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 COMPARATIVE TESTING OF EXPERTS

 Econometrica, Vol. 76, No. 3 (May, 2008), 541-559

 By Nabil I. Al-Najjar and Jonathan Weinstein1

 We show that a simple "reputation-style" test can always identify which of two ex-
 perts is informed about the true distribution. The test presumes no prior knowledge of
 the true distribution, achieves any desired degree of precision in some fixed finite time,
 and does not use "counterfactual" predictions. Our analysis capitalizes on a result of
 Fudenberg and Levine (1992) on the rate of convergence of supermartingales.

 We use our setup to shed some light on the apparent paradox that a strategically
 motivated expert can ignorantly pass any test. We point out that this paradox arises
 because in the single-expert setting, any mixed strategy for Nature over distributions is
 reducible to a pure strategy. This eliminates any meaningful sense in which Nature can
 randomize. Comparative testing reverses the impossibility result because the presence
 of an expert who knows the realized distribution eliminates the reducibility of Nature's
 compound lotteries.

 Keywords: Testing, reputation, probability.

 O False and treacherous Probability,
 Enemy of truth, and friend ofwickednesse;
 With whose bleare eyes Opinion learnes to see,
 Truth 's feeble party here, and barrennesse.

 Keynes, A Treatise on Probability (1921 )

 1. INTRODUCTION

 A recent literature emerged studying whether an expert's claim to knowl-
 edge can be empirically tested. Specifically, assume that there is an unknown
 underlying probability distribution P that generates a sequence of observations
 in some finite set. For example, observations may be weather conditions, stock
 prices, or GDP levels, while P is the true stochastic process governing changes
 in these variables. In each period, the expert makes a probabilistic forecast that
 he claims is based on his knowledge of the true process P. Can this claim be
 tested?

 The seminal paper in this literature is that of Foster and Vohra (1998). They
 showed that a particular class of tests, known as calibration tests, can be passed
 by a strategic but totally ignorant expert.2 Such an expert can pass a calibra-
 tion test on any sample path without any knowledge of the underlying process.

 'We are grateful to Yossi Feinberg, Drew Fudenberg, Ehud Lehrer, Wojciech Olszewski, Phil
 Reny, Alvaro Sandroni, Rann Smorodinsky, Muhamet Yildiz for their detailed comments. The
 paper substantially improved as a result of the detailed and thoughtful comments by co-editor
 Larry Samuelson and three anonymous referees. We also thank Nenad Kos and Jie Gong for
 their careful proofreading.

 -A calibration test compares the actual frequency of outcomes with the corresponding fre-
 quencies in the expert's forecast in each set of periods where the forecasts are similar. See, for
 example, Sandroni (2003, Section 3) for precise statement.
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 542 N. I. AL-NAJJAR AND J. WEINSTEIN

 A calibration test, therefore, cannot distinguish between an informed expert
 who knows P and an ignorant expert. Fudenberg and Levine (1999) provided
 a simpler proof of this result, while Lehrer (2001) and Sandroni, Smorodinsky,
 and Vohra (2003) generalized it to passing many calibration rules simultane-
 ously. Kalai, Lehrer, and Smorodinsky (1999) established various connections
 to learning in games.
 Sandroni (2003) proved the following striking impossibility result in a finite

 horizon setting: Any test that passes all informed experts can be ignorantly
 passed by a strategic expert on any sample path. The remarkable feature of
 this result is that it is not limited to a special class of tests: it requires only that
 an expert who knows the truth can pass the test.
 This disturbing result motivated a number of authors to consider models that

 can circumvent its conclusions. Dekel and Feinberg (2006) considered infinite-
 horizon problems and showed that there are tests that reject an ignorant ex-
 pert in finite (but unbounded) time. Their positive results, however, require
 the use of the continuum hypothesis, which is not part of standard set theory.
 Olszewski and Sandroni (2006) refined these findings by, among many other
 results, dispensing with the use of the continuum hypothesis. The tests used
 in these positive results do not validate a true expert in finite time. Olszewski
 and Sandroni (2007) proved a powerful new impossibility result showing that
 any test that does not condition on counterfactuals (i.e., forecasts at unrealized
 future histories) can be ignorantly passed.
 In this paper, we reconsider these impossibility results in the context of test-

 ing multiple experts.34 Our first theorem shows that in a finite-horizon setting
 with two experts there is a simple reputation-style test with the following prop-
 erty5: If one expert knows the true process P and the other is uninformed, then
 if the two experts make sufficiently different forecasts in sufficiently many pe-
 riods, the test will pick the informed expert with high probability. The test does
 not rely on counterfactuals of any kind: no information about the experts' fore-
 casts at unrealized histories is used. The theorem uses a remarkable property of
 the rate of convergence of supermartingales that was discovered by Fudenberg
 and Levine (1992).
 Our result cannot rule out the possibility that the test picks an uninformed

 expert, since such an expert may randomly select a forecast that is close to the
 truth. The intuition, of course, is that this is an unlikely event. To make this
 precise, we note that the comparative test defines an incomplete-information
 constant-sum game between the two experts. Theorem 2 shows that the value

 3In independent work, Feinberg and Stewart (2006) also studied testing multiple experts. Their
 work is discussed in detail in Section 5.

 Although our main results are stated for the case of two experts, they have straightforward
 extensions to testing n experts by simply selecting the expert with the highest likelihood.

 5 For expository clarity, we shall ignore quantifiers on probabilities and degrees of approxima-
 tion in the Introduction.
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 COMPARATIVE TESTING OF EXPERTS 543

 of this constant-sum game to the uninformed player is low if the informed
 player is even slightly better informed (in a sense to be made precise) and the
 horizon is long enough.
 Our main results are stated for finite-horizon testing because this is where

 the impossibility results are strongest and conceptually clearest.6 On the other
 hand, most of the literature, for example, on calibration tests, concerns the
 infinite-horizon setting. In Section 5 we consider the infinite-horizon case and
 show that our main results on comparative testing extend in a stronger form.
 It is important to assess the role of our assumption that there is an informed

 expert. In Section 4.5 we note that this assumption can be relaxed to require
 only that one expert has better information than the other. But this assump-
 tion cannot be dispensed with entirely: In Theorem 7 we adapt the proof of the
 impossibility result for the single-expert case to show that, in a finite-horizon
 setting, there is no nonmanipulable test that can tell whether there is at least
 one informed expert. This shows that notwithstanding our effective compara-
 tive test, the known limitations on single-expert testing still have force in the
 multiple-expert setting.
 Although our primary emphasis is on comparative testing, our analysis

 makes a slightly more general point by shedding light on the source of the
 impossibility results. Roughly, we argue that the impossibility results are con-
 sequences of the facts that any stochastic process P has many equivalent rep-
 resentations, and these representations are observationally indistinguishable
 in the single-expert setting. This observational equivalence effectively impov-
 erishes Nature's strategy sets, making it possible for a strategic expert to win.
 This provides a way to understand why impossibility results fail in certain cir-
 cumstances, such as under repeated observations of the stochastic process or
 when comparing experts as in this paper. In each of these variants, the richness
 of Nature's strategy set is at least partially restored. Section 6 elaborates on
 these points.

 2. MODEL

 Fix a finite set A representing outcomes in any given period. For any set Z,
 let A(Z) denote the set of probability distributions on Z.

 There are finitely many periods, t = 1, . . . , n. The set of complete histo-
 ries is Hn = [A,A(A),A(A)]n, with the interpretation that the rth element
 («(/), ao(t), «i(0) of a history h consists of an outcome a(t), and the proba-
 bilistic forecasts at{t) of experts / = 0, 1 for that period.7 Define the null history

 6By "finite horizon" we mean a length of time bounded independently of the true distribution
 or predictions made. The term "finite-horizon test" is sometimes used in a different sense in
 the literature, referring to tests that reject an uninformed expert in a finite but not necessarily
 bounded amount of time. Olszewski and Sandroni (2006) showed that for such tests, rejection
 can be delayed for as long as one wishes, limiting their applicability in practice.

 To minimize repetition, from this point on, all product spaces are endowed with the product
 topology and the Borel o--algebra.
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 544 N. I. AL-NAJJAR AND J. WEINSTEIN

 h° to be the empty set. A partial history of length t, denoted W , is any element
 of[A,A(A),A(A)]t^Ht.

 A time t forecasting strategy is any (t - Immeasurable function /' :H'~l -►
 A(^4), interpreted as a forecast of the time t outcome contingent on a par-
 tial history A'"1. A forecasting strategy f = {/'}?=1 is a sequence of time t fore-
 casting strategies. Two forecasts //(/z'"1), / = 0, 1, are s-close if \f^{hl~x){a) -
 f{(ht~l)(a)\ <s for every outcome a.

 Any forecasting strategy / defines a unique stochastic process Pf on An in
 the obvious way. Conversely, given a stochastic process P, we let fP be any
 forecasting strategy that coincides with the one-period-ahead conditionals of
 P at partial histories that occur with P-positive probability.8

 We shall think of the set of all forecasting strategies, denoted Fn, as the
 set of pure strategies available to an expert. Mixed strategies are probability
 distributions cp € A(F") on the set of pure strategies.9 We shall assume that all
 randomizations by Nature and the experts are independent.

 Notational Conventions: A superscript / will denote either the /-fold product
 of a set (as in A1), an element of such product (e.g., the vector a1), or a function
 measurable with respect to the first t components of a history (e.g., a time t
 forecast /' or a test T7).

 An n-period comparative test is any measurable function10

 Tn:An xPxF"-^{0,0.5,l)

 such that for every /, /' e Fn and an,

 Tn(a\fJ') = \-r\a'\f'J).

 We interpret T"(h") = / with / = 0, 1 to mean that the test picks expert / after
 observing the history of forecasts and Nature's realizations for the first n peri-
 ods. We include the value 0.5 to indicate that the test is inconclusive, in which
 case both experts pass.

 Note the following:
 • The test does not presume any structure on the underlying probability

 law.

 8We will follow the customary practice of identifying a stochastic process with its one-step-
 ahead conditionals. Note that this is not entirely innocuous in a testing context, since a test that
 takes a forecasting strategy / as input could, in principle, condition on forecasts at histories that
 have zero probability under Pf. This possibility is not relevant for the comparative test we intro-
 duce in this paper.

 9A11 probabilities on a product space are assumed to be countably additive and defined on the
 Borel o--algebra generated by the product topology. Spaces of probability measures are endowed
 with the weak topology.

 10Here, measurability is with respect to a-algebra generated by the Borel sets on the product
 space H".
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 COMPARATIVE TESTING OF EXPERTS 545

 • Each expert can condition not only on his own past forecasts and past
 outcomes, but also on the past forecasts of the other expert.

 • The test is symmetric, in the sense that which expert is chosen by the
 test does not depend on the expert's label.
 The test we construct below will have an additional property:

 • The test does not condition on counterfactuals: given two pairs of fore-
 casts /(,,/, and go,gi, and a history h" such that f(hl~l) - g/CA'"1), / = 0, 1
 for each t, then Tn(a", /0, f) = Tn(an, g0, gi). That is, what the experts would
 have forecast at unrealized histories is not taken into account.

 3. A COMPARATIVE TEST OF EXPERTS

 An expert is truthful if he forecasts outcomes using the true distribution P.
 Formally, his strategy is the deterministic forecast fP.n A natural question is
 whether there exists a test that can determine if at least one expert is truthful.
 Theorem 7 in the Appendix shows that no such test exists. Therefore, the ap-
 propriate goal, and the focus of our paper, is a comparative test that picks a
 truthful expert if indeed there is one.

 We introduce for each n a particular comparative test T" as follows. Let
 L0(/i0) = land

 where W is the initial t segment of a complete history hn and a(t) is the out-
 come at time t according to the history hn. Given a history hn, Expert 1 is
 chosen if Ln{hn) > 1, Expert 0 is chosen if Ln(h") < 1, and the test returns 0.5
 (i.e., it is inconclusive) if Ln(hn) = I.13

 THEOREM 1: If Expert i is truthful, then for every s > 0, there is an integer K
 such that for all integers n, distributions P, and mixed forecasting strategies cpj
 (j ^ /), there is P x cp y probability at least 1 - e that either

 (a) T" picks Expert i or
 (b) the two experts' forecasts are s-close in all but K periods.

 Case (a) is, in a sense, the desired outcome of the test. Case (b) reflects
 the possibility that an uninformed forecaster may get lucky and approximately
 guess the true law P. Note that the theorem has no bite when n is smaller than

 11 An expert who knows the truth may have a strategy that does better than reporting the truth;
 if so, this only strengthens the conclusion of Theorem 1.

 12If the denominator is 0 in some period t, we set Lt> - oo for all /' > t.
 13 Using the numerical value 0.5 to denote an inconclusive outcome is convenient because it

 makes the Bayesian game introduced in Section 4.1 a constant-sum game.
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 K, because case (b) will trivially obtain. The crucial point is that K is inde-
 pendent of the true distribution and the forecasters' strategies, so by setting n
 large enough, case (b) says that the uninformed forecaster must have an excel-
 lent guess about the true law. Theorem 2 will support the conclusion that case
 (b) is "unlikely" when n is large relative to K.
 The argument relies on a result by Fudenberg and Levine (1992) that estab-

 lished a uniform rate of convergence for supermartingales.14

 Proof of Theorem 1: Without loss of generality, assume that Expert 0
 is truthful. In the proof, it will be convenient to work with infinite histories,
 although the test conditions only on the first n periods, for a fixed n.
 It is a standard observation that the stochastic process {L,} is a super-

 martingale under P (Lemma 4.1 in Fudenberg and Levine (1992), henceforth
 FL). As in FL, define an increasing sequence of stopping times {t*}£L0 rel-
 ative to {L,} and s inductively as follows. First, set t() = 0 and rk(hoc) = oo
 whenever Tk_\(h°°) = oo. If Tk_i(h°°) < oo, let r^/z00) be the smallest integer
 t > Tk-iih00) such that either

 1. P{hf-X) > 0 and Pf/z00 : |L,/L,_, - 1| > s/#A\hl-[} > e/#A or
 2. Lt/LTk_x-\>s/(2#A).

 If there is no such t, set Tk(h°°) = oo. Define the process {Lk} by Lk = LTk if
 Tk < oo and Lk = 0 otherwise. From standard results, the stochastic process
 {Lk} is a supermartingale. By FLs Lemma 4.2, \fi(h'-[)(a) - fl(h'-l)(a)\ > e
 implies that condition (1) holds. Consequently, the process [Lk] omits at most
 those observations where \fl(hl~x){a) - f[(hl~x)(a)\ < s for all a in A.
 Lemma 4.3 in FL applies, showing that {L,} is an active supermartingale with

 activity ^. We refer the reader to the Appendix for formal definitions. By
 their Theorem A.I, for any s > 0 and #A there is an integer K such that for

 any active supermartingale {L,} with activity ^,

 P SUpLyt < 1 > 1 - S.
 \-k>K -I

 The key point is that K depends only on s and #A, and not on the true sto-
 chastic process P or the forecasting strategy f\ .

 Assume that Expert 1 uses a deterministic strategy. Under the assumption
 that Expert 0 is truthful, on a set of histories of probability 1 - e, either
 \f£(h'-l)(a) - f[{hl-x){a)\ < s for all a in all but at most K periods or Ln < 1.

 14See the Appendix where their result on the rate of convergence of supermartingales is for-
 mally stated. Our use of their result is similar to their main reputation theorem, but is sufficiently
 different that it is necessary to replicate parts of their argument. In the reputation context, the
 key object is the short-run player's forecast of the behavior of the long-run player. The likelihood
 ratio and the implied belief about types are intermediate steps. In our theorem, on the other
 hand, the likelihood ratio is the primary object.
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 COMPARATIVE TESTING OF EXPERTS 547

 If Expert 1 uses a mixed strategy <pi, the conclusion follows from Fubini's
 theorem applied to the product measure P x cpu because (1) Tn is jointly mea-
 surable and (2) K is uniform over all forecasting strategies. Q.E.D.

 Notice that when case (b) of Theorem 1 holds, we do not exclude the possi-
 bility that the truthful expert is rejected with probability greater than 0.5. 15 In-
 deed, let n = 1, A = {//, 7"}, and P(H) = 0.8. Then an expert who announces
 P(H) = 0.9 will defeat a truthful expert whenever the outcome is H, that is,
 with probability 0.8. Since case (b) can be recognized by a tester without any
 knowledge of the truth, this issue can be resolved by making the conclusions
 of our test more conservative in the following natural way: for a given s, mod-
 ify the test to return outcome 0.5 (inconclusive) whenever the condition in
 case (b) holds. It is immediate that this modification does not affect the truth
 of Theorem 1, and satisfies the added condition that a truthful expert will be
 rejected conclusively with probability at most e. The inconclusive verdict indi-
 cates an insufficient difference between the two experts for a statistically sig-
 nificant comparison at level e.

 4. THE SCOPE OF STRATEGIC MANIPULATIONS

 Theorem 1 establishes statistical properties of a simple reputation-style test,
 taking the experts' forecasts as given. That theorem does not account for ex-
 perts' strategic behavior and leaves open the possibility that an uninformed
 expert might make a lucky guess that lands him close to the true P. This sec-
 tion addresses these issues.

 4.1. A Bayesian Game

 Consider the following family of incomplete-information constant-sum
 games between Expert 0 and Expert 1, parametrized by n = 1,2, ... and
 /x€A(A04*)):

 • Nature chooses an element P e A(A") according to a probability distri-
 bution /x.

 • Expert 0 is informed of P, while Expert 1 only knows fi.
 • The two players simultaneously choose forecasting strategies /(), fx e

 Fn.

 • Nature then chooses an according to P.
 • The payoff of Expert 1 is

 Tn(an9fQ9fi)9

 where Tn is the test constructed in Theorem 1.

 • The payoff of Expert 0 is 1 - V\a\ /(), f{ ).
 Payoffs are extended to mixed strategies in the usual way.

 15 We thank Yossi Feinberg for pointing out this possibility.
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 548 N. I. AL-NAJJAR AND J. WEINSTEIN

 4.2. The Value of the Game to the Uninformed Expert

 The value of this incomplete-information constant-sum game to the unin-
 formed player depends on how diffuse jjl is. For example, if jx puts unit mass
 on a single P e A(An), then the "uninformed" player knows just as much as
 the informed one and so he can guarantee himself a value of 0.5. On the other
 hand, Theorem 1 tells us that the uninformed player can win "the reputation
 game" only when he succeeds in matching the true distribution in all but K
 periods. Our next theorem says that if \x is even slightly diffuse, then his value
 is low when the horizon is long enough.
 First, we define our notion of diffuseness. Any randomization by Nature \±,

 being a distribution on A(An), extends to a distribution jl on k{An) x An via
 the formula

 £(Z) = / P((flH:(P,flB)€Z))^(P)
 J MAn)

 for every measurable Z c A(>4W) x A". Define M(e, 8,L) c A(A(yT)) to con-
 sist of all fi such that there are at least L periods t, 1 < t < n, such that

 (2) max ///(fl^/Olfl'"1, a'"1) < 1 - 8, /i-a.e. hn,16
 peMA)

 where jl! denotes the one-step-ahead conditional under jl. Note that the con-
 dition defining M(s, 8, L), which states that in each of at least L periods /jl
 does not concentrate its mass in some small ball, becomes less restrictive as n
 becomes large.17

 In the proof of Theorem 2 the informed expert is assumed to report the
 truth, since his value without this constraint can only be higher. This motivates
 our definition of M, in that the conditional expectation in (2) is the belief of
 the uninformed expert at time t, assuming that the informed expert reports the
 truth.

 THEOREM 2: For every s and 8 > 0 there is an integer L such that for every
 /x e M(s, S, L) the value of the game to Expert 1 is less than s.18

 PROOF: Assume that the informed expert reports the truth. Let K = K(e/2)
 be the integer obtained in Theorem 1. Let L = L(e, 8) be the smallest integer

 16The notation Bf:(p) denotes the e ball around p, where A(A) is given the "max" norm it
 inherits as a subset of VfA .

 17For n < L, the set M(e, 8, L) is empty.
 I8Oakes (1985) provided a simple argument that a Bayesian who reports his true beliefs cannot

 pass a calibration test on all paths. Note that although the uninformed player in our setting has
 Bayesian beliefs, he is not constrained to report them truthfully. We thank a referee for bringing
 this result to our attention.
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 so that the binomial distribution with L trials and probability 5 assigns proba-
 bility at most § to {0, ...,#}.
 Fix any \x e M(s, 8, L). It suffices to show that any fixed forecasting strat-

 egy for Expert 1 has winning probability less than s. In each of the L periods
 described in (2), his probability of being | -close to the truth is at most 1-5.
 The definition of L then guarantees that his probability of being | -close to the
 truth in all but K periods is at most |.
 Theorem 1 tells us that when the above case does not obtain, Expert l's prob-

 ability of winning is at most |. We conclude that his overall winning probability
 is at most s. Q.E.D.

 4.3. The Nonmanipulability of Comparative Tests

 Informally, the next corollary is an "anti-impossibility" result: It says that if
 one expert knows Nature's distribution, an uninformed strategic expert can-
 not guarantee success simultaneously against all distributions. That is, for any
 mixed strategy over forecasts, Nature has a distribution P e L(An) such that
 the uninformed expert passes the test with probability at most s.

 COROLLARY 3: For every s and 8 > 0 there is an integer L such that for every
 /jl e M(e, 5, L) and every q>x there is P e supp/x such that

 z(P9(px)<e.

 Proof: From Theorem 2 we have, for any such /*,,

 Z(lJL,(pi) <S.

 Then there must be an element in P e supp fx such that the conclusion of the
 theorem holds. Q.E.D.

 4.4. What Does It Mean to Be Uninformed?

 Consider three environments that would look identical to an uninformed

 expert in the absence of an informed one:
 • /xj is characterized by jX\('\a'~l) being the uniform distribution, inde-

 pendently across partial histories, on the vertices of A(>4).
 • /x2 is characterized by /x^-la'"1) being the uniform distribution, inde-

 pendently across partial histories, over a small ball around the distribution p
 that assigns equal probability to all outcomes.

 • /x3 is defined similarly, except that /^(-Ic*'"1) puts unit mass on p.
 Fix a sufficiently large n so that /xi and /jl2 defined above both belong to
 M(g, S, L) for some s, 8 > 0 and L as in Theorem 2.

 The first point to make is that our assumption that the informed player
 knows the true distribution P is not as strong as it might first appear. Under
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 550 N. I. AL-NAJJAR AND J. WEINSTEIN

 jui the informed player knows the deterministic path of outcomes, and so he
 knows as much as there is to be known. By comparison, the informed player
 under /jl2 or /x3 knows much less, yet we still refer to him as informed.
 Our second point is that in stochastic environments the relevant measure of

 being (un)informed is relative. Under /i,3, both players are uninformed, and so
 they achieve equal value of 0.5. Under //,2> the informed player is only slightly
 more informed, yet this is enough to tilt the game in his favor.
 In summary, the uninformed experts in these three environments have iden-

 tical beliefs over realized events and so in any single-expert test they would
 necessarily perform equally well. On the other hand, their performance in com-
 parative tests varies widely. These differences in performance in a comparative
 test stem from how much they know relative to their opponents. This supports
 our view that any identifiable notion of truth is inherently relative: In recogniz-
 ing a stochastic truth we cannot do better than to define it as the belief of the
 most knowledgeable expert.

 4.5. Exact vs. Better Knowledge of the Truth

 We have focused exclusively on the case in which one expert knows the true
 probabilities. What if Expert 0 has only partial, rather than exact, knowledge
 of the true distribution? We note here that this case can be adapted into our
 framework.

 Modify the model of Section 4.1 by assuming that Expert 0's knowledge is
 given by a finite partition 77 on A(A") together with the prior fi e A(A(A")).
 Assume that i±(tt) > 0 for each ir e 77 and observe that Expert 0's belief about

 An upon observing it e 77 is given by Pn = ^ f^ P d/x.
 This is a model with partial information, where Expert 0 does not know the

 true probability P, but only the partition element tt to which P belongs.19 How-
 ever, this model is equivalent to a quotient model, where the set of possible
 distributions is {Pn : tt e 77} with prior given by /jL\Pn) = jll(tt). Expert 0 in the
 quotient model knows the true distribution Pn, yet players' strategy sets and
 payoffs are equivalent to those in the partial information model. Both Theo-
 rems 1 and 2 apply to the quotient model.

 5. INFINITE HORIZON

 So far we have confined ourselves to the finite-horizon setting because it
 provides the sharpest contrast between the one- and two-experts cases. Our
 model readily extends to the infinite-horizon case, and most of our results also
 extend - in fact in a stronger form.20

 19We continue to assume that Expert 1 has no information about P (beyond /A
 20The details are standard: In the infinite horizon, the sets of infinite realizations A^~ and

 histories H°° are given the product topologies. Probabilities on these spaces are defined on the
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 COMPARATIVE TESTING OF EXPERTS 55 1

 The comparative test can be extended by first defining the process Lt{hl) ex-
 actly as in (1). In defining the test we need to account for the possibility that L,
 might not converge. Thus, the test chooses Expert 0 if limsup^^L^/z") < 1,
 Expert 1 if liminf,,^0CL^(/zA?) > 1, and 0.5 otherwise. The constant K derived
 in Theorem 1 is independent of the horizon.21
 In the infinite-horizon case, we obtain the sharper result that either an in-

 formed expert is picked or the two experts asymptotically make identical fore-
 casts:

 THEOREM 4: If expert i is truthful, then for any distribution P and mixed fore-
 casting strategy cpj (j ^ /), there is P x cp } probability 1 that either

 (a) T picks expert i or
 (b) lim^x\fl(h'-l)-fl(h'-l)\=0.

 Proof: Assume without loss of generality that Expert 0 is truthful, and fix
 arbitrary P and f{. Write en = 1/2" and repeatedly apply Theorem 1 to obtain
 a sequence of integers {Kn} such that each event

 An = \h°° ilimsupL, > 1 & #{t: l/^'"1) - fl(h'-l)\ > sn] > Kn\

 has probability less than sn.22 Since ^nP(An) < oo, by the Borel-Cantelli
 lemma we have

 P{h°°eAnLo.} = 0.

 Thus, for P-a.e. path h°°, either Expert 0 wins or, for all but finitely many n,
 l/oC*'-1)-//^'-1)! < en for all but finitely many t.ln the latter case \ft(h'-1) -
 //(/i'-i)|->0. Q.E.D.

 Our final result shows that Theorem 2 extends to the infinite horizon in a

 sharper form. Any n e A(A(v4°°)) defines a {x as in Section 4.1. Let M(s, 8) c
 A(A(y4°°)) be the set consisting of all /jl's such that for /x-a.e. infinite history h°°,
 for infinitely many periods,

 (3) max jX'(Be(p)\a'-1) < 1 - 8.
 peMA)

 THEOREM 5: For every s, 8 > 0, and n e M(e,8), the value of the game to
 Expert 1 is zero.

 Borel a-algebras on these spaces. Mixed strategies are defined on the Borel o--algebra generated
 by the weak topology on A(AX).

 21 As it is in the FL active supermartingale result.
 22The argument in the proof of Theorem 1 can be readily cast in an infinite-horizon setting to

 draw the conclusion that for every e there is an integer K such that with P probability at least
 1 - e, either (a) limsupL,, < 1 or (b) the two-experts' forecasts are e-close in all but K periods.
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 Proof: The proof closely follows that of Theorem 2, so assume, as in that
 proof, that the informed expert reports the truth. It suffices to show that the
 payoff of the strategic expert is 0 for each of his pure strategies /i .
 For any pair of integers K and L, we have

 iM{(fo,h^:#{t:\ft(h'-l)-fl(ht-l)\>e}<K}<B(K,L,8),

 where B(K,L, 8) denotes the binomial probability of no more than K suc-
 cesses in L trials when the probability of success is 8. Taking L to infinity (hold-
 ing K fixed), the right-hand side goes to 0. Therefore the left-hand side is equal
 to zero for every K,

 £{(/<>, *°°) : l/o^/i'-1) - fl(h'-l)\ > s i.o.} = 1,

 so case (b) in Theorem 4 holds with probability 0. The payoff of the strategic
 expert is therefore 0. Q.E.D.

 We now discuss the recent work of Feinberg and Stewart (2006), who take
 an alternative approach to testing multiple forecasters. Their test, called cross-
 calibration, extends the standard calibration test by requiring that a potential
 expert give frequencies that are correct in the infinite limit, not just conditional
 on his own forecast, but conditional on any combination of his and the other
 player's forecasts. In addition to the choice of calibration versus reputation-
 style testing, their methodology differs from ours in that they emphasize the
 infinite horizon, while our focus is on putting bounds on the errors in a finite
 horizon. They also have a different framework for evaluating the effective-
 ness of a test, namely the topological notion of category (also used by Dekel
 and Feinberg (2006) and Olszewski and Sandroni (2006)). Their central result
 shows that when a false expert is cross-calibrated against a true expert, for any
 strategy he might use he will pass with positive probability only on a category
 1 set of true distributions. The category approach has the advantage of not
 requiring the specification of a distribution over distributions to represent the
 false expert's uncertainty about the true probabilities. By contrast, a classical
 decision-maker evaluates the subjective probability of passing rather than the
 category of the set on which he passes. This is the motivation for our introduc-
 tion of second-order distributions in Section 4.

 6. DISCUSSION

 We begin with an informal review of Sandroni's (2003) disarmingly elegant
 use of the minimax theorem to prove impossibility.

 For expositional clarity, we shall refer to the forecaster's pure strategies as
 measures Q e A(y4n), so his set of mixed strategies is A(A(^4")), exactly the
 same as Nature's. Assume that n is finite.
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 In the single-expert setting, a test is a function of the form

 r;:#xAM")^(o,i)

 with the interpretation that the test decides whether or not to pass the expert
 based on the sequence of outcomes an and the expert's forecast Q e A(A").
 A strategic expert's payoff is the expected probability of passing the test:

 zs(P,Q)= f T?(a",Q)dP(a").

 Extend z, to mixed strategies \x and <p in the usual way.
 The impossibility result asserts that the expert has a strategy <p that guar-

 antees him a high payoff regardless of what Nature does. To prove the result,
 think of the forecaster as playing a constant-sum game against Nature, so that
 the minimax theorem asserts

 (4) max min z5(/z,, <p) = min max zs(/jl, <p).
 ipeMA(A")) ixzMMA")) /ieA(A(/1")) <p€A(A(/l/I))

 The impossibility theorem boils down to putting a lower bound on the maxmin
 value in the above expression.

 The crucial observation is that Nature's randomization is completely super-
 fluous. Let P^ denote the probability measure obtained from fx by the reduc-
 tion of compound lotteries. As far as the payoffs are concerned, whether Na-
 ture uses a mixed strategy jjl or PM makes no difference:

 (5) zs(ii,<p) = zs(P'l9<p) V/i,^A(A(^fl)).

 This is because /jl and P^ induce identical distributions on the set of outcomes
 A". As far as realized outcomes are concerned, /x and PM are observation-
 ally indistinguishable. For example, outside observers can never distinguish be-
 tween whether Nature is playing a 50/50 lottery on two measures Px and P2 or
 putting unit mass on the measure PM = (Pl + P2)/2. By contrast, an expert's
 mixed strategy v is not, in general, reducible: choosing between the two fore-
 casts Q} or Q2 with equal probability is not payoff equivalent to the forecast
 G = (Q1 + G2)/2.

 Given this asymmetry between Nature's and the expert's randomizations, the
 conclusion of the minimax theorem can be rewritten as

 (6) max min zs(P,cp)= min max zs(P,(p).
 tpeMMA"))PeMAn) PeMA") <peMMAn))

 Here is where the assumption that a test T" passes the truth with probability
 1 - s plays its critical role. This assumption, which states that for all P,

 (7) zs(P,P)^P{r;(af\P) = \}>i-s,
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 ensures that the right-hand side of Eq. (6) is at least 1 - s. If the expert knows
 that Nature has chosen P, then he has an obvious response guaranteeing a pay-
 off of 1 - 8, namely to report P. This delivers the conclusion that the maxmin
 value is also greater than 1 - s, that is, the strategic expert can pass the test
 with high probability.
 To sum up, the key to understanding the impossibility theorem is the re-

 ducibility of Nature's compound lotteries in the sense of Eq. (5) above. This
 reducibility means that the seemingly innocuous assumption that the expert
 has a good response to any pure strategy P e &(An) also implies he has a good
 response to any mixed strategy fi e A(A(An)). This allows the power of the
 minimax theorem to come into play, delivering the desired result. Thus, the
 expert can win a hide-and-seek game where Nature hides the true probability
 P, despite the large number of potential hiding places, because in the single-
 expert setting Nature has no meaningful opportunity to randomize.
 Our results on comparative testing may be understood as a consequence of

 the restoration of A(A(y4'1)) as Nature's strategy space. Consider again the
 game in Section 4, where Nature uses a mixed strategy /jl and informs Ex-
 pert 0 of its random choice P e A(An). The presence of an informed expert
 breaks the strategic equivalence between /jl and PM. Unless /x is degenerate,
 Nature's use of a mixed strategy /jl is now strategically distinct from PM, in
 the sense that Eq. (5) no longer holds. To win, the strategic expert must, at
 least approximately (in the sense of Theorem 1), guess Nature's selection of a
 pure strategy P. This he cannot guarantee. The crucial difference is that in the
 single-expert case, having a good response to any distribution is equivalent to
 having a good response to any randomization over distributions, since the two
 are equivalent via the reduction of compound lotteries. In the multiple-expert
 case, this equivalence no longer holds.
 Where does that leave us with the assumption that a test must pass the

 truth and the notion of stochastic truth itself? There is clearly no ambiguity
 in the meaning of a deterministic truth. The meaning of stochastic truth, as the
 quote from Keynes suggests, is much less obvious. A typical distribution P on
 outcomes can have infinitely many two-stage lottery representations jjl (with
 PM = P). Different representations correspond to meaningful and distinct in-
 formation structures. But these different information structures are relevant

 only to the extent that there is an observer who is at least partially informed of
 what the truth is.

 7. CONCLUDING REMARKS: ISOLATED VS. COMPARATIVE TESTING

 Impossibility results, such as Sandroni's (2003) theorem, provide invaluable
 insights by uncovering the subtle consequences of their assumptions. That any
 test can be passed by a strategic expert is a profoundly disturbing message
 to the countless areas of human activity where testing experts' knowledge is
 vital.
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 In this paper, we construct tests with good properties by departing from the
 assumption that forecasts are tested in isolation. We also use the model of
 comparative testing to shed light on what drives the impossibility result and,
 thus, what it takes to avoid it.
 How are experts and their theories tested in practice? We are unaware of

 any comprehensive study, but it is not hard to identify regularities in specific
 contexts. The human activity where testing theories is handled with the great-
 est care and rigor is, arguably, scientific knowledge.23 There are numerous and
 well-known examples where theories are judged in terms of their performance
 relative to other theories rather than in isolation. Some of the greatest sci-
 entific theories were, or continue to be, maintained despite a large body of
 contradicting evidence. A well-known example is Newtonian gravitational the-
 ory, which was upheld for decades despite many empirical anomalies. This the-
 ory was eventually replaced, but only as a consequence of a comparison with
 a better theory - general relativity. Perhaps less known to the reader is the
 steady accumulation of empirical findings inconsistent with general relativity -
 as well as its fundamental incompatibility with other theories in physics. Yet
 this theory continues to be maintained because there is no superior alterna-
 tive.24 Economics is full of similar examples. Expected utility theory continues
 to be the dominant theory in economic models despite the overwhelming ev-
 idence against it. The reason, we suspect, is the lack of a convincing alterna-
 tive.

 In practice, comparative testing is common and, arguably, a more prevalent
 method of testing theories. Weather forecasters, stock analysts, and macro-
 economists can be, and often are, judged relative to their peers and not ac-
 cording to some absolute pass/fail test. Our results provide a very simple
 reputation-type approach to conducting such comparative tests.

 To conclude, an interpretation of the impossibility literature, combined with
 our positive results for comparative testing, is that the only coherent notion of
 "true" probabilities is relative. That is, we cannot say whether or not a theory
 is correct in any absolute sense, only that it is better than others.

 Dept. of Managerial Economics and Decision Sciences, Kellogg School of
 Management, Northwestern University, Evanston, IL 60208, U.S.A.; al-najjar@
 northwestern, edu; http://www. kellogg. northwestern, edu/faculty/alnajjar/htm/index.
 htm

 and

 23The impossibility results seem to undermine the central methodological principle of falsi-
 fiability as a criterion for judging whether a theory is scientific or not. The impossibility results
 imply that given any rule of evaluating scientific theories, a strategic expert can produce a falsifi-
 able theory Q that is unlikely to be rejected by that rule, regardless of what the truth is. Harman
 and Kulkarni (2007) provided a different perspective and discussed the limitations of simplistic
 Popperian falsifiability when theories are probabilistic.

 24For details on these examples, see Darling (2006).
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 Dept. of Managerial Economics and Decision Sciences, Kellogg School of Man-
 agement, Northwestern University, Evanston, IL 60208, U.S.A.; j-weinstein@
 kellogg. northwestern, edu; http://www. kellogg. northwestern, edul faculty Iweinsteinl
 htmlindex.htm.

 Manuscript received January, 2007; final revision received January, 2008.

 APPENDIX

 A.I. The Active Supermartingale Theorem

 Consider an abstract setting with a probability measure P on H°° and a fil-
 tration [Hk}f=v where each Hk is generated by a finite partition, with generic
 element denoted hk.

 Definition 1: A positive supermartingale {Lk} is active with activity iff > 0
 (under P) if

 p\h°°\ i*--\ >iff hk]\ ><A

 for almost all histories with L*_i > 0.

 Fudenberg and Levine (1992, Theorem A.I) showed the following remark-
 able result:

 THEOREM 6: For every /0 > 0, s > 0, iff e (0, 1), and 0 < L < l{) there is a time
 K < oo such that

 P\h°° :sup Lk<L\ >l-e
 * k>K *

 for every active supermartingale [Lk } with Lo = /o and activity \ft.

 The power of the theorem stems from the fact that the integer K, which
 depends on the parameters /(), £, iff, and L, is otherwise independent of the un-

 derlying stochastic process P. Note that Lk, being a supermartingale, is weakly
 decreasing in expectations. The assumption that it is active says that it must
 substantially go up or down relative to Lk-\ with probability bounded away
 from zero in each period. The theorem says that if [Lk] is an active super-
 martingale, then there is a fixed time K by which, with high probability, Lk
 drops below L and remains below L for all future periods.
 The result has important applications in the reputation literature and is also
 related to the concept of weak merging, introduced by Kalai and Lehrer (1994).
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 Sorin (1999) introduced a framework that integrates the reputation and merg-
 ing literatures.
 In the context of testing, we consider two strategies, one for each expert.

 Although the testing context is not inherently Bayesian, the tester is free to de-
 sign a test with Bayesian features, where the forecasting strategies correspond
 to "types" and "beliefs" are updated using Bayes rule. Our comparative test
 chooses an expert depending on whether the posterior odds ratio is above or
 below 1. The active martingale result implies that there is a bound (indepen-
 dent of the length of the game and the true distribution) on the number of
 periods where the uninformed expert can be substantially wrong, such that if
 this bound is exceeded, the probability that Ln > 1 is small.
 Our use of the active supermartingale result differs from the reputation

 model in another way. There it was necessary to show that, should beliefs over
 actions differ too often, Ln will fall close to zero, implying that the uninformed
 player would be almost certain he is facing the commitment type, whereas here
 we are only interested in whether Ln rises or falls marginally over the horizon
 of the model.

 A.2. Impossibility of Testing Whether There Is at Least One Informed Expert

 We now consider the issue of whether there is a way to determine if among
 the two experts at least one is informed. Formally, consider a function

 t:H»-* {0,1}

 with the interpretation that r(an, /0, f\) = 1 if and only if at least one expert is
 informed.25

 The following theorem is an important variant of Sandroni's (2003) impos-
 sibility result:

 THEOREM 7: Suppose that r is such that for every P, f{), and f

 (8) P{a":r(an,f0,f) = l}>l-s if either f() = fP or f = fP.

 Then, for every mixed strategy cp0 of Expert 0, there is a mixed strategy cp{ of Ex-
 pert 1 such that, for every an,

 (9) 9oX^{(/o,/,):T(flw,/o,/,) = l}>l-fi.

 That is, if r has the property that it returns 1 (with high probability) when-
 ever at least one expert is informed, then each of the two experts can, for any

 25 Note that we allow the test t to condition on the entire forecasting schemes, including fore-
 casts at unobserved histories. This only strengthens the conclusion of Theorem 7.
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 opponent strategy, manipulate r by forcing it to return 1 (with high probability)
 without any knowledge of the true process.

 Proof of Theorem 7: For any forecasting strategy /0 of Expert 0, define
 the single-expert test

 MfQ:AnxFn^> {0,1}

 by

 Mf0(an,fl) = l <=» T(an,fo,fl) = l.

 By (8), the single-expert test M/o passes the truth with probability 1 - e.
 From Sandroni (2003) we know that there is a mixed strategy cp{ such that
 for every a",

 <Pi{fi:Mfo(an,fl) = l}>l-e.

 This establishes (9) for pure cp0.
 For a general cp0, Expert 1 is facing a lottery over deterministic tests. We

 show that Sandroni's (2003) impossibility result extends to the case of stochas-
 tic tests. Formally, for each a" and /, , define the single-expert test

 Mtpo(an,fl) = <po{fo:T(an9fo,fl) = l}.

 The reader may interpret AfV() as either a score in a continuous valued test or
 as the probability chosen by the tester to pass the expert at a" and fx .

 Note that for any fu

 f M^{a\fx)dPh = I [ T(anJQJx)d<podPfl
 J A" J A" Jf{)

 = I I T(an,fo,fi)dPfld<po
 Jfo J*n

 = f Pfl{an: r{anj^fx ) = l}d<p()> 1 - s.
 Jfo

 Applying the Minimax Theorem (Fan (1953)), we conclude that there is cpx
 such that, for every a",

 <pl{fl:MiP0(an9fl) = l}>l-e,

 from which (9) directly follows. Q.E.D.

 Theorem 7 does not extend to the infinite horizon - at least not without ad-

 ditional restrictions. This is because a key ingredient of its proof is the impos-
 sibility result for finite-horizon testing. In the infinite-horizon case there are a
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 number of positive results, as noted in the Introduction. However, Olszewski
 and Sandroni (2007) proved an impossibility theorem for all infinite-horizon
 tests that do not use counterfactuals.
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