) + (1 -- B) margoxA_i "1tiai

 The belief of #i(ti, ai, e) about O x A_i is a mixture. With probability (1 - e),
 #i(ti, ai, m) faces the same uncertainty as ti does when ti holds the belief 7Tti'ai,
 in which case ai is a best reply. With probability e, the equality 0 = -ai holds, in
 which case ai is the unique best reply. Then, when e > 0, ai is a strict best reply,

 that is, BR,(margxA_ ji) = {ai}. Hence, by Lemma 5, ai E Wi#["i(ti, ai, E)] for
 each #i(ti, ai, e) and e > 0.

 We will now show that hi(7i(ti, ai, e)) ti as e -- 0. By construction,
 each probability distribution Ki(ti,ai,.) is continuous in (ti, ai, e). Hence, by

 Lemma 4, hi('i(ti, ai, e)) --+ hi('i(ti, ai, 0)) as e -- 0. Therefore, it suffices to
 show that hii(i(ti, ai, 0)) = ti for each ti and i. To do this, we first note that the first-order beliefs are equal,

 h (7-i(ti, ai, 0)) = marg,, K-i(ti,ai,O) = marg, "1ti' = margo, Kti ti,

 where the second and third equalities are by definitions of ^_T and 7"rtiai, re-
 spectively. Now fix some k > 1 and let L be the set of all belief profiles
 of players other than i at order k - 1. Toward an induction, assume that

 hk-l((tj, aj, 0)) = t-1 for each 7j(tj, aj, 0) and j. Then projxL OT-i,m -= proj,*xL and, hence,

 . iai 0 -i,O

 marg= -li(ai)) X mar, = marg8*x L a IT t

 - 8h ''Cfi(ti,ai,0)) x marge9~ xrta kti =t,
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 showing that hk(#i(ti, ai, 0)) = tk for each k.
 Moreover, there exists E > 0 such that hi(#i(ti, ai, e)) 0 hi(#i(ti, a;, e))

 whenever (ti, ai) : (ti, a;) and 0 < e8 _. [For any ai a', by definition, 0ai 0a"i, rendering hi(Ti(ti, ai, e)) = hi(7i(ti, a., E)) when 8 > 0. For any

 ti t, because hi('i(ti, ai, 8)) --. ti and hi('i(t', a', e)) -- t, there exists E such
 that hi('i(ti, ai, E)) 0 hi(ji(ti, ai, e)) whenever e . E.] We pick Tm = h(T8/m)
 and Ti(ti, ai, m) = hi('i(ti, ai, /m)) everywhere. Q.E.D.
 Lemma 6 states that, given any rationalizable action ai, by perturbing the be-

 liefs of the type slightly, we can make ai strictly rationalizable. Our next result,
 which is the main step in our proof, establishes that by perturbing the beliefs
 further, we can make this strictly rationalizable action, ai, uniquely rationaliz-
 able, leading to the desired conclusion.

 LEMMA 7: Under Assumption 1, for each i, k, for each ti E i, and for each

 ai e Wk[ti], there exists ii such that (i) i' = i' for each k' k, (ii) S'[i] =ai},
 and (iii) ti E Ti for some finite model TVi = Tti ... x Txi with ISk+l[t]l = 1

 for each t E T4. Therefore, for any ai E W"[ti], there exists a sequence of fi-
 nite, dominance-solvable models Tm, m = 1, 2,..., with types ti,m E Tim, such

 that Soo[ti,m] = {ai} and ti,m _ t, as m -+ 00.

 PROOF: For k = 0, let t be the type profile according to which it is common
 knowledge that each j assigns probability 1 to {0 = oai1}, where aij is as defined
 in Assumption 1. By Assumption 1, S [ti] = {ai), and it is vacuously true that
 f = i' for each 1 < k. Clearly, the type space {f} is belief-closed.
 Now fix any k > 0 and any i. Write each ti as ti = (1, h), where 1 =

 (ti, ti, ..., tk~i) and h = (tki, ti , ...) are the lower- and higher-order be-
 liefs, respectively. Let L = {l13h: (1, h) e T*i}. The inductive hypothesis is
 that for each finite ti = (1, h) and each a-i W&i-'[t_i], there exists finite

 Li[a_i = (1, h[l, a_il) Tt-iLaii such that

 (IH) Skji[i[aill]= {ai

 and T-i[ai = T-i[a-iI x . . . x TTiit[a-i is a finite model with ISk[t]l = 1 for each
 t e Tt-ia-i. Take any ai E Wik [i]. We will construct a type ti as in the lemma. By
 definition, BRi(margo*xA _ 7r) = {ai) for some 7IT zA(o* x T*i x A_i) such that

 margo,*x 7r = Kti and 7r(a-i e W -'[t_i) = 1. Using the inductive hypothesis,
 define mapping t: supp(marg,*xLxA_ir) O* x T*i, by

 (A.3) 4:(0, 1, a-i) (0, l, h[l, a-i]),
 where type t-i[a-i] = (1, h[l, a-i]) is as in (IH). Define ti by
 (A.4) Ki -- (margo *xLxA_ 7) O -1 = 7T O projO LxAo Op-1

This content downloaded from 128.252.67.66 on Mon, 18 Dec 2017 21:28:51 UTC
All use subject to http://about.jstor.org/terms



 396 J. WEINSTEIN AND M. YILDIZ

 where projx denotes the projection mapping to X. By construction of p, the
 first k orders of beliefs (about (0, 1)) are identical under ti and ti, that is,

 --1 p o *-1
 marge*xl Ki, = o proJj8*xLxA-i o4 o proJe*xL

 = Io projx1L = (Oo proj  *x T**) o projO*xL
 = marg, xL Kti,

 where the first equality is by (A.4), the second equality is by (A.3), which
 implies that proj*, xLop. o projo,*xLxA_. = projo,*xL, and the last equality is by
 definition of ri. Moreover, by (IH), each (0, ti) E supp(Ki), which is of the

 form (0, 1, h[l, a_i]), has a unique action a_ i Ski[Li[a_i]]. Thus, there ex-

 ists a unique h- e A(O* x T*i x A_i) such that marge*,xri r = Ki and ?-(a_i E

 Sk'[ti]) = 1. This belief is 7- = K, o y-1 = rr o proj, xLxA_i o- o 1 -1, where
 y:(0, l, h[l, a_i]) i (0, 1, h[l, ai], a_i). By construction,

 -1 -1-1

 margo*xLxA-i 7 -= Kii 0 y- projo*xLxA_/
 = r o proJ1*xLxAi o-1 ya oproJO*xLxAi

 = margo*xLxA-i 7

 (By definition of p/ and y, proj,*xLxA_i oy o p. is the identity mapping, yielding
 the last equality.) Thus,

 marg6, xA-i -r = margo, xA_i T.

 However, ai is the only best reply to this belief:

 BRi(marg9* xA_i- ) = BRi(margo*xA_i r) = {ai}.

 Therefore, Sif[i] = {ai}. Now, we will define TV as in the lemma. Define

 (O,t-i[a-])Esupp(K -i[a-il

 T' = U T Ti[ai] (ji).
 (Ot-i[a-i])Esupp(K )

 It is straightforward to show that supp(Ki) is finite and, hence, Ti is finite and

 belief-closed (see Yildiz (2005)). Finally, because S +1[ti] = {a/}, ISi+I[,]I = 1
 and, by construction, for each t e Ti'ti\{ti}, ISk+l[ti] = Sk[tj]l = 1.
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 RATIONALIZABILITY AND ROBUSTNESS 397

 To prove the last statement in the lemma, take any ai E Wi[ti]. For each m,

 because ai E Wi[ti] _ Wim[ti], by the first part of the lemma, there exists ti,m such that ti = i for each k < m and Sm"'[ti,m] = S0[ti,m] = {ai}. Clearly, for tnm [ixed =, , " [tk fai. Clarly fo
 any fixed k, tm = ik for each m > k, showing that tik, -i as m - 00. By
 the first part, ti,m E Ti4i'm for some finite model Tti,m with ISI[t]| = ISm+[t]l =
 1 for each t E Tti,m. Pick Tm = Tti,m as the dominance-solvable model in the

 lemma. Q.E.D.

 Finally, we can combine Lemmas 6 and 7 to conclude that we can perturb
 the beliefs slightly in the universal type space to make any rationalizable action
 strictly rationalizable:

 PROOF OF PROPOSITION 1: Take any e  7 and any a E S"[t]. By Lemma 6,
 there exists a sequence t(m) E 7 such that a E W"0[t(m)] and t(m) -+ t as
 m -- oo. However, by Lemma 7, because a E W"[t(m)], for each m and k,
 there exists a finite, dominance-solvable model Tm,k with a type profile t(m, k)
 such that So[t(m, k)] = {a} and t(m, k) -+ t(m) as k -- o0. Because T* is
 metrizable, there then exists a sequence km - 0 o with t(m, km) -+ t. Set
 t(m) = t(m, km) and Tm = Tm'km, which satisfy the desired properties. Q.E.D.

 A.3. Proof of Proposition 4

 We will construct a finite model TsT,m that admits a common prior with
 full support and has the desired properties. Because TCPA is dense, for each
 7(t, ST, m) in Proposition 3 there exists a sequence of finite models Tt,m,k C T
 with common priors pt,m,k (with full support) and members T(t, m, k) such
 that #(t, m, k) --+ 7(t, ST, m) as k -- 00. By the last statement in Proposition 2,
 there exists a k such that for each k > k, SO[T(t, m, k)] = SN[T(t, m, k)] =
 {ST(t)}. Hence, without loss of generality, pick each i(t, m, k) with

 (A.5) S"[T[(t, m, k)] = {sT(t)}.

 For each E E [0, 1], we will now construct a finite model (0 x Tm,k,e, pm,k,e)
 with common prior pm,k,e in which the types are denoted by integers. For

 each i, let "i be any one-to-one mapping that maps types i, ti E it,i,k t E T, to
 integers. (Recall that there are only finitely many such types.) Define

 m',k, {t(il E Tt''k, t E T (i E N).

 Let O be the set of all 0 e O* on which some type ti E T',m,'k puts positive
 probability. We will now define a common prior pmke on x Tm',k,e with
 full support. Because each ptmk has full support, given any t and t', either
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 Tt,m,k = Tt',m,k or Tt,m,k n Tt',mk = 0. Let K be the number of disjoint sets

 Tt,m,k and let L = 10 x Tmk,1. Define pm,k,e by setting

 J E/L + (1 - E)6pt'mk(0, t)/K, pmik8e(, t) = if t = T(i) for some t e Tt,m,k and t,

 e/L, otherwise,

 at each (0, t) E O x Tm,k,8. According to pm,k,8, with probability e, we have
 a uniform distribution on O x Tm,k,8, and with probability (1 - e), one of the
 type spaces Tt,m,k is selected, each with equal probability. Let hi(Ti(-(i); m, k, e)

 be the belief hierarchy of T"i(i) under pm,k,e. Applying Lemma 4 to the
 model that consists of submodels (0 x Tm,k,, pm,k,e), 8 E [0, 1], we con-
 clude that as e -+ 0, hi(Ti(ii); m, k, e) -- hi(Ti(ti); m, k, 0) for each i(ti>).
 Moreover, hi(i(ii); m, k, 0) = ti by construction. (A type's belief hierar-
 chy cannot change when we add an ex ante stage to choose between type
 spaces.) Therefore, hi(vi(ti); m, k, e) -;ti for each ti. This implies by the
 last statement in Proposition 2 and (A.5) that, for each (t, m, k), there ex-

 ists Et,m,k > 0 such that S"[h(Q(i(t, m, k)), m, k, e)] = {sT(t)} whenever e <
 8tmk. Because T* is metrizable, there then exist sequences km - oo and
 Em - 0 with 8m < minTer ,tmkm such that h(7(T(t, m, km)), m, km, em) -- t as

 m -+ oc. For each t and m, set TST,m = h(Tm'kmsm; m, km, em) and f(t, ST, m) =
 h(fr(#(t, m, km)), m, km, em). Because #(t, ST, m) -* t for each t, we can pick
 em such that f(t, ST, m) is one-to-one. By construction, S"[f(t, ST, m)] =
 {sT(t)} for each (t, m) and f(t, ST, m) -~ t as m --+ 00.

 A.4. Generic Uniqueness in Rich Models

 In this paper, we use the product topology on the universal type space. Using
 Corollary 1 and Lemma 4, we will next show that our genericity result holds
 for any type space with respect to its own topology, provided that it satisfies
 the technical conditions in Lemma 4 and it is rich enough so that it generates a
 dense set of belief hierarchies. Indeed, it turns out that any such model is iso-
 morphic to the universal type space with product topology, which emphasizes
 the central nature of this space and topology.

 COROLLARY 3: Let M = (O x T, K) be any model, endowed with any topol-
 ogy, such that (i) 0 x T is compact, (ii) Kti is a continuous function of ti,
 (iii) (6 x T, K) does not have redundant types, and (iv) h(T) is dense. Then,
 under Assumption 1,

 UM = {t E TIt has a unique rationalizable action profile}

 is open and dense with respect to the topology on T.
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 RATIONALIZABILITY AND ROBUSTNESS 399

 PROOF: By definition, h(UM) = U n h(T). Given that h(T) is dense, Corol-
 lary 1 implies that h(UM) is dense and open with respect to the relative topol-
 ogy on h(T). By Lemma 4, h: T -+ h(T) is continuous. Because h(UM) is open
 relative to h(T), this implies that UM = h-l(h(UM)) is open. By Lemma 4,
 h-1 is also continuous and onto. Because h(UM) is dense, this implies that
 UM = h-l(h(UM)) is also dense. Q.E.D.
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