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 We show that in any game that is continuous at infinity, if a plan of action a, is played by a type t, in

 a Bayesian Nash equilibrium, then there are perturbations of f, for which a, is the only rationalizable plan

 and whose unique rationalizable belief regarding the play of the game is arbitrarily close to the equilibrium

 belief of As an application to repeated games, we prove an unrefinable folk theorem: any individually

 rational and feasible payoff is the unique rationalizable payoff vector for some perturbed type profile. This
 is true even if perturbed types are restricted to believe that the repeated-game payoff structure and the
 discount factor are common knowledge.

 Keywords-. Robustness, Higher-order beliefs, Dynamic games, Folk Theorem

 JEL Codes-, C72, C73.

 1. INTRODUCTION

 In the infinite-horizon dynamic games commonly used in economic applications, the set of
 equilibrium strategies is often very large. For example, the classic folk theorems for repeated
 games state that every individually rational payoff profile can be achieved in a subgame-perfect
 equilibrium. A less transparent example is Rubinstein's (1982) bargaining game; although there is
 a unique subgame-perfect equilibrium, any outcome can occur in Nash equilibrium. Consequently,
 economists focus on strong refinements of equilibrium and ignore other equilibria. For instance,

 they might select the Rubinstein outcome in bargaining games or an efficient outcome in repeated

 games. All these applications assume common knowledge of payoffs. The robustness program
 in game theory seeks to determine when strong predictions from equilibrium refinements can be

 maintained despite a slight relaxation of common-knowledge assumptions.1 Here, we show a lack
 of robustness of such predictions: any equilibrium outcome may become uniquely rationalizable

 1. See for example, Fudenberg, Kreps, and Levine (1988), Kajii and Morris (1997), Kreps etal. (1982), Monderer
 and Samet (1989), and Rubinstein (1989).
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 366  REVIEW OF ECONOMIC STUDIES

 when beliefs are perturbed, so that no equilibrium action can ever be ruled out without an extremely

 precise knowledge of players' beliefs.
 Our work here builds on existing results, which show a similar lack of robustness in finite

 games (Chen 2012; Weinstein and Yildiz 2007). Many important economic models, including
 those mentioned above, employ infinite-horizon dynamic games, so here we establish several
 different extensions which apply to such games. Our most notable application is an "unrefinable"
 folk theorem for infinite repeated games: for every payoff v in the interior of the individually
 rational and feasible set, and for sufficiently patient players, we construct a perturbation such that
 v is the unique rationalizable outcome. Moreover, in the situation described by the perturbation,
 all players anticipate that the payoffs are within an s-neighborhood of v. That is, the complete
 information game is surrounded by types with a unique solution, but the unique solution varies
 in such a way that it traces all individually rational and feasible payoffs. While the multiplicity
 in the standard folk theorems suggests the need for a refinement to obtain clear predictions, the
 multiplicity in our unrefinable folk theorem shows the impossibility of a robust refinement. In the

 same vein, in Rubinstein's bargaining model, we show that any bargaining outcome is the unique
 rationalizable outcome for some perturbation. Once again, no refinement can robustly rule out
 these outcomes.

 These applications follow from our Proposition 2, which states: for any Bayesian Nash
 equilibrium and any type ti, there exists a perturbed type /, for which the equilibrium action
 plan of t{ is the unique rationalizable plan. Furthermore, the unique rationalizable belief of f,
 regarding the outcome is arbitrarily close to the equilibrium belief of f,. In particular, if the
 original game has complete information, then the perturbed type assigns probability nearly one
 to the equilibrium path (Corollary 1). Here the meaning of "perturbation" is that ?,• may be chosen

 such that ti and ?,■ have similar beliefs about the payoff functions,, similar beliefs about the other

 player's beliefs about the payoff functions, similar beliefs about the other player's beliefs about
 the player's beliefs about the payoff functions, and so on, up to an arbitrarily chosen finite order.
 Hence, if a researcher has noisy information about the players' beliefs up to a finite order but does
 not have any other information, then he cannot distinguish some of the perturbations ?, from the
 original type ti. Consequently, he cannot verify a prediction about the behavior of f; unless it is
 also true for f;. In particular, by Proposition 2, he cannot verify any prediction of an equilibrium
 refinement that does not follow from equilibrium alone.

 In some applications, a researcher may believe that even if there is higher order uncertainty
 about payoffs, there is a common knowledge of some of the basic structure of payoffs and
 information. In particular, in a repeated game, he may wish to retain common knowledge that
 the player's payoffs in the repeated game are the discounted sum of the stage-game payoffs. The

 perturbations constructed in Proposition 2 would not maintain such common knowledge and,
 in general, restrictions on perturbations sometimes lead to sharper predictions. In the particular
 case of repeated games, however, we show (Proposition 5) that our conclusions remain intact: the
 perturbed types in the unrefinable folk theorem can be constructed while maintaining full common

 knowledge that we are playing a repeated game with commonly known discount factor, with
 uncertainly only concerning the stage-game payoffs.2 In the same vein, Penta (2012a) describes
 robust predictions, under sequential rationality, when the fact that certain parameters are known
 to certain players is a common knowledge. He shows that restrictions on information, combined
 with restricted payoff spaces, may lead to sharper predictions. In Section 6, we extend Penta's
 characterization to infinite-horizon games.

 2. This result also suggests that one may not need nontrivial commitment types for reputation formation; uncertainty

 about the stage payoffs may be enough when one allows more sophisticated information structures.
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 Our Proposition 2 applies more narrowly than the existing structure theorems, but with a
 stronger conclusion. It applies only to action plans played in some equilibrium, and not to
 all rationalizable plans. The stronger conclusion is that the perturbed types actually expect the
 selected equilibrium outcome to occur as the unique rationalizable play. Without this stronger
 conclusion, the selected outcome may be realized only by types who are surprised by their
 opponents' moves and play moves they did not expect to play (see Example 3.1). This would
 prevent one from applying the existing structure theorems to the analysis of equilibrium payoffs,
 so the stronger conclusion is important to our unrefinable folk theorem. We have also established

 the natural extension of previous results to all rationalizable actions in infinite dynamic games.
 After laying out the model in the next section, we present our general results in Section 3.

 We present our applications to repeated games and bargaining in Sections 4 and 5, respectively.
 We present extensions of our results to Penta's framework in Section 6. Section 7 concludes. The
 proofs of our general results are presented in the Appendix.

 2. BASIC DEFINITIONS

 We suggest that the reader skim this section quickly and refer back as necessary. The main text
 is not very notation-heavy.

 2.1. Extensive game forms

 We consider standard «-player extensive-form games with possibly infinite horizon, as modeled in

 Osborne and Rubinstein (1994). In particular, we fix an extensive game form T = (N,H, (1f)/ejv)
 with perfect recall where N=[l,2,...,n] is a finite set of players, H is a set of histories, and
 X; is the set of information sets at which player ieN moves. We use ieN and he H to denote
 a generic player and history, respectively. We write /, (h) for the information set that contains
 history h, at which player i moves, i.e. the set of histories i finds possible when he moves. The set

 of available moves at /;(/1) is denoted by B;(h). We have Bi(h) = {bi : (h,bi) €//}, where (h,bi)
 denotes the history in which h is followed by b{. We assume that B,(h) is finite for each h. An
 action plan (or simply action) a, of i is defined as any contingent plan that maps the information
 sets of i to the moves available at those information sets ; i.e. a, : /,■ (A) i—> a,- (h) e Bt (It). We write
 A =Aj x ■■■ x An for the set of action profiles a = (a\,...,an)? We write Z for the set of terminal

 nodes, including histories of infinite length. We write z (a) for the terminal history that is reached
 by profile a.

 2.2. Type spaces

 Given an extensive game form, a Bayesian game is defined by specifying the belief structure
 about the payoffs. To this end, we write 6 (z) = (6\ (z),..., 9„ (z)) e [0,1]" for the payoff vector
 at the terminal node zeZ and write 0* for the set of all payoff functions 6 :Z~* [0,1]". The
 payoff of i from an action profile a is denoted by «; (6, a). Note that «,■ (9,a)=0, (z (a)). We endow

 0* with the product topology (i.e. the topology of pointwise convergence). Note that 0* is
 compact and w, is continuous in 6. Note, however, that 0* is not a metric space. We will use only

 3. Notation: Given any list of sets, write X=X\ x ••• xX„ with typical element*, *-i = rW0 with
 typical element and (*;,*_,■ ) = (*i, ...,Xi-i,Xi,Xi+i, ...,xn). Likewise, for any family of functions fj:Xj-*Yj, we
 define /_, : X_, -> X-i by/_, (*_,) = (fj (xj))^r This is with the exception that h is a history as in dynamic games, rather
 than a profile of hierarchies (h\,...,hn). Given any topological space X, we write A(X) for the space of probability
 distributions on X, endowed with Borel it-algebra and the weak topology.
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 finite type spaces, so by a model, we mean a finite set © x T\ x ••• x Tn associated with beliefs

 Ktj e A (0 x 7L,) for each tj e Tj, where 0 ç 0*. Here, ti is called a type and T — T\ x • • • x Tn is
 called a type space. A model (&,T,k) is said to be a common-prior model (with full support)
 if and only if there exists a probability distribution p e A (0 x T) with support © x T and such

 that Kti,=p(-\tj) for each tt e T(. Note that (T, &,T,k) defines a Bayesian game. In this article, we
 consider games that vary by their type spaces for a fixed game form f.

 2.3. Hierarchies of beliefs

 Given any type tt in a type space T, we can compute the first-order belief hj (tj) e A (©*) of /,•

 (about 9), second-order belief hj (tj) e A (0* x A (©*)") of t, (about 9 and the first-order beliefs),

 etc., using the joint distribution of the types and 9. Using the mapping hi : ti i-> (hj (t,), hj (tj),...),
 we can embed all such models in the universal type space, denoted by T* = T* x ■ ■ • x T* (Mertens

 and Zamir 1985; see also Brandenburger and Dekel 1993). We endow the universal type space
 with the product topology of usual weak convergence. We say that a sequence of types f; (m)
 converges to a type denoted by ti (m) -*■ ti, if and only if A* (ti (m)) —» /if (/, ) for each k, where
 the latter convergence is in weak topology, i.e., "convergence in distribution."

 2.4. Equivalence of actions and continuity at infinity

 We now turn to the details of the extensive game form. If a history h={b')^_l is formed by L
 moves for some finite L, then h is said to be finite and have length L. If h contains infinitely many

 moves, then h is said to be infinite. A game form is said to have finite horizon if for some L < oo
 all histories have length at most L; the game form is said to have infinite horizon otherwise. For

 any history h = (bl)^=l and any U, we write hL for the subhistory of h that is truncated at length

 L'; i.e. h={bl)v^n^L'L We say that a game (T,@,T,k) is continuous at infinity4 (first defined
 by Fudenberg and Levine ( 1983)) iff for any e > 0, there exists L < oo, such that

 V0e0: 9i(h)—9i(h) <e whenever hL = hL (2.1)

 for all ieN and all terminal histories h,heZ.

 We say that actions a/ and dt axe equivalent if z(a,-,a_j)=z(a-,a_,) for all a_, For any

 integer L, we say that a,- and a- are L-equivalent if z(a,-,a-ï)L =z(a'i,a~i)L for all € A_;. That
 is, two actions are L-equivalent if both actions prescribe the same moves in the first L moves on
 the path against every action profile a_, by others. For the first L moves a, and a- can differ only

 at the informations sets that they preclude. Of course this is the same as the usual equivalence
 when the game has a finite horizon that is shorter than L.

 We will confine ourselves to the games that are continuous at infinity throughout, including

 our perturbations. Note that most games analyzed in economics are continuous at infinity. This
 includes repeated games with discounting, games of sequential bargaining with discounting, all

 4. In that we do not allow L to depend on 9, this definition assumes that the possible payoff functions in the game

 are equicontinuous at infinity. This equicontinuity, as opposed to mere continuity of each 9, holds in all of our applications

 but is not needed in our propositions; it is useful for establishing certain properties of interim correlated rationalizability,
 noted in the next section. See Weinstein and Yildiz (2012) for more.
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 finite-horizon games, and so on. Games that are excluded include repeated games with a limit of
 averages criterion, or bargaining without discounting; generally, any case in which there can be
 a significant effect from the arbitrarily far future.

 2.5. Interim-correlated rationalizability

 For each ieN and for each belief n e A(© x A_,), we write BRi(n) for the set of actions a, Gu
 that maximize the expected value of w/(0,a;,a_,-) under the probability distribution n. Note
 that BRi is non-empty under continuity at infinity, because this implies continuity with respect
 to the product topology on histories, and that topology is compact by Tychonoff's theorem. A
 solution concept £;[/,] ÇA;, ieN, is said to have the best-response property if and only
 if for each f/ and for each a; € E; [f,], there exists a belief tï e A (0 x T-i x A_,) such that a,- €

 BRi ^marg@X/4_.7r^, marg0Xr_,^ = Ktl and n (a—i e E_,-[f_/]) = 1. We define interim-correlated
 rationalizability (ICR), denoted by S00, as the largest solution concept with best-response
 property. This largest set is well-defined because the set of solution concepts with best-response
 property is closed under coordinate-wise union, i.e., S00 [r,-] is the union of the sets E(- [f;] over all

 solution concepts £ with the best-response property.
 Under our assumption of continuity at infinity, ICR can be computed by the following

 elimination procedure5 : For each i and set S® [/,] =A,\ and define sets Sf [f,] for k>0 iteratively,

 by letting a; e Sk [?,] if and only if a,- e BR, ^marg@Xj4_.7r^ for some n e A (© x T-i xA_,) such

 that margox^^ —Ktj and ji (a~ieS^~l 0-;]) = 1. That is, a,- is a best response to a belief of r,
 that puts positive probability only to the actions that survive the elimination in round k — 1. We

 write Sk~l [t-i] = fij^Sjh] and Sk [t]=S\[ti]x-x Skn [/„]. Then,

 OO

 k=0

 This equality of the two concepts implies that the infinite intersection is nonempty.
 ICR was introduced by Dekel, Fudenberg, and Morris (2007) (see also Battigalli and

 Siniscalchi 2003, for a related concept). They show that the ICR set for a given type is completely
 determined by its hierarchy of beliefs, so we will sometimes refer to the ICR set of a hierarchy or
 "universal type." They also show that ICR is upper-hemicontinuous for finite games. While this
 is not known to be true for all infinite games, we show that it is true under the present assumptions
 in Weinstein and Yildiz (2012).

 ICR is the weakest rationalizability concept, and our main results such as Proposition 2 carry
 over to any stronger, nonempty concept by a very simple argument: if an action is uniquely ICR
 for a perturbed type, it is also uniquely selected by the stronger concept at that type. In particular,

 our result is true without modification for the interim sequential rationalizability (ISR) concept of

 Penta (2012a), if no further restriction on players' information and beliefs is made. The concept of

 ISR does entail some modification to our arguments when combined with restrictions on players'
 information; see Section 6.

 5. See Weinstein and Yildiz (2012) for a proof of this claim.

This content downloaded from 128.252.67.66 on Mon, 18 Dec 2017 21:31:11 UTC
All use subject to http://about.jstor.org/terms



 370  REVIEW OF ECONOMIC STUDIES

 2.6. Miscellaneous definitions and notation

 We fix a set À=Â\ x xÀn of action profiles where Ä,- selects one representative from
 each reduced-form equivalence class of action plans for player i. We call a probability
 distribution n e A(0* x T*; xÂ_,j a rationalizable belief of type tj if marge* 7-^ —
 Khi(ti) an<J TT{a-ie[?-,]) = 1. Given any strategy profile s:T-*A, we write n*{-\tj,s)e
 A (©* x T*_t x A_;) for the belief of type ?, given that the other players play according to s~j. We
 write Pr (• |tt, s{) and E[-\it, a{] for the resulting probability measure and expectation operator from

 playing a; against belief jt, respectively. The expectation operator under n* (■ \tj, s) is denoted by
 FA-\sM

 It has recently become common in game theory to reserve the term knowledge for cases where

 truth axiom holds, and refer to certainty when players are certain but may be wrong.6 In this article,

 we use this nuanced language, although the distinction is not important for our analysis, and the
 general reader will not lose by reading "common certainty" and "common knowledge" as alike.
 In particular, for any type space (0 ,T,k), we say that type t, knows an event (or a proposition) if
 the event (or the proposition) holds on © x {tj} x T-j, and say that type /,■ is certain of the event if

 Kti assigns probability 1 to that event. Likewise, an event (or a proposition) is common knowledge
 (according to tj) if it holds everywhere on 0x7; the event is common certainty according to tj
 if it holds on a "belief-closed subspace" that contains tj. When types are embedded in a universal
 type space, knowledge is relaxed to certainty; we still say that an event is common knowledge
 according to hj (tj) if it is common knowledge according to tj. In our informal discussions, we say

 that one drops a common knowledge assumption if he allows perturbed types coming from spaces
 in which the assumption may fail, and we say that one retains a common knowledge assumption
 if he restricts the perturbations to the type spaces in which the assumption holds throughout.

 3. STRUCTURE THEOREM

 In this section, we will present our main result for general infinite-horizon games. Given any
 game (r, ©, T, k) that is continuous at infinity and any Bayesian Nash equilibrium s : T -*■ A, we

 will show that there are perturbations tj of types tj for which Sj (?,•) is the only rationalizable plan.
 Moreover, the unique rationalizable belief of ?, regarding the outcomes is arbitrarily close to the
 belief of tj under .v. The following structure theorem extends existing results and plays a crucial
 role in our construction.

 Proposition 1. For any game (T, @,T,k) that is continuous at infinity, for any type tj e Tj of

 any player ieN, any rationalizable action aj e Sf° [?;] of tj, any neighborhood Ui of hi(ti) in the
 universal type space T*, and any L, there exists a hierarchy hj(tj) e Uj, such that for each a'{ e

 Sf° pi]» a'i is L-equivalent to au and tj is a type in some finite, common-prior model.

 In Weinstein and Yildiz (2007), we showed the structure theorem for finite-action games in

 normal form, under the assumption that the space of payoffs is rich enough that any action is
 dominant under some payoff specification. While this richness assumption holds when one relaxes
 all common-knowledge assumptions on payoff functions in a static game, it fails if one fixes a
 nontrivial dynamic game tree. This is because a plan of action cannot be strictly dominant when
 some information sets may not be reached. Chen (2012) has nonetheless extended the structure

 6. The truth axiom states that anything which is known is always true. The distinction of knowledge from certainty

 can be critical in dynamic games when a zero-probability event occurs. An event which was known is then still known,
 while that which was merely certain may be no longer certain.
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 theorem to finite dynamic games, showing that the same result holds under the weaker assumption

 that all payoff functions on the terminal histories are possible. Here, we extend Chen's results
 further by allowing infinite-horizon games that are continuous at infinity.

 The result can then be interpreted as follows: consider a type t with a rationalizable action plan

 a. For some arbitrarily chosen k, suppose we find it impossible to distinguish types whose beliefs
 are similar up through order k. The proposition states that, for any L, there is a finite Bayesian
 game with type t who we cannot distinguish from t and for which a is the unique rationalizable
 action plan through period L.

 Proposition 1 has one important limitation. Given any rationalizable path z(a) and L,
 Proposition 1 establishes that there is a profile t = (f i,..., tn) of perturbed types for which zL (a) is

 the unique rationalizable path up to L. Nevertheless, these perturbed types may all find the path
 zL (a) unlikely at the start of play, as we establish next.

 3.1. Cooperation in twice-repeated prisoners ' dilemma

 Consider a twice-repeated prisoners' dilemma game with complete information and with no
 discounting. We shall need the standard condition u(C,D) + u(D,C)>2u(D,D), where u is the
 payoff of player 1 in the stage game and C and D stand for the actions Cooperate and Defect,
 respectively. In the twice-repeated game, the following "tit-for-tat" strategy is rationalizable:

 aT4T. p[ay Q00peraie itj the first round, and in the second round play what the other player
 played in the first round.

 Then, by Proposition 1, there exists a perturbation t14r of the common-knowledge type
 for which aT4T is the unique rationalizable action. If both players have type tT4T, the unique
 rationalizable action profile (aT4T ,a/4T) leads to cooperation in both rounds. However, we can
 deduce that the constructed type will necessarily find this outcome unlikely. Since tT4T has a
 unique best reply, the player must assign positive probability to the event that the other player
 cooperates in the first round. Such cooperation must make him update his beliefs about the
 payoffs in such a way that Cooperate becomes a better response than Defect. Since the definition
 of perturbation requires that, ex ante, he believes with high probability the payoffs are similar to
 the repeated prisoner dilemma, under which Defect is dominant in the second round, this drastic
 updating implies that tT4T finds it unlikely that the other player will play Cooperate in the first
 round. Therefore, the perturbed type is nearly certain that he will play Defect in the second round.

 The above example demonstrates that the beliefs of the perturbed types in Proposition 1
 may drastically diverge from the unique rationalizable outcome. This prevents us from applying
 Proposition 1 to study the expected payoffs and the player's intended play. Our next result
 overcomes this limitation. For this, we need an outcome to be a Bayesian Nash equilibrium
 rather than merely rationalizable.

 Proposition 2. Let G—{T,@,T,k) be a Bayesian game that is continuous at infinity, and s* :
 T^-Abe a strategy profile in G. Then, the following are equivalent:

 (A) s* is a Bayesian Nash equilibrium of G.
 (B) For any ieN, for any tj e Ti, for any neighborhood Ui ofhj(ti) in the universal type space

 T*, and for any neighborhood Vi of the belief n* (-\ti,s*) of type ti under s*, there exists a
 hierarchy hi (?,) e Ui such that
 (1)ate S?° [?,•] iff at is equivalent to s * (ti), and

 (2)the unique rationalizable belief it € A (0* x xÂ_,) ofti is in V,-.
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 Moreover, for every s>0, f, above can be chosen so that \E[uj(9,a)\jr,a*\
 —E[uj(9,a)\s*,ti] \ <sfor all jeN.

 Given a Bayesian Nash equilibrium s*, the first conclusion states that the equilibrium action
 s*(ti) is the only rationalizable action for the perturbed type in reduced form. The second
 conclusion states that the rationalizable belief of the perturbed type î; is approximately the same

 as the equilibrium belief of the original type t;. Hence, the limitation of Proposition 1 above does
 not apply. Moreover, the second conclusion immediately implies that the interim expected payoffs

 according to the perturbed type î, under rationalizability are close to the equilibrium expected
 payoffs according to f,-. All in all, Proposition 2 establishes that no equilibrium outcome can be
 ruled out as the unique rationalizable outcome without knowledge of infinite hierarchy of beliefs,
 both in terms of actual realization and in terms of players' ex ante expectations.

 One may wonder if one can reach such a strong conclusion for other rationalizable strategies.
 The answer is a firm no; in fact, Proposition 2 establishes that the converse is also true: if for
 every type ti one can find a perturbation under which the the player's interim beliefs are close to

 the beliefs under the original strategy profile s* (condition 2) and if the action s* (ti) is uniquely
 rationalizable for the perturbed type (condition 1), then s* is a Bayesian Nash equilibrium. This
 is simply because, by the Maximum Theorem, the two conditions imply that s* (f,-) is indeed a

 best reply for ti against s* ( .
 We will later apply this result to some popular complete-information games. In order to state

 the result for complete-information games, we fix a payoff function 9*, and consider the game
 in which 9* is common knowledge. This game is represented by type profile tCK ($*) in the
 universal type space.

 Corollary 1. Let (r, {#*}, {tCK(0*)},ac) be a complete-information game that is continuous
 at infinity, and a* be a Nash equilibrium of this game. For any i € N, for any neighborhood Ui of

 hi(tfK (0*)) in the universal type space T*, and any s > 0, there exists a hierarchy hi (?,-) et/;,
 such that for every rationalizable belief n of ti,

 (1) at 6 S?° [?;] iff a, is equivalent to a*;
 (2) Pr(z(a*)\n,a*) > 1 — e, and
 (3) \E[u}(ß,a)\it,<^]-uj(9*,a*)| <e for all jeN.

 For any Nash equilibrium a* of any complete-information game, the corollary presents a
 profile t of perturbations under which (1) the equilibrium a* is the unique rationalizable action
 profile; (2) all players' rationalizable beliefs assign nearly probability one to the equilibrium

 outcome z(a*); and (3) the expected payoffs under these beliefs are nearly identical to the
 equilibrium payoffs. As established in Proposition 2, one can find such perturbations only for
 Nash equilibria.

 The proof of Proposition 2 uses a contagion argument that is suitable for equilibrium. In order
 to illustrate the construction, we sketch the proof for the complete-information games considered

 in the corollary. Building on Proposition 1 we first show that for each action a, there exists a
 type ta' for which a; is uniquely rationalizable, extending a result of Chen to infinite-horizon
 games. For any Nash equilibrium a* of any complete-information game (r, jö*}, \tCK (0*)}

 we then construct a family of types tj^m^,j&N, m e N, À e [0,1], by

 tj,0,1 = taj,

 Ktj,m,x = ^Kta*+0--^)8{e*,t-i.m-u) Vm>0,
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 where 8(f), t_im X - j is the Dirac measure that puts probability one on (0*, i,a.) - F°r large
 m and small k, ti,m<x satisfies all the desired properties of To see this, first note that for k = 0,
 under ^m,o> it is wth-order mutual certainty that 9—9*. Hence, when m is large and k is small,

 the belief hierarchy of /,>,,() is close to the belief hierarchy of tfK (9*), according to which it
 is common knowledge that 9 — 9*. Second, for À >0, a* is uniquely rationalizable for in

 reduced form. To see this, observing that it is true for m = 0 by definition of tj.o.i, assume that it
 is true up to some m— 1. Then, any rationalizable belief of any type tjm-A must be a mixture of

 G*
 two beliefs. With probability k, his belief is the same as that of t ', to which a* is the unique best

 response in reduced form actions. With probability 1 —k, the true state is 6* and the other players

 play a*_j (in reduced form), in which case a* is a best reply, as a* is a Nash equilibrium under
 9*. Therefore, in reduced form a* is the unique best response to any of his rationalizable beliefs,

 showing that a* is uniquely rationalizable for tj%m;K in reduced form. Finally, for any m> 0, under

 rationalizability type must assign at least probability 1 — k on (<9*,ö*() in reduced form
 because a*_i is uniquely rationalizable for i,a in reduced form.

 4. APPLICATION: AN UNREFINABLE FOLK THEOREM

 In this section, we consider infinitely repeated games with complete information. Under the
 standard assumptions for the folk theorem, we prove an unrefinable folk theorem, which concludes
 that for every individually rational and feasible payoff vector v, there exists a perturbation
 of beliefs under which there is a unique rationalizable outcome and players expect to enjoy
 approximately the payoff vector v under any rationalizable belief.

 For simplicity, we consider a simultaneous-action stage game G=(N,B,g) where
 B=B{ x xBn is the set of profiles b = (b\,...,bn) of moves and g* :B—> [0,1]" is the vector
 of stage payoffs. Without loss of generality, we will assume that each player / has at least two
 moves in the stage game, i.e. |5,-| > 2. We have perfect monitoring. Hence, a history is a sequence

 h = (&')/6n °f profiles bl — {b\,..., bln). In the complete-information game, the players maximize
 the average discounted stage payoffs. That is, the payoff function is

 «,•(*) = (!-i,±s's>(b<) («.= (!>') )
 1=0

 where <5e(0,1) is the discount factor, which we will let vary. Denote the repeated game by

 ^=(r,{e;},{rc*(ö;)},4
 Let V — co(g(B)) be the set of feasible payoff vectors (from correlated mixed action profiles),

 where co takes the convex hull. Define also the pure-action min-max payoff as

 v,= min max#*(b)
 b-iZB-ibteBi

 for each ieN. We define the set of feasible and individually rational payoff vectors as

 V* = jve V\vi > v,- for each ieN}.

 We denote the interior of V* by intV*. The interior will be nonempty when a weak form of
 full-rank assumption holds. The following lemma states a typical folk theorem (see Proposition
 9.3.1 in Mailath and Samuelson (2006) and also Fudenberg and Maskin (1991)).
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 Lemma 1. For every v e intV*, there exists <5 < 1 such that for all & e (5, l), G$ has a subgame
 perfect equilibrium a* in pure strategies, such that u(0£, a*) = v.

 The lemma states that every feasible and individually rational payoff vector in the interior can

 be supported as the subgame-perfect equilibrium payoff when the players are sufficiently patient.

 Given such a large multiplicity, both theoretical and applied researchers often focus on efficient
 equilibria (or extremal equilibria). Combining such a folk theorem with Corollary 1, our next
 result establishes that the multiplicity is irreducible.

 Proposition 3. For all v e intV* and s > 0, there exists 8 < 1 such that for all 8 e (8, l), every

 open neighborhood U of tCK (6*) contains a type profile teU such that

 (1) each tj has a unique rationalizable action a* in reduced form, and
 (2) under every rationalizable belief Ti ofti, the expected payoffs are all within s neighborhood

 of v:

 \E[uj(0,a)\jt,a*]-v| <£ V/'eTV.

 Proof Fix any v e intV* and £ > 0. By Lemma 1, there exists <5 < 1 such that for all 8 e (<5, l),
 G$ has a subgame-perfect equilibrium a* in pure strategies, such that u(0£,a*)=v. Then, by

 Corollary 1, for any <5e(5, l) and any open neighborhood U of tCK (6^*), there exists a type
 profile teU such that each ?,• has a unique rationalizable action a* in reduced form (Part 1 of
 Corollary 1), and under every rationalizable belief tt of the expected payoffs are all within e

 neighborhood of u(6£ ,a*)—v (Part 3 of Corollary 1). ||

 Proposition 3 establishes an unrefinable folk theorem. It states that every individually rational

 and feasible payoff y in the interior can be supported by the unique rationalizable outcome for
 some perturbation. Moreover, in the actual situation described by the perturbation, all players
 play according to the subgame-perfect equilibrium that supports v and all players anticipate that
 the payoffs are within e neighborhood of v. That is, the complete-information game is surrounded
 by types with a unique solution, but the unique solution varies in such a way that it traces all
 individually rational and feasible payoffs. While the multiplicity in the standard folk theorems
 may suggest a need for a refinement, the multiplicity in our unrefinable folk theorem emphasizes
 the impossibility of a robust refinement.

 4.1. Structure theorem with uncertainty only about the stage payoffs

 An important drawback of the structure theorems is that they may rely on the existence of types

 who are far from the payoff and information structure assumed in the original model. If a researcher

 is willing to make common-knowledge assumptions regarding these structures (by considering
 only the type spaces in which these structures are true throughout), those theorems may become

 inapplicable. Indeed, recent papers (e.g. Weinstein and Yildiz 2011 and Penta 2012a,b) study the
 robust predictions when some common knowledge assumptions are retained.

 In repeated games, one may wish to maintain common knowledge of the repeated-game payoff
 structure. Unfortunately, in our proofs of the propositions above, the types we construct do not
 preserve common knowledge of such a structure—they may depend on the entire history in ways
 which are not additively separable across stages. It is more difficult to construct types with unique

 rationalizable action when we restrict the perturbations to preserve common knowledge of the
 repeated-game structure, but in our next two propositions we are able to do this. The proofs
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 (deferred to the Appendix) are somewhat lengthy and require the use of incentive structures
 similar to those in the repeated-game literature.

 For any fixed discount factor 8 e (0,1), we define

 ©* =

 exj

 1=0

 (4.1)

 as the set of repeated games with discount factor 8. Here, 0^ allows uncertainty about the stage
 payoffs g, but fixes all the other aspects of the repeated game, including the discount factor. For
 a fixed complete information repeated game with stage-payoff function g*, we are interested
 in the predictions that are robust against perturbations in which it remains common knowledge

 that the payoffs come from ©|, allowing only uncertainty about the stage payoffs. The complete

 information game is represented by type profile tCK ($<s,g*) in the universal type space. The next
 result extends Corollary 1 to this case.

 Proposition 4. For any 8 € (0,1), let (r, {0s g* \ ,\ tCK (0^*)} ,/c) be a complete-information
 repeated game and a* be a Nash equilibrium of this game. For any ieN, for any neighborhood

 Ui ofhi(tf K (0s,g*)) in the universal type space T*, any s > 0 and any L, there exists a hierarchy
 hi(tj) e Ui, such that

 (1) aie Sf° [?,•] implies that a,- is L-equivalent to a*;
 (2) \E\uj(6 ,a)\n~\ — Uj(0$:g*,a*)\ <s for all jeN and for all rationalizable belief n of V, on

 {6,a); and
 (3) according to ti it is common knowledge that 6 e 01

 Proposition 4 strengthens Corollary 1 by adding the last condition that the perturbed type still

 finds it common knowledge that he is playing a repeated game that is identical to the original
 complete-information game in all aspects except for the stage payoffs. The conclusion is weakened

 only by being silent about the tails, which will be immaterial to our conclusions. Indeed, using
 Proposition 4 instead of Corollary 1 in the proof of Proposition 3, which is the main result in this
 application, one can easily extend that folk theorem to the world in which a researcher is willing
 to retain common knowledge of the repeated game structure.

 Proposition 5. For all v e intV*, there exists 8 < 1 such that for all 8 e (S, l), for all s >0 and

 all L< oo, every open neighborhood U oftCK (&s,g*) contains a type profile teU such that

 (1) each tj has a unique rationalizable action plan a* up to date L in reduced form;
 (2) under every rationalizable beliefit of ti, the expected payoffs are all within s neighborhood

 ofv:

 |£[wj(ö,a)|;r]— v|<e V/'eA^,

 (3) and it is common knowledge according to t that 9 € 0|.

 That is, even if a researcher is willing to assume the repeated game payoff structure, for high

 discount factors, he cannot rule out any feasible payoff vector as the approximate outcome of the

 unique rationalizable belief for some nearby type. Hence, allowing uncertainty about the stage
 payoffs is sufficient to reach the conclusion of the unrefinable folk theorem above.

 Proposition 4 is proved in the Appendix. The proof first involves showing that each action
 plan is uniquely rationalizable, up to an arbitrarily long finite horizon, for a type for which it
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 is common knowledge that 0e0j. The construction of these types is rather involved, and uses
 ideas from learning and incentives in repeated games. Using the existence of these types, one
 then constructs the nearby types in the proposition following the ideas sketched in illustrating
 the proof of Corollary 1 above. In the following example, we illustrate the gist of the idea on the
 twice-repeated prisoners' dilemma.

 Example 1. Consider again the twice-repeated prisoners' dilemma with gPD(C,D) +

 g\D(D, C) > 2 g^D(D,D), where g^D is the payoff of player 1 in the stage game, and 5 = 1. Given
 a type according to which the payoffs gPD are common knowledge, we will construct a nearby
 type for which tit-for-tat is uniquely rationalizable. To this end, we first construct some types (not

 necessarily nearby) for which certain action plans are uniquely rationalizable. For any strategy

 profile be{C,D}2 in the stage game, consider the payoff function gb where gb (b\ — l if

 b'j = b, and gb (by, b^) =0 otherwise. For a type ti,b,.o that puts probability 1 on 6& R(bi,b_l) for
 some b-j, playing b, in the first round is uniquely rationalizable. Such a type may have multiple
 rationalizable actions in the second round, as he may assign zero probability to some history. But

 now consider a type that puts probability 1/2 on (og ^(i,,■,&_,), and probability 1/2

 on g(b,,b_i), for some Since types t—i,c,0 ar}d '-/,£>,o P^a}' C and D, respectively,
 as their unique rationalizable move in the first round, type puts positive probability at all
 histories at the beginning of the second period that are not precluded by his own action. Hence,
 his unique rationalizable action plan is to play b, at all histories. We next construct types tj j, with
 approximate kth-order mutual certainty of prisoners' dilemma payoffs who Defect at all histories

 in their unique rationalizable plan. Type tj \ puts probability 1 /2 on each of (dg gPD, l) and

 (^0$ gPD, t i,o, I y Since the other player does not react to the moves of player i and i is certain
 that he plays a prisoner's dilemma game, his unique rationalizable plan is to defect everywhere
 (as he assigns positive probabilities to both moves). Proceeding inductively on k, for any small s

 and k> 1, consider the type tij, who puts probability 1 — e on (dggPD,t-i,k-and probability

 e on (dg gf>D,t-, c\ I J- By the previous argument, type tjj, also defects at all histories as the
 unique rationalizable plan. Moreover, when e is small, there is approximate kth-order mutual
 certainty of prisoner's dilemma. Now for arbitrary k > 1 and small s > 0, consider the type

 that puts probability 1 —e on (os gPD,t-i^-\j and probability s on (oSg{c,c),t-i^c,\^j- He has
 approximate kth-order mutual certainty of the prisoners' dilemma payoffs. Moreover, since his
 opponent does not react to his moves and e is small, his unique rationalizable move at the first
 period is D. In the second period, if he observes that his opponent played D in the first period, he
 becomes sure that they play prisoners ' dilemma and plays D as his unique rationalizable move.
 If he observes that his opponent played C; however, he updates his belief and put probability 1
 on g<c-c> according to which C dominates D. In that case, he too plays C in the second period.
 The types't,^, which are close to common-knowledge types, defect in period 1 and play tit-for-tat

 in period 2. Now consider the nearby types Ijk that put probability 1 — s on {o& gpD,t-i k-\^

 and probability e on (os g(c,c),f_;,c,l)- These types believe that their opponent probably plays
 defection followed by tit-for-tat, so they cooperate in the first period. In the second period, if
 they saw D, they still think they are playing prisoner's dilemma, so they defect. If they saw C,
 they think they are playing g(C'CK so they cooperate. That is, their unique rationalizable action
 is tit-for-tat with cooperation at the initial node.
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 Early literature identified two mechanisms through which a small amount of incomplete
 information can have a large effect: reputation formation (Kreps et al. 1982) and contagion
 (Rubinstein 1989). In reputation formation, one learns about the other players' payoffs from their
 unexpected moves. As in Example 1, our perturbed types in the proof of Proposition 4 generalize
 this idea: they learn not only about the other players' payoffs but also about their own payoffs
 from the other's unexpected moves. Moreover, our perturbations are explicitly constructed using
 a generalized contagion argument. Hence, the perturbations here and in Chen (2012) combine
 the two mechanisms in order to obtain a very strong conclusion: any rationalizable action can be
 made uniquely rationalizable under some perturbation.

 At another level, however, Propositions 4 and 5 make a stronger point than the previous
 reputation and contagion literatures, in the following sense: the existing models mainly rely on
 behavioral commitment types (or "crazy" types) that follow a complete plan of action throughout
 the game, suggesting that nonrobustness may be due to psychological/behavioral concerns that are

 overlooked in game-theoretical analyses. By proving the unrefinable folk theorem while allowing
 uncertainty only about the stage payoffs,7 Propositions 4 and 5 show that informational concerns

 can lead to the nonrobustness results, even without a full range of crazy types.
 Chassang and Takahashi (2011) examine the question of robustness in repeated games from

 an ex ante perspective. That is, following Kajii and Morris (1997), they define an equilibrium as
 robust if approximately the same outcome is possible in a class of elaborations. (An elaboration
 is an incomplete-information game in which each player believes with high probability that the
 original game is being played.) They consider specifically elaborations with serially independent
 types, so that the moves of players do not reveal any information about their payoffs and behavior

 in the future. They obtain a useful one-shot robustness result—to paraphrase, an equilibrium of the
 repeated game is robust if the equilibrium at each stage game, augmented with continuation values,

 is risk-dominant. There are two major distinctions from our work here. First, their perturbations

 are defined from an ex ante perspective, by what players believe before receiving information.
 Ours are from an interim perspective, based on what players believe just before play begins. This

 could be subsequent to receiving information, but our setup does not actually require reference
 to a particular information structure (type space with prior). For more on the distinction between

 these approaches, see our 2007 paper. Second, while they focus on serially independent types,
 whose moves do not reveal any information about future payoffs, the moves of our perturbed
 types reveal information about both their own and the other player's stage-game payoffs, which
 are assumed to be constant over time.

 Some other papers have also restricted attention to perturbations which keep some payoff
 structure common knowledge. In Weinstein and Yildiz (2011), we dealt with nice games, which
 are static games with unidimensional action spaces and strictly concave utility functions. We
 obtained a characterization for sensitivity of Bayesian Nash equilibria in terms of a local version
 of ICR, allowing arbitrary common-knowledge restrictions on payoffs.8 In the same vein, Oury
 and Tercieux (2007) allow arbitrarily small perturbations on payoffs to obtain an equivalence
 between continuous partial implementation in Bayesian Nash equilibria and full implementation
 in rationalizable strategies. Most generally, Penta (2012b) proved a version of the structure
 theorem under arbitrarily given common-knowledge restrictions on payoffs, identifying a set

 7. Of course, this allows for "crazy" types who always play the same action—but not for those who play any more
 complicated plan, say tit-for-tat.

 8. Weinstein and Yildiz (2011) also solve the problem of uncountable action spaces within the important class
 of nice games using a special structure of those games, which is clearly different from the structure in infinite-horizon
 games that allowed our characterization.
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 of actions that can be made uniquely rationalizable by perturbing the interim beliefs under the
 given common knowledge restrictions on payoffs.

 We establish that equilibrium refinements are not upper hemicontinuous, even if one imposes
 common-knowledge restrictions on the payoff structure. This results in the lack of robustness
 above. One may, however, raise the same criticism for unrefined solution concepts, such as
 Bayesian Nash equilibrium and ICR. Extending the results of Dekel Fudenberg, and Morris
 (2007) for finite games to the infinite games we analyze here, we show in Weinstein and Yildiz
 (2012) that ICR is upper hemicontinuous under the usual continuity and compactness properties,
 provided that the space of payoffs can be embedded into a compact metric space. In particular,

 we show that ICR is upper hemicontinuous whenever the payoffs are restricted to be in 0^,
 imposing common knowledge of the repeated-game payoff structure and the discount factor. In
 fact, it suffices for the discount factor to be unknown but bounded away from 1. Therefore, the

 predictions of ICR are robust under the above restriction. This further implies that the unique
 solution for the perturbed types remains robust with respect to further perturbations. We should

 note, however, that the set 0* of all payoff functions in infinite-horizon games is not metrizable
 (or sequentially compact), and so we do not know if ICR is upper hemicontinuous in the entire
 universal type space. We should also note that, while Bayesian Nash equilibrium is not upper
 hemicontinuous in general (by Proposition 1), it is robust with respect to perturbations that assign

 high probability on the unique outcome (as in Proposition 2).

 5. APPLICATION: INCOMPLETE INFORMATION IN BARGAINING

 In a model of bilateral bargaining with complete information, Rubinstein (1982) shows that there
 exists a unique subgame-perfect equilibrium. Subsequent research illustrates that the equilibrium
 result is sensitive to incomplete information. In this section, using Proposition 2, we show
 quite generally that the equilibrium must be highly sensitive: every bargaining outcome can
 be supported as the unique rationalizable outcome for a nearby model.

 We consider Rubinstein's alternating-offer model with finite set of divisions. There are
 two players, A^ = {1,2}, who want to divide a dollar. The set of possible shares is X =
 {0, l/m,2/m,..., 1} for some m> 1. At date 0, Player 1 offers a division (jc, 1 — x), where xeX
 is the share of Player 1 and 1 —x is the share of Player 2. Player 2 decides whether to accept or
 reject the offer. If he accepts, the game ends with division (x, 1 —x). Otherwise, we proceed to
 the next date. At date 1, Player 2 offers a division (y, 1 —y), and Player 1 accepts or rejects the
 offer. In this fashion, players make offers back and forth until an offer is accepted. We denote the

 bargaining outcome by (x, I) if players reach an agreement on division (x, 1 —jc) at date I. In the
 complete-information game, the payoff function is

 0* _ S1 (x, 1 —jc) if the outcome is (x, I)
 ~~ 0 if players never agree

 for some S e (0,1).

 When X = [0,1], in the complete information game G* = (F, jö*), [tCK ($*)},k), there is a
 unique subgame perfect equilibrium, and the bargaining outcome in the unique subgame-perfect
 equilibrium is

 (x*,0) = (l/(l+Ä),0).

 That is, the players immediately agree on division (x*, 1 — x*). When X = {0,1 /m,..., 1} as in
 here, there are more subgame-perfect equilibria due to multiple equilibrium behavior in the case
 of indifference. Nevertheless, the bargaining outcomes of these equilibria all converge to (x*, 0)
 as m-> oo.
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 In contrast with the unique subgame-perfect equilibrium, there is a large multiplicity of
 nonsubgame-perfect Nash equilibria, but these equilibria are ignored as they rely on incredible
 threats or sequentially irrational moves off the path. Building on such nonsubgame-perfect Nash
 equilibria and Proposition 2, the next result shows that each bargaining outcome is the outcome
 of unique rationalizable action plan under some perturbation.

 Proposition 6. For any bargaining outcome (x, I) e X x N and any e > 0, every open neighbor

 hood U of tCK (0*) contains a type profile teU such that

 (1) each t{ has a unique rationalizable action a* in reduced form;
 (2) the bargaining outcome under a* is (x, I); and
 (3) every rationalizable belief oft; assigns at least probability l—s on (x,l).

 Proof We will show that the complete-information game has a Nash equilibrium a* with
 bargaining outcome (x,l). Proposition 2 then establishes the existence of type profile t as in
 the statement of the proposition. Consider the case of even I, at which Player 1 makes an offer;
 the other case is identical. Define a* in reduced-form as

 a*: at any date /' //, offer only (1,0) and reject all the offers; offer (x, 1 —x) at date /;

 a|: at any date /' //, offer only (0,1) and reject all the offers; accept only (x, 1 —x) at I.
 It is clear that a* is a Nash equilibrium, and the bargaining outcome under a* is (x, /). ||

 That is, for every bargaining outcome (x, /), one can introduce a small amount of incomplete
 information in such a way that the resulting type profile has a unique rationalizable action profile

 and it leads to the bargaining outcome (je, I). Moreover, in the perturbed type profile, players are all

 nearly certain that (x, I) will be realized. Unlike in the case of nonsubgame-perfect equilibria, one
 cannot rule out these outcomes by refinement because there is a unique rationalizable outcome. In
 order to rule out these outcomes, one either needs to introduce irrational behavior or rule out the

 information structure that leads to the perturbed type profile by fiat (as he cannot rule out these

 structures by observation of finite-order beliefs without ruling out the original model). Therefore,

 despite the unique subgame-perfect outcome in the original model, and despite the fact that this
 outcome has generated many important and intuitive insights, one cannot make any prediction on
 the outcome without introducing irrational behavior or making informational assumptions that
 cannot be verified by observing finite-order beliefs.

 The existing literature already illustrates that the subgame-perfect equilibrium is sensitive to
 incomplete information. For example, for high <5, the literature on the Coase conjecture establishes

 that if one party has a private information about his own valuation, then he gets everything—in
 contrast to the nearly equal sharing in the complete information game. This further leads to delay

 due to reputation formation in bargaining with two-sided incomplete information on payoffs
 (Abreu and Gul 2000) or on players' second-order beliefs (Feinberg and Skrzypacz 2005).

 Proposition 6 differs from these results in many ways. The first difference is in the scope of
 sensitivity: while the existing results show that another outcome may occur under a perturbation,

 Proposition 6 shows that any outcome can be supported by a perturbation. The second difference
 is in the solution concept: while the existing result show sensitivity with respect to a sequential
 equilibrium or all sequential equilibria, there is a unique rationalizable outcome in Proposition
 6, ruling out reinstating the original outcome by a refinement. Third, the existing results
 often consider the limit <5-»0, which is already a point of discontinuity for the complete
 information model. In contrast, 5 is fixed in Proposition 6. Finally, existing results consider simple
 perturbations, and these perturbations may correspond the specification of economic parameters,
 such as valuation, or may be commitment types. In contrast, given the generality of the results,
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 the types constructed in our article are complicated, and it is not easy to interpret how they are
 related to the economic parameters. (In specific examples, the same results could be obtained
 using simple types that correspond to economic parameters, as in Izmalkov and Yildiz (2010)).

 6. INFORMATION AND SEQUENTIAL RATIONALITY

 We have discussed earlier that when analyzing robustness, one may want to consider only
 perturbations which retain some structural common-knowledge assumptions, such as the additive

 payoff structure in a repeated game, or the fact that a player knows the true value of a certain
 parameter. When the set of possible payoff functions is the same from the point of view of
 every player, our formalism suffices for this. If each player may have his own information, and
 furthermore this information (unlike mere beliefs) is never doubted even when probability-zero
 events occur, a slightly different setup, introduced by Penta (2012a), is necessary. This setup
 is needed, for instance, to analyze a case in which it is common knowledge that players know
 (and never doubt) their own utility functions. When the underlying set of payoff parameters is
 sufficiently rich (e.g. when all possible payoff functions are available as in our model above),
 retaining such assumptions does not lead to any change, and the original characterization in
 Proposition 1 remains intact. In restricted parameter sets, retaining the informational assumption

 may lead to somewhat sharper predictions. For example, in private value environments, this
 allows one round of elimination of weakly dominated actions in addition to rationalizability. In
 this section, building on an extension of the result of Penta (2012a) to infinite horizon games,
 we will extend our results to Penta's setup. Note also that Penta's framework is related to that of
 Battigalli and Siniscalchi (2003), who introduced a version of rationalizability for extensive-form
 games which allowed for restrictions on players' beliefs about their opponents' behavior.

 Consider a compact set C = Co x C\ x • • • x Cn of payoff parameters c = (co, c\,..., c„) where
 the underlying payoff functions 0 depends on the payoff parameters c: 0—f(c) for some
 continuous and one-to-one mapping/: C-* ©*. We will assume it is a common knowledge that
 0 lies in the subspace/(C) ç 0*. It will also be assumed to be a common knowledge throughout
 the section that the true value of the parameter c, is known by player i. For any type f/, we will
 write Ci(ti) for the true value of c/, which is known by f/. Note that this formulation subsumes
 our model above, by simply letting Ci,...,Cn be trivial (singletons) so that 0* = Co- We will
 write Tc* C T* for the subspace of the universal type space in which it is common knowledge
 that 6 ef(C) and each player i knows the true value of c/. As in Penta (2012a), we will restrict
 perturbations to lie in Tc*. Following Penta, we will further focus on multistage games in which
 all previous moves are publicly observable.

 A conjecture of a player i is a conditional probability system m = (ßi,h)heH that is consistent
 with Bayes' rule (on positive probability events), where /tx/^ e A (Co x r_, x A_,) for each heH.
 Here, it is implicitly assumed that it remains common knowledge throughout the game that
 (ci,...,c„) = (ci(fi),...,c„(?„)). In particular, player i assigns probability 1 to c,-(f,-) throughout
 the game. For each conjecture m of type f/, we write SBR,(/x,|;,) for the set of actions a;6/4/
 that remain a best response to /i, at all information sets that are not precluded by a,-; we refer
 to cneSBRi(ni\ti) as a sequential best response. A solution concept £/ :// m>- E,[f,] ÇA/, ieN, is
 said to have the sequential best-reply property if and only if for each f/ and for each a/ € E/[f;],

 there exists a conjecture /x,- of t, such that a, eSBRjiß^ti), the beliefs about (9,t-i) according
 to ßit0 agree with ku and /i/i0(a_/€E_/[f-/]) = l, where 0 denotes the initial node of the
 game. We define ISR, denoted by ISR°°, as the largest solution concept that has the sequential
 best-reply property. In finite games, this is equivalent to the result of a iterative elimination
 process similar to iterative elimination of strictly dominated actions (see Penta (2012a) for that
 alternative definition). Note that ISR differs from ICR only in requiring sequential rationality,
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 rather than normal-form rationality. The only restriction here comes from the common knowledge

 assumption that the player i does not change his belief about c,-, since the player's conjectures
 off the path are otherwise unrestricted. The resulting solution concept is relatively weak (e.g.
 weaker than extensive form rationalizability) and equal to ICR in rich environments.9 We use the
 following richness assumption of Penta (2012a).

 Assumption 1. For every a; e A,- there exists ca' such that at conditionally dominant under ca',
 i.e., at every history that is consistent with au following a; is better than deviating from au

 Lemma 2 (Penta (2012a)) Under Assumption 1, for any finite-horizon multistage game
 (r,©,7>) with ® Cf (C), for any type ti eTi of any player i 6 N, any ISR action at e ISRf0 [/,■]
 ofti, and any neighborhood Ui ofhi(t{) in the universal type space T*, there exists a hierarchy

 hi (ti) e Ui fi Tf*, such that for each a - e ISRf° [?/], a- is equivalent to ai.

 Note that the above model maintains two common-knowledge assumptions throughout the
 perturbations: (1) each player i assigns probability one on the true value of c; (in defining
 the interim beliefs at the beginning of the game); and (2) the players never doubt this fact
 throughout the play of the game (in defining the conjectures ß). Lemma 2 establishes that,
 under Assumption 1, maintaining the common knowledge of (1) has no bite because ISR is equal
 to ICR in static games. It also establishes, however, that maintaining common knowledge of (2)
 leads to potentially sharper predictions in dynamic games, as ISR may be a strict refinement of
 ICR in such games. The next result extends Penta's result to infinite horizon games.

 Proposition 7. Under Assumption 1, consider any multistage game (T,@,T,k) that is
 continuous at infinity and 0C/(C) is such that each 9=f(c)e& is in the interior of
 /(C0x{(ci c„)}). For any type ti eTi of any player i e N, any ISR action atelSRf0 [r,] ofti,
 any neighborhood Ui ofhi(ti) in the universal type space T*, and any L, there exists a hierarchy

 hi (ti) e Ui D Tf*, such that for each a- e ISRf° [?,], a- is L-equivalent to a,-, and ti is a type in
 some finite, common-prior model.

 Proposition 7 extends Lemma 2 to infinite-horizon games, with the requirement that 9 is in
 the interior of /(Co x (cj,..., <:„)), i.e., one can make slight payoff perturbations in payoffs by
 changing co alone. This is required only for uniformly small perturbations, in that there exists

 e > 0 such that if \6 (z) — 9' (z) | < s for all z € Z, then there exists a c'a that leads to 9' instead of
 9.l0 Roughly speaking, Proposition 7 characterizes the robust prediction of common knowledge
 of sequential rationality and the informational assumptions, such as the true value of each c, is
 known by player i, who never updates his beliefs regarding a. These are the predictions that
 can be made by ISR alone. One cannot obtain a sharper robust prediction than those of ISR
 by considering its refinements, even if one is willing to retain common knowledge assumptions
 regarding players' information.

 Using Proposition 7, one can also extend our other results to this framework. Here, we will

 only formally present the extension of Corollary 1, our structure theorem for equilibrium in the
 case of complete information; the proof is relegated to the Appendix.

 9. For example, ISR is equal to ICR if for every a, and c,, there exists (co,c_,) such that a, is conditionally
 dominant under (co, c,-, c_,) (cf. Assumption 1). ISR is equal to ICR also when no player has any information. See Penta
 (2012a) for further details.

 10. While this assumption rules out pure private value environments in which | Co | = 1, it allows approximate private

 value environments in which the players know their payoff functions up to an arbitrarily small error e.
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 Proposition8. Under Assumption 1, let (f, (0*}, [t(K (#*)},k) be a multistage complete
 information game that is continuous at infinity, with 6* =/(c*) e 0 in the interior of
 /(C0 x{(cj\...,c*)}). Let also a* eISR°°[tCK (0*)] be a Nash equilibrium of this game. Then,
 for any ieN,forany L < oc, for any neighborhood Uj ofhiitfK (0*)) in the universal type space

 T*, and any s > 0, there exists a hierarchy hi (?,•) e t/,- D Tf*, such that for every ISR belief it ofti,

 (1) aj e ISR^° [?,] iff at is L-equi valent to a*;
 (2) Pr(z(a*) \7t,a*) > 1 — e; and
 (3) \E[uj(9,a)\7T,a*] — Uj{9*,a*)\<e for all jeN.

 Like Proposition 4, this result remains silent for the tail behavior, establishing uniqueness
 of ISR only up to an arbitrary finite horizon. The result is stronger than Corollary 1, in that the

 perturbed types are in Tf*, retaining common knowledge of informational assumptions. Note that
 the result also assumes that a* is ISR, putting a weak restriction on equilibrium. Since subgame
 perfect equilibria of a repeated game are ISR, the unrefinable folk theorem in Proposition 3 also
 extends to the current setup.

 7. CONCLUSION

 In economic models there are often a multitude of equilibria. This problem is especially acute in
 infinite-horizon games, such as repeated games, in which the folk theorem applies, establishing
 that any feasible payoff vector can be supported by an equilibrium. In response to such multiplicity,

 economists often focus on refinements. In this article, we develop a structure theorem for infinite

 horizon games that can be readily used in applications. Our result establishes that without any
 common-knowledge assumption regarding payoffs and information structure, one cannot obtain
 any robust prediction that is not implied by Bayesian Nash equilibrium alone. As an application,
 we prove an unrefinable folk theorem, showing that no feasible payoff vector can be excluded
 if there is noise in our knowledge of players' beliefs. Our construction allows uncertainty only
 about the stage payoffs. This shows that, even without the large set of commitment types used in
 the reputation literature, the uncertainty behind the structure theorem can operate with full force.

 APPENDIX A. PROOF OF PROPOSITION 1

 A.l. Preliminaries

 We start by describing some notation we use in the appendix.

 Notation 1. For any belief it 6 A (0 xA_,) and action a,- and for any history h, write E[-\h,ai,n]for the expectation

 operator induced by action a, and n conditional on reaching history h. For any strategy profile s:T^A and any type ti,
 we write n{-\ti,S-i) € A(© x T-,■ x A_,) for the beliefinduced by ti ands-i. Given any functions f:W -+X and g:Y ->Z,

 we write (f,g)~[ for the preimage of the mapping (w,y)h+ (f(w),g(y)).

 We now define some basic concepts and present some preliminary results. By a Bayesian game in normal form,
 we mean a tuple (N,A,u,&,T,k) where N is the set of players, A is the set of action profiles, (&,T,ic) is a model, and
 u : © x A -» [0,1 ]" is the payoff function. We will also define some auxiliary Bayesian games with different action spaces,

 payoff functions, and parameter spaces. For any G = (N ,A,u,&,T. k), we say that a, and a\ are G-equivalent if

 u(6,aj,a-i) = u(9,a'j,a-i) (V0 € 0, a_; 6 A_,).

 By a reduced-form game, we mean a game G« = (N,A.u, 0. T,k) where A, contains one representative action from each
 G-equivalence class for each i. Rationalizability depends only on the reduced form.
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 Lemma 3. Given any game G and a reduced form Gr for G, for any type the set Sf [/,-1 of rationalizable actions in
 G is the set of all actions that are G-equivalent to some rationalizable action oft; in Gr.

 The lemma follows from the fact that in the elimination process, all members of an equivalence class are eliminated

 at the same time; i.e. one eliminates, at each stage, a union of equivalence classes. It implies the following isomorphism

 for rationalizability.

 Lemma 4. LetG = (N,A,u, ®,T,K)andG' = (N,A',u ,&,T',k) be Bayesian games in normal form, ß, :A; -»Aj, ieN,
 be onto mappings, and (p :&-*&and ieN, be bijections. Assume (1) Krj(ti)=Ktio(<p,X-i)~ for all tj and
 (2) u' (<p(6),ß(a)) = u(9,a) for all (6, a). Then, for any tand a;,

 a,€5?°M (A.l)

 Note that the bijections <p and r are a renaming, and (1) ensures that the beliefs do not change under the renaming.

 On the other hand, ß-, can map many actions to one action, but (2) ensures that all those actions are G-equivalent. The

 lemma concludes that rationalizability is invariant to such a transformation.

 Proof First note that (2) implies that for any a,, a[ eA;,

 ai is G-equivalent to aj <=> ß, (a,-) is G'-equivalent to ß, (a-). (A.2)

 In particular, if ßi(ai)=ßi(a'i), then a, is G-equivalent to a'r Hence, there exists a reduced-form game Gr =
 (N,À,u,Q,T,k) for G, such that ß is a bijection on A, which is formed by picking a unique representative from each

 ß~l(ß(a)). Then, by (A.2) again, G'R = (N,ß(Ä),0',7",k) is a reduced form for G'.11 Note that Gr and G'R are
 isomorphic up to the renaming of actions, parameters, and types by ß, <p, and t, respectively. Therefore, for any a\ eA,

 and ti, a!i is rationalizable for in Gr iff (aj) is rationalizable for r,- (/,) in G'R. Then, Lemma 3 and (A.2) immediately
 yields (A.l). ||

 We will also apply a Lemma from Mertens-Zamir (1985) stating that the mapping from types in any type space to
 their hierarchies is continuous, provided the belief mapping k defining the type space is continuous.

 Lemma 5 (Mertens and Zamir 1985) Let (B,T.k) be any model, endowed with any topology, such that 0 x T is

 compact and Ktj is a continuous function oftj. Then, h is continuous.

 A.2. Truncated and virtually truncated games

 We now formally introduce an equivalence between finitely truncated games and payoff functions that implicitly assume

 such a truncation. For any positive integer m, define a truncated extensive game form Tm = (N,Hm, (X,)ie/v) by

 Hm = {hm\heH\.

 The set of terminal histories in Hm is

 Zm = {zm\zeZ}.
 We define

 0m = ([O,l]2™)

 as the set of payoff functions for truncated game forms. Since Zm is not necessarily a subset of Z, @m is not necessarily
 a subset of 0*. We will now embed 0m into 0* through an isomorphism to a subset of 0*. Define the subset

 êm = je g 0*\e {h) =6 (À) for all h and h with hm = hm}.

 This is the set of payoff functions for which moves after period m are irrelevant. Games with such payoffs are nominally

 infinite but inherently finite, so we refer to them as "virtually truncated." We formalize this via the isomorphism <pm \

 &m —► 0m defined by setting

 <pmmh) = e(hm) (A3)
 for all 8 6 0m and heZ, where hm e Hm is the truncation of h at length m. Clearly, under the product topologies, <pm is an

 isomorphism, in the sense that it is one-to-one, onto, and both <pm and ip~l are continuous. For each a, eAj, let a" be the

 restriction of action a, to the histories with length less than or equal to m. The set of actions in the truncated game form

 isA™ = {a™|a,-6Aj}.

 11. Proof Since fi; is onto, A'—m (Ai). Moreover, for any /x, (a, ) e/lj, there exists a\ 6/4, that is G-equivalent to
 a,-. By (A.2), is G'-equivalent to
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 Lemma 6. Ut G = (T,®,T,k) and Gm = (T be such that (1) 0"C0™, (2) @=<pm(@m), and (3) T,=

 zm for some bijection r™ and such that =K,m o(<pm,T™ ) ' for each tf e T™. Then, the set of rationalizable
 actions are m-equivalent in G and Gm :

 Proof In Lemma 4, take <p = (p~1, t, = (rf) and We only need to check that um(y>~1 (9),am) — u(9,a)
 for all (9,a) where um denotes the utility function in the truncated game Gm. Indeed, writing zm (am) for the outcome of
 am in G"', we obtain

 u"(<p-l(9),am) = <p-\9)(zm(am))=<p-n\9){z(a)m)

 = <Pm {<Pm1 (e>) (z (")) = I0 (z (a)) = » (0. a).

 Here, the first and the last equalities are by definition; the second equality is by definition of am, and the third equality is

 by definition (A.3) of <pm. ||

 Let T*m be the 0m-based universal type space, which is the universal type space generated by the truncated extensive

 game form. This space is distinct from the universal type space, T*, for the original infinite-horizon extensive form. We

 will now define an embedding between the two type spaces, which will be continuous and one-to-one and preserve the
 rationalizable actions in the sense of Lemma 6.

 Lemma 7. For any m, there exists a continuous, one-to-one mapping Tm : T*m —► T* with rm (t) — (rj" (ti ),..., r™ (f„))
 such that for all i € N and t; 6 T*m,

 (1) tj is a hierarchy for a type from a finite model if and only if r" (t,) is a hierarchy for a type from a finite model;

 (2) tj is a hierarchy for a type from a common-prior model if and only if r"(/,) is a hierarchy for a type from a
 common-prior model; and

 (3) for all ah a-, 6 Sf° [r,m (/,)] if and only if a™ 6 S°° [(,].

 Proof Since T*'" and T* do not have any redundant types, by the analysis of Mertens and Zamir (1985), there exists a
 continuous and one-to-one mapping xm such that

 •)=*',(A.4)

 for all i and f, 6 7"*"". '2 First two statements immediately follow from (A.4). Part 3 follows from (A.4) and Lemma 6. ||

 In Weinstein and Yildiz (2007), we proved a version of Proposition 1 for finite action games. We used a richness
 assumption on 0* that is natural for static games but rules out fixing a dynamic extensive game form. Chen (2012) has
 proven this result for finite dynamic games, under a weaker richness assumption that is satisfied in our formulation. Our

 proof of Proposition 1 will take advantage of these earlier results. In particular, we will use this lemma, which is implied

 by Chen's theorem.

 Lemma 8 (Weinstein and Yildiz 2007 and Chen 2012) For any finite-horizon game (r, 0, T, k), for any type r, 6 T, of

 any player i 6 N, any rationalizable action a, eSflr,] o/f;, and any neighborhood (/, ofh:(t, ) in the universal type space

 r, there exists a hierarchy hi (ti) e U, such that for each a- 6 SJ° [(,], a\ is equivalent to a,, and is a type in some finite,
 common-prior model.

 We will prove the proposition in several steps.

 Step 1. Fix any positive integer m. We will construct a perturbed incomplete information game with an enriched type

 space and truncated time horizon at m under which each rationalizable action of each original type remains rationalizable

 for some perturbed type. For each rationalizable action a, e Sf° [//], let

 X[a,-,f,] = {a;€Sf°[fj]|aJ is m-equivalent to a, }

 12. If one writes f, = (fand = (f/).*,™'2 (<?).•••) as a hierarchies, we define r™ inductively by

 setting r,m-' op-' and T,m'*(ff) = rf o(<pm,z™;' r™;*-1)
 v-i

 for k > 1.
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 and pick a representative action rti (a,) from each set X[a;,r,]. We will consider the type space tm = f[" x • ■ ■ x with

 = j (f(, (a,-), m) IU € r„a, e S,00 [/,]}.

 Note that each type here has two dimensions, one corresponding to the original type the second corresponding to an
 action. Note also that Tm is finite because there are finitely many equivalence classes X[cijallowing only finitely

 many representative actions rti {ai). Toward defining the beliefs, recall that for each (u,rtl (a,), m), since rti (a,) e Sf° [r,-],

 there exists a belief n'hr' i(ai> e A (0x r_, xA_,-) under which rtj (a,-) is a best reply for?/ and marge xT-iOf,i'r'1 )=*"(,■ •

 Define a mapping 4>ti.r,j (a,).m '■ ©* -* ®* between the payoff functions by setting

 („),». (0) (h) = £ [e (Ä) , r„ (a,), tt'"".<«>] (A.5)
 at each 9 e 0* and heZ. Define a joint mapping

 0f;, rf. (ai), m '• (ß it— /)ö—i) H-> (fiif ,r;. (a,),m (0)t(^—/»Tif_, (ß—/), f (A.6)

 on tuples for which a_; eS^[f_;]. We define the belief of each type (f,, r,; (a;),m) by

 Kti,rti(ai),m = (A.7)

 Note that Ktur,.(ai),m has a natural meaning. Imagine a type /, who wants to play r(j(a,) under a belief about
 (6,t-i,a-i). Suppose he assumes that payoffs are fixed as if after m the continuation will be according to him playing

 rtj (aj) and the others playing according to what is implied by his belief 7r'',r'i(ai>. Now he considers the outcome paths
 up to length m in conjunction with (0,/_,). His belief is then Arr,-,rr.(aj)-'n- Let &m = Ull,ri.(ai)<t>li,r,.(ai),m(®)- The perturbed

 model is (&n,Tm,Kj. We write Gm = (r,@m,fm,k^J for the resulting "virtually truncated" Bayesian game.

 Step 2. For each /, and a, eS?°[r,], the hierarchies (a;),w) converge to A,('i)
 00

 Proof. Let 7-00 = (^J 7™ U 7' be a type space with beliefs as in each component of the union, and topology defined by
 m= 1

 the basic open sets being singletons (a,),m)} together with sets {(tj,rtj :ai €Sf°[fi],»t>/fc}U{f/} for each
 f; 6 T and integer k. That is, the topology is almost discrete, except that there is nontrivial convergence of sequences

 (ti,rn (a,).m) —► Since f°° is compact under this topology. Lemma 5 will now give the desired result, once we prove
 that the map k from types to beliefs is continuous. This continuity is the substance of the proof—if not for the need to

 prove this, our definition of the topology would have made the result true by fiat.

 At types (ti,rtj the topology is discrete and continuity is trivial, so it suffices to shows continuity at types

 Since © is finite, by continuity at infinity, for any £ we can pick an m such that for all 6 6 0,10,- (ä) — 0;(Ä)| <e whenever
 hm = hm. Hence, by (A.5),

 |<fc(,r,,(«),m(0)(/»)-0(A)| = I £■ [ö (Â) I (a,) , TT " •(a' > ] - 0 (/2) I

 < £[|0(ä) -0(A)11hm=hm.rti (at), <e.
 Thus, 8(h) for each h, showing that From the definition (A.6) we see that this

 implies ip,.,r,. (a,■ ),m (0. t-i, a_,) -* (9,t-i) asm-*- oo. (Recall that (a_,),m) -+f_,-.) Therefore, by (A.7), as m -*■ oo,

 (ait.m <"') °Pro./®x ?■_, = marg0x 7"-, = K<i •
 which is the desired result.

 Step 3. The strategy profile s* :Tm->-A with sj (/,,rtj (a,),m) = r(|. (a,) is a Bayesian Nash equilibrium in Gm.
 Proof. Toward defining the belief of a type (tj,rti (a,).m) under s* define mapping

 Y : (0, <-i, ru, (a-i), m) i-> (0, f_(, r,_, (a_,), m, r,_. (a_,-)),

 which describes j* ;. Then, given s* ^ his beliefs about 0 x r_; xA_(- is

 TT (■ |tf, r„ (ai) (a,),m ° K_1 =Jr",r''(a,) oy"1.

 where the second equality is by (A.7). His induced belief about 0xA_, is

 marë0XA^{-\ti,r,i(ai),m,s*_i) = (ai)(a.hmoy~l oproj^^A i.

 = (0,,,r,.(ûl.),m,r_i)~' (A.8)
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 where r_; : a_,) r,_{ (a_,). To see this, note that

 projQxA-, OY°4>H.rH= (#.'-!> O-i) >">■ (<#>(,.r,f (a,),m (Ö), 0_; («_,')) •

 Now consider any deviation aj such that a'l (h) = rt[ (a,) (A) for every history longer than m. It suffices to focus on such
 deviations because the moves after length m are payoff-irrelevant under ©m by (A.5). The expected payoff vector from

 any such at is

 E [h (8, a-, si,-)\Kti,rtj (</>,,-,r,, (0), aj, rt_,. (a_,)) |7r'i,r''(<,,)]

 = £ (Wo,- <a,),m (Ö) (z (aj, r,_, (a-,))) |7r'"r'.(ûi) J

 = E[E[e(z(a'i,r,_, (a_,)))|z(aj,r,_, (a_;))ra,r„ («,), jr'"r'<<<">] 1**^<<*>]

 = £[e(z(a;,r,.i(a_i)))|^'-r'.(a'>],
 where the first equality is by (A.8); the second equality is by definition of u; the third equality is by definition of (ai).m,

 which is (A.5); the fourth equality is by the fact that a, is equal to rti (a,) conditional on history z(a'i,r,_j (a_,))'". and the
 fifth equality is by the law of iterated expectations. Hence, for any such a-,

 E[«; (e,rti (ai),s*i) k,„r,.j = E[fl,- (z(rtl (a,),r,_; (a_,-)))|jr'"r'.

 > E |^0; (z(a-,/",_j (a_;))) |7r''"r'> j

 where the inequality is by the fact that rfj (a,-) is a best reply to 7i'',r'^a'\ by definition of Therefore, r,. (a,) is a

 best reply for type (*,-,/>, (a,),m), and hence s* is a Bayesian Nash equilibrium.

 Step 4. Referring back to the statement of the proposition, by Step 2, pick m, and a; such that m>L and
 hi{(ti,rtl (a,),/n))e £/;. By Step 3, a, is rationalizable for type (r,-,rfl.

 Proof. Since hi((ti,rtj {ai),m))-> hi(ti) and (/; is an open neighborhood of hi((ti,rti (a,),m))e t/,- for sufficiently
 large m. Hence, we can pick m as in the statement. Moreover, by Step 3, rti (a,-) is rationalizable for type (tj,rti
 (because it is played in an equilibrium). This implies also that a; is rationalizable for type (tj,rn (a/),m), because m
 equivalent actions are payoff-equivalent for type (a,),m).

 The remaining steps will show that a further perturbation makes a, uniquely rationalizable.

 Step 5. Define hierarchy ft; (?,-) e T*m for the finite-horizon game form rm by

 hi(tj) = (if)-' (hi{(ti,ru(at),m))),

 where rf is as defined in Lemma 7 of Section 7. Type ?,- comes from a finite game Gm = (Tm,®m,Tm,K) and a™ e Sf° [7,].

 Proof. By Lemma 7, since type r/;(a,),m) is from a finite model, so is 7/. Since a,- is rationalizable for type
 ,m), by Lemma 7, a™ is rationalizable for h; (7,) and hence for type 7, in Gra.

 Step 6. By Step 5 and Lemma 8, there exists a hierarchy ft, (7J") in open neighborhood (if) 1 (£/,) of A; (7;) such that

 each element of 5?° [7f ] is m-equivalent to a™, and 7™ is a type in a finite, common-prior model.

 Proof: By the definition of ft; (7;) in Step 5, ft; (7,) e (if )"' (I/,-). Since [/,- is open and rf is continuous, (rf ) (t/,)
 is open. Moreover, 7; comes from a finite game, and a" is rationalizable for 7;. Therefore, by Lemma 8, there exists a

 hierarchy ft, (7[") in (rf ) 1 (£/,■) as in the statement above.
 Please note that the unique ICR action in this perturbation will be robust to further small perturbations, just as in the

 original structure theorem of Weinstein and Yildiz (2007), so long as we confine attention to the truncated game form Vm,

 since here the game is finite and the results of Dekel, Fudenberg, and Morris (2007) apply. However, once we apply the
 following step to pull back the constructed type to lie in the original, infinite game-form, this statement is known to be true

 only for perturbations that retain common knowledge of ©"'. The statement is not necessarily true for the perturbations

 that lie outside the image of the embedding.

 Step 7. Define the hierarchy hi (?,) by

 The conclusion of the proposition is satisfied by tj.
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 Proof. Since A; (ff") 6 (r™) ' (Uj),

 hi(?,■) = rf (hi(?f))6t™((rD-1 (C/y)) ç Uh

 Since /[" is a type from a finite, common-prior model, by Lemma 7, "t, can also be picked from a finite, common-prior

 model. Finally, take any â, eS°°[?,]. By Lemma 7, Hence, by Step 6, â™ is m-equivalent to a™. It then
 follows that a, is m-equivalent to a, . Since m > L, a,- is also L-equivalent to a,-.

 APPENDIX B. PROOF OF PROPOSITION 2

 Using Proposition 1, we first establish that every action can be made rationalizable for some type. This extends the

 lemma of Chen from equivalence at histories of bounded length to equivalence at histories of unbounded length.

 Lemma 9. For all plans of action a,-, there is a type t"' of player i such that at is the unique rationalizable action plan
 for ta', up to reduced-form equivalence.

 Proof The set of nonterminal histories is countable, as each of them has finite length. Index the set of histories where it

 is i"s move and the history thus far is consistent with a, as {h(k):keZ+}. By Proposition 1, for each k there is a type tk_i
 whose rationalizable actions are always consistent with history h(k). We construct type t"' as follows: his belief about

 t-i assigns probability 2~k to type ttt. His belief about 8 is a point-mass on the function 6ai, defined as 1 if all of i's
 actions were consistent with a, and 1 — 2~k if his first inconsistent move was at history h(k). Now, if type f' plays action

 a, he receives a certain payoff of 1. If his plan bl is not reduced-form equivalent to a, , let h(k) be the shortest history in

 the set [h(k)\k e Z+j where b,(h(k) )^a,(h(k)). By construction, there is probability at least 2~k of reaching this history

 if he believes the other player's action is rationalizable, so his expected payoff is at most 1 — 2~2k. This completes the
 proof. ||

 Proof of Proposition 2. We first show that (A) implies (B). Assume that s* is a Bayesian Nash equilibrium of G. Construct
 a family of types Tj(tj,m,X),j eN, tj eTj, me N, X e [0,1], as follows

 T(U) = tW,

 "rj(,j.m.X) = •*■**;(/,) +0-Vßtj.m.X Vm> 0
 where

 ßij.m,)i (0, *-j (t-j,m-l,X)) = k,j (9, t-j) V(e,t-j)e@x T-j.
 For large m and small X, ij{tj,m.X) satisfies all the properties of?,, as we establish below.

 Now, we use mathematical induction on m to show that for all X > 0 and for all m and tj,ajeSj° [r, (tj,m,à)] if and
 only if aj is equivalent to s" (tj), establishing the first conclusion in (B). This statement is true for m=0 by definition

 of Tj(tj,0,X) and Lemma 9. Now assume that it is true up to some m — 1. Consider any rationalizable belief of any type

 Zj(tj,m,X). With probability X, his belief is the same as that of tsi ''K By definition, s* (tj) is the unique best response to
 this belief in reduced form actions. With probability l—X, his belief on 0* xA-j is the same as the equilibrium belief of

 tj on 0* x A-j. The action sj (tj) is also a best reply to this belief because i* is a Bayesian Nash equilibrium in the original

 game. Therefore, s* (tj) is the unique best response to the rationalizable belief of type Tj (tj,m,X) in reduced form. Since

 type tj(tj,m,X) and his rationalizable belief are picked arbitrarily, this proves the statement.

 Note that by the preceding paragraph, for any X > 0 and m > 0, Tj (tj,m,X) has a unique rationalizable belief

 n(tj,m,X) = KXj(ljtmX)OY~lk
 where

 Yj.m.k : (8, h-j (t-j,m,X)) i->- (ö,h-j (t-j,m,X),s*_j (t-j)J.
 Here, the mapping Yj.m. 't. corresponds to the fact that the newly constructed types play according to the equilibrium strategy

 of the original types. We leave the actions of the other types unassigned as their actions are not relevant for our proof.

 For X = 0, we define n (tj,m,X) by the same equation, although the type Tj (tj,m,X) may also have other rationalizable
 beliefs.

 In order to show that for large m and small X, the beliefs of tj(tj,m,X) are as in the proposition, note that for À = 0,

 the mth-order belief of Tj (tj.m.O) is equal to the mth-order belief of tj. Hence, as m—► oo, hj(Tj (tj,m,0)) —► hj(tj) for
 each j. Consequently, for eachj, as m—> oo, n(tj.m.O) converges to

 n*j=K'i°(yjr) withy*:(e't-j)i^{9't-j's-j(t-j))
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 Note that n*. is the equilibrium belief of type tj under s*. Therefore, there exists m > 0 such that fc;(T,(r,,m,0))e Ut and

 jt ft'.m.O) 6 V,. Moreover, for/eiV, m<m, and À 6 [0,1], beliefs of tj (tj,m,0) are continuous in A. Hence, by Lemma 5,13

 for each tj, as X —> 0, hj (ij (tj, in, X) ) -> hj (z) (tj ,ih, 0) ) and (thereby) n (tj,m,X)^m (tj,m,0). Thus, there exists X > 0 such

 that hj(tj(ti,m,X)) e Ui and n(ti,m,X) e V,. Therefore, the type f; = T;(r,',m,X) satisfies all the properties in (B).
 In order to show the converse (i.e. that (B) implies (A)), take any type /, and assume (B). Then, there exists a sequence

 of types ?, (m) with unique rationalizable beliefs nmeA (©* x T*t x A-j) and unique rationalizable action s* (tj) where Am

 converges to the belief 7r(* of type r, under s*. Since s*(f;)€Sf°[?;(m)], 5I*(f,)6ßR^marg0«xA for each m. Since

 ut is continuous and 3rm->7r(*. together with the Maximum Theorem, this implies that s*(ti)eBR(marge.X/4 iJr*j,
 showing that s* (/,) is a best reply to .s*, for type Since tj is arbitrary, this proves that s* is a Bayesian Nash
 equilibrium. ||

 APPENDIX C. PROOF OF PROPOSITION 4

 CK(&*)
 We write Ti for the set of types of player i according to which it is common knowledge that 9 e ©j, i.e. that

 we are playing a repeated game with discount factor S. In order to harness our previous constructions, in Lemma 11 we
 CK ( 0* ^

 will construct, for every possible plan a, and finite time horizon L, a type in Ti for which all rationalizable plans
 are L-equivalent to a,. These types then play the role that dominant-action types would play in richer environments. Our
 first step toward this, Lemma 10, constructs types who do not believe the other player's actions ever affect them directly,

 but who find others' actions informative about their own payoffs. They are further constructed so as to always choose the

 "myopic" action, optimizing the expected payoff in the current period. This construction will not work on all plans, but
 only on those satisfying this version of the sure-thing principle.

 Definition 1. A plan ai is said to be sure-thing compliant if and only if there is no partial history h and move bi eBj
 such that ai(h,(ai(h),b-i)) = bi for every b~i but ai(h)^=bj.

 In other words, a plan is sure-thing compliant if whenever the player plays bi in all possible continuations next period,

 he also plays bj this period. This is of course equivalent to the sure-thing principle of Savage if the player has the same

 preferences over his moves in both periods. Given that, in our construction in the next proof, player i is actually facing a

 single-player decision problem with unknown payoffs, it is not hard to see that this particular construction can only work
 for sure-thing compliant plans. Of course the necessity of the condition is not relevant to later results, and our further
 construction in Lemma 11 extends the result to all plans.

 Lemma 10. For any <5, any L, and any sure-thing compliant action plan ai, there exists a type ta'-L e Tf ' ~s^for which
 all rationalizable plans are L-equivalent to a,-.

 Proof We will induct on L. When L= 1, it suffices to consider a type t"''1 who is certain that in the stage game, a,(0)
 yields payoff 1 while all other actions yield payoff 0. Now fix L,a, and assume the result is true for all players and for

 L— 1. In outline: the type we construct will have payoffs which are completely insensitive to the actions of the other

 players, but will find those actions informative about his own payoffs. He also will believe that if he ever deviates from
 at, the other players' subsequent actions are uninformative — this ensures that he always chooses the myopically best
 action.

 Formally: let H be the set of histories of length L-1 in which player / always follows the plan a,-, so that |Ä| = |ß_;\L~1,

 where B_; is the set of profiles of static moves for the other players. For each history heH, we construct a pair (th_l,9h),

 and our constructed type t"'-L assigns equal weight to each of |B_, \L~1 such pairs. Each type th_i is constructed by applying

 the inductive hypothesis to a plan ah_i which plays according to history h so long as i follows a,, and simply repeats the
 previous move forever if player i deviates. Such plans are sure-thing compliant for the player(s) —i because at every

 history, the current action is repeated on at least one branch.

 To define the payoff functions 9h for all h e H, we will need to define an auxiliary function f:H xB,^ E, where H is
 the set of prefixes of histories in H. The motive behind the construction is that f(h, •) represents i's expected value of his

 stage-game payoffs conditional on reaching the history h. The function / is defined iteratively on histories of increasing

 13. To ensure compactness, put all of the types in construction of types fi (tj) together and for r (tj,m,X) with

 tjETj,jeN,me{0, X.e[0,1], use the usual topology for (tj,m,X).
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 length. Specifically, define / as follows: fix e >0. Let/(0,a,(0)) = 1 and/(0,è) = O for all b^a,(0), where 0 is the
 empty history. Next, assumef(h, •) has been defined and proceed for the relevant one-step continuations of h as follows:

 Case I: if a,(A,(a,(/i),fc_,))=a,(A) for all b-i, then letf((h,b),-)=f(h,-) for every b.
 Case 2: otherwise, by sure-thing compliance, at least two different actions are prescribed for continuations

 (h,{ai(h),b-i)) as we vary è_,-. For each action b, e ß,, let = {&_,: a,(/i, (a,(A), £>_,)) = £>,} be the set of continuations

 where A, is prescribed. Then let

 f((h,(ai(h),b-i)),bi)=
 f(h,ai(h))+e if b-i&Sbt

 I(W,' \B-i\f(h,bi)-\SbmhMh))+e) ...
 1„ I , if b-ifbbi

 where the last denominator is nonzero by the observation that at least two different actions are prescribed.

 These payoffs were chosen to satisfy the constraints

 f(h,bù = -^-yf(.{hM(.h\b-i)\bi) (C.l)
 |B"il 7~

 f(h,aim>f(h,bi)+e ÇihM^aAh))- (C.2)

 as can be verified algebraically.

 For each history h 6 H, define the stage-game payoff function gh ■.!)-*■ [0,1]" by setting =/(A, bi) andgj(b) = 0
 at each b and jjti. Define 6h accordingly, by

 üü

 i(b0,b\...)=(l-S)J2s'gh(b'),

 as in (4.1). Define ta',L as mentioned above, by assigning equal weight to each pair {t,li,9h).
 We claim that under rationalizable play, from the perspective of type fi,L, when he has followed a, and reaches history

 heH,f(h,-) is his expected value of the stage-game payoff £,. We show this by induction on the length of histories,
 backwards. When a history he H is reached, player i becomes certain (assuming rationalizable play) that the opposing

 types must be /*,■ and thus the payoffs must be 9h, which is the desired result for this case. Suppose the claim is true for

 all histories in H of length M. Note that type f''L puts equal weight on all sequences of play for his opponent. Therefore,

 for a history h e H of length M — 1, the expected payoffs are given by the right-hand side of (C. 1 ) which proves the claim.

 Note also that if he follows a, through period L, player i always learns his true payoff. Let ä, be the plan which
 follows a, through period L, then plays the known optimal action from period L+1 onward. We claim that a, strictly

 outperforms any plan which deviates by period L. The intuitive argument is as follows. Because type t"i,L has stage-game

 payoffs which are insensitive to the other players' moves, he only has two possible incentives at each stage: the myopic
 goal of maximizing his average stage-game payoffs at the current stage, and the desire to receive further information
 about his payoffs. The former goal is strictly satisfied by the move prescribed by ä,, and the latter is at least weakly
 satisfied by this move, since after a deviation he receives no further information.

 Formally, we must show that for any fixed plan a\ not /.-equivalent to a, and any rationalizable belief of ta"L, the
 plan üj gives a better expected payoff. Given a rationalizable belief on opponents' actions, player i has a uniform belief
 on the other players' actions as long as he follows a,-. Let A be a random variable equal to the shortest realized history at

 which a'i differs from a, before period L, or oo if they do not differ by period L. Note that the uniform belief on others'

 actions implies that h ^ oo with positive probability. We show that conditional on any noninfinite value of h, ä, strictly

 outperforms a\ on average. In fact this is weakly true stage-by-stage, and strictly true at the first deviation, because:

 At stages 1,..., |A|: the plans are identical.

 At stage \h\ +1: the average payofff(h,bj) is strictly optimized by à,-(A).

 At stages \h\ +2, Along the path observed by a player following aj, the other players are known to repeat their

 stage-|A| +1 move at stages \h\ +2, So at these stages, the plan a\ cannot do better than to optimize with respect to

 the history truncated at length |A| +1. The plan ä; optimizes the expected stage-game payoffs with respect to a longer

 history, under which opposing moves are identical through stage \h\ +1. Since he is, therefore, solving a less-constrained

 optimization problem, he must perform better than a\ at each stage \h\ + 2,...,L.

 At stages L+1,...: Under plan 5,-, player i now has complete information about his payoff and optimizes perfectly,

 so a'j cannot do better.

 If h = oo, again ä, cannot be outperformed because he optimizes based on complete information after L, and ä, and
 a!i prescribe the same behavior before L.

 Finally, since there are only finitely many histories and types in the construction, all payoffs are bounded and so can
 be normalized to lie in [0,1], ||
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 The next lemma builds on this result to generalize to all action plans.

 Lemma 11. For any 5e (0,1), any L and any action plan a,-, there exists a type tf"L eTfK ^ for which playing
 according to a, until L is uniquely rationalizable in reduced form.

 Proof For some b*_i eB-i, which will be fixed throughout the proof, consider a stage payoff function g; with g; (&,-, fc* ;) = 1

 and gi(bi,b-i)=0 for all b-i^=btr That is, player i's payoff does not depend on his own action, but only on whether

 the other players reward him by playing b*_t. Write 8 e 0£ for a payoff function resulting from g,-, i.e., Ö; (fc°, &',...) =

 (1 — i5)l]/<5'g;(fc'). This# will be fixed throughout the proof and the constructed type tai"L will be certain that payoffs are

 given by §. Fix an M large enough that SM <&L(\Bj\- 1)/(2|B,| — 1) <SL/2. Let H be the set of all histories of length L
 or less. Let A_; be the set of action profiles for which there exists a function p . H x ß_, -> ß; such that

 (1) for any /<L+1, any history ft'-1 of length I— 1 and any (£»,,£>_,-)eß,, a~j{hl~x ,(bi,b-ij)=b*_i if fc,=

 p(ft'~',i_,) and aj (ft'~', (è,,/>_,)) ytb* for every j^i otherwise;1**

 (2) p(hL,b-i)=at(hL) for all those hL such that player i has played according to a, throughout; and

 (3) for any le[L+2,...,M} and any h at the beginning of /, a_,(ft)=a_,(ftl+1).

 That is; at any history in heH, the other players reward a unique move p(/!,è_,) of i at each history (h,b). The
 only restriction on which move is rewarded occurs at stage L +1, when if player i has followed ai so far, he will be
 rewarded if he continues to do so. Furthermore, at stages {L + 2 M) the other players simply repeat their move from

 stage L +1. The set A_; is symmetric in all other ways. Note also that at any 1<M, a player j either reacts differently to

 different moves of player i or repeats his previous move regardless. Hence, the actions in A_, are all sure-thing compliant

 up to date M, and thus for each a_; €A_;, there exists a sure-thing compliant action â-i that is AZ-equivalent to o_,-. Let

 A^j be a finite subset of A_; that consists of one sure-thing compliant element from each A/-equivalence class in A_,-.

 By Lemma 10, for each a-, e A^;, there exists t"~hM for which all rationalizable action profiles are M-equivalent to a_;.

 Consider a type t"''L that assigns probability 1/|A™;| to each (ê,ta-''M^j with a_; eÂ™;. Note that, according to t""L the
 rewarded actions up to l=L— 1 are independently and identically distributed with uniform distribution over his moves.

 This leads to the formulas for the probability of reward in the next paragraph.

 For any history h of length /, write P* (h) for the probability that b*_; is played at date / conditional on h according

 to the rationalizable belief of t°"L. As noted above, by symmetry,

 Pf(h) = l/\Bi\ V/<L, (C.3)

 and

 1 if i follows a,- until L
 0 if i follows a,- until L— 1 and deviates at L (C.4)
 1/|B;| otherwise.

 Denote the expected payoff of type tf''L under any action a- by V\ (a-), and note that

 i^a;)=£((i-,5)a'E[p;ia;]. (c.5)
 Using the above formulas, we will now show that type t""L does not have a best response that differs from a, at some

 history of length I <L. Consider such an action plan a-. Define also a*, by setting

 ^ J if 1<L
 ;.(/!') if 1>L «M-Î

 at each history hl of length /. We will show that a* yields a strictly higher expected payoff than a-. To this end, for each

 history h, define r (h) as the smallest date / such that the play of player i is in accordance with both ai and a\ throughout

 history ft', a, (ft') ^a-(ft'), and player i plays aj (ft') at date I according to ft. (Here, t can be infinite. It equals the first
 realized difference in moves; note that even if the two plans are not equivalent, they may not differ on a particular history.)

 Conditioned on the event t > L, we know r = oo, that is, a* and aj play identical moves and hence yield the same payoff.

 14. Notethat/j' 1 is the list of moves played at dates 0,1,— 2, and aj (h1 1, b) is the move of player; at date /
 if players play b at / — 1 after history h'~l.
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 We will show that a* has a strictly higher expected payoff than a'- when conditioned on each of the events r=L and

 t <L. On the event z = L, by (C.3) and (C.4), a\ yields a payoff of

 1>M

 while, by (C.4), a* yields

 Ui(aJ\r=L) = (l-SL+l^/lBi\ + (sL+1-SM+iyi + J2^-^'E[P!\at,z=L].
 1>M

 Hence,

 Ui(a*\r=L)-Ui(a'i\x=L) = (sL+l-SM+>) + Y/(l-S)Sl[E[P^\a*,T = L]-E[P^\a'i,r=L]}
 1>M

 where the first inequality holds because P* 6 [0,1] and the strict inequality follows from our defining assumption on M.

 Similarly, on the event r < L, by (C.3), aj yields a payoff of

 U^aWx <L) = {\-SM)/\Bi\ + {&L+{ -SM^)-\/\Bi\ + YJ^-^S>E[P>'i'x <Ll
 1>M

 while a* yields

 C,(ü*|r<l) = (l-Äl+1)/|ß/| + (^+1-aA,+1)-1 + ^(1 -S)SlE[Pf\a*,T<L].
 1>M

 Hence,

 Ui(a*\x<L)-Ui(a'i\z<L) = (si+1 -ÄM+1)(l-l/|B,|) + ^(l-«)5'(£[p;|af,r <L]-£[p;|Q;,t<L])
 1>M

 > (sL+i -<5W+1^(1 - l/|ß,|) —<5M+1 >0,

 where the first inequality is by the fact that P* e [0.1 ] and the strict inequality follows from our defining assumption on M.

 Finally, note that Pr(r <L) > 0 (as t"''L puts positive probability at all histories up to date L and a[ differs from a,

 at some such history), so we can conclude that a* yields a strictly higher expected payoff than a\ and hence a\ is not
 optimal. ||

 This lemma establishes that any action can be made uniquely rationalizable for an arbitrarily long horizon, even
 within the restricted class of repeated game payoffs with the given discount factor S. Using this lemma, we can now prove

 Proposition 4.

 Proof of Proposition 4. First, note that by continuity at infinity there exist ï e (0,1) and I* < oo such that if a player i

 assigns at least probability 1 —X on the event that 0=0S g, and everybody follows a* up to date /*, then the expected
 payoff vector under his belief will be within e neighborhood of u (<9s,g» ,a*).

 We construct a family of types eN, m,leN, X e [0,X], by

 tj,0,l,x = t"''1,

 «W.JI = + , r , \ Vm>0'

 a* I CK(®*)
 where t"i' eT, s is the type for whom a? is uniquely rationalizable up to date /, .5 / \ is the Dirac measure

 that puts probability one on (ds,g'J-i,m-i,i'k) and I' will be defined momentarily. The types ï/.m./.A will be constructed
 in such a way that under any rationalizable plan they will follow a* up to date I and the first m orders of beliefs will be

 within A neighborhood of tCK (8s,g» ). Note that under k a* j it is a unique best reply to follow aj up to date I. Moreover, if

 0 = 9$igt and the other players follow a*_j forever, then it is a best response to follow a* up to date /. Hence, it is a unique

 best response to follow aj up to date I if one puts probability À on k a*j and ( 1 - A.) on the latter scenario with 0 = 6s,g* ■

 Since there are only finitely many plans to follow up to date I and the game is continuous at infinity, there exists a finite

 I' > I* such that it is still the unique best response under to follow aj up to date / if the other players played a*j only
 up to date We pick such an /'>/*.
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 We now show that for large m and I and small X, satisfies all the desired properties of First note that for

 À=0, under f,,m>/,o, it is mth-order mutual knowledge that 9=9sig*. Hence, there exist m* and X* >0 such that when

 m>m* and X<X*, the belief hierarchy of is within the neighborhood Ui of the belief hierarchy of tfK (9s,g*),
 according to which it is common knowledge that $=9Sg*. Second, for À > 0, a* is uniquely rationalizable up to date /

 for in reduced form. To see this, observing that it is true for m=0 by definition of tj,o,l,k, assume that it is true up
 to some m — 1. Then, any rationalizable belief of any type f/,m,i,x must be a mixture of two beliefs. With probability X, his

 belief is the same as that of t"' and with probability 1 — X, he believes that the true state is 9s,g» and the other players

 play a*_j (in reduced form) up to date I'. But we have chosen /' so that following a* up to date I is a unique best response

 under that belief. Therefore, any rationalizable action of tj,m,i,\ is /-equivalent to aj. Third, for any m > 0 and / > /*, the

 expected payoffs are within e neighborhood of u(9s,g*,a*). Indeed, under rationalizability, type must assign at
 least probability 1 — X > 1 - À on 0 = ft,g» and that the other players follow a*_t up to date I'> I* while he himself follows

 a* up to date />/*. The expected payoff vector is e neighborhood of u(6s,g*,a*) under such a belief by definition of Ä.
 CK(0*1

 and I*. Finally, each f;,m,f,x is in Tj 3 because all possible types in the construction assigns probability 1 on 9 e ©J.

 We complete our proof by picking ti — ti,m,i,x for some m>m*, /> max {/,,/*}, and Xe (0,min{Â,À* j). ||

 APPENDIX D. PROOFS OF PROPOSITIONS 7 AND 8

 Here we show how to modify the proofs of Propositions 1 and 2 in order to retain the informational common
 knowledge assumptions described in Propositions 7 and 8 and satisfy sequential rationality. Note that here, a Bayesian
 game also assigns a "payoff type" c,• (r,)€ C,- for each type f,, and hence a Bayesian game is a list G = (T,Q ,T,c,k).

 Proof of Proposition 7. Note that as in Lemma 4, ISR™ depends only on the reduced form of a plan, and, as in Lemma 6,

 the ISR actions of "virtually truncated" games are equivalent to the ISR actions of truncated games. In light of these facts,

 we now describe the major modifications to each step of the proof of Proposition 1.

 In Step 1, we observe that, by the definition of ISR, each rti (a,) is a sequential best response to a conjecture ß'i<r,i<-ai>

 of ti such that agrees with Kt, and puts probability one on ISR actions. We define types (ti,rtj (a,),m) by setting

 c, (l;,rtj (a,),m) =c,-(t,-), so that the private information does not change, and setting

 (ai) 7 — 1 jr-, j i
 Kti,ru(a,),m—ßgi (D.l)

 where is now defined as

 01,',r,, (ai),m ■ (Co.t-i,*-/)>-*■ (at).m (f (c0. Ci Ci). C-i (fi))), (f-i, r,_, (a_,), m)) . (D.2)

 Since 0i,,r,. (a,),""(/(c0,cj(fi),c_,(fi )))-»/(co,c,(f,),C-j(/;)) as in the proof of Proposition 1, by the interior assumption

 in the hypothesis, there exists m such that for every m>m, 4>ti,r,i(a,),m(9)=f {a,),m(co>C-,(f-i)),c,(ti),c_,(t-i)j
 for some Gti,rt. (a,),m (fo.c_; (f_,)) 6 C, ensuring that the newly constructed types are in Tc*. In Step 2, we prove that

 by observing that 0,jir,,(ai),m(co,f-i,ö-i)-> (/(co,c/(fi),c_, (fi)).f-i)

 In Step 3, we prove that S : (f(a,),m)jr,, (a,)} is closed under sequentially rational behavior in Gm, so that
 rtj (ai) e ISRf [f,-, r,t (a,), m]. To this end, for each (f;, r,. (a/), m), we construct a conjecture ß of type ((,-, ru (a,-), m) against

 which rti (ai) is a sequential best response and £0 puts probability 1 on the graph of £, by setting

 ti.rtjfai) 2-1 -1
 ßh=ßk °<l>,i,r,i{ai),moy

 where

 y : (co,t-i,rt_j (ü-,), w) !->■ (c0,f_i,r,_,. (a_,),m,rM («_,-))

 stipulates that the types play according to E, and the mapping

 hn, (Ol),I» : (c0. f-i.a-i) !->• (a,),m (/"(CO. Ci (Ii), C_i (f,))), (f-i, r,_, (û-i), m)j (D.3)

 incorporates the transformation of co. By construction, puts probability 1 on the graph of E, and the belief

 induced on &m x f_; by £0 is Kr.-.r, Toward showing that r,. (a,) is a sequential best response to yd, we also observe

 that each ßt, induces probability distribution o(^<ptj ,rr; (a,),m,r—»') on ® x^-i—as in the proof of Proposition 1,

 where that belief was . One can then simply replace with/^'r,,<a,) in the remainder
 of the proof of that step, to show that rti (a,) is a best response to ßh at each history h that is not precluded by rtj (a,),

 showing that rti (ai) is a sequential best response to ß for type (f,,rt] (a,),m).
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 In Step 6, we use Lemma 2 instead of Lemma 8, to obtain a hierarchy A;(/f) in open neighborhood (r™) 1 ({/,■)
 of hi (?,) such that each element of ISRf [?["] is m-equivalent to a™ and hi (ff) s Tfm*, which is the subspace of T*m in
 which it is common knowledge that 9 e/(C) and the true value of cj is known by player j for each j. This leads to the

 type !, constructed in Step 7 to remain in Tf* and have a; as the unique ISR action up to m-equivalence. ||

 Though Proposition 8 is a close analog of the general result on equilibria, Proposition 2, its proof is more closely
 analogous to the final steps in our result specific to repeated games, Proposition 4. (It is in the lemmas preceding that

 proof that the steps specific to repeated games occur.)

 Proof of Proposition 8. In the proof of Proposition 4, modify the types by substituting 9* for Os.g* and taking

 t'' to be the type in Tf* for whom a* is uniquely ISR up to date / and c, (tai J—cj (by Proposition 7). Take also

 Cj (tj<mxx) =cj, so that hj e Tj-*. Moreover, as in the proof of Proposition 4, since playing according to a* up to /
 is the unique sequential best response for type (y,«,/,a when the others follow a*_j forever, we can take /' sufficiently large

 so that following a* remains the unique sequential best response up to / when the others follow a*_j up to /'. As in the
 proof of Proposition 4, this shows that a* is the unique ISR plan for type . Finally, as in the proof of Proposition 4,
 one can select m, I, and X to satisfy the other properties in the proposition. |]
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