
Journal of Economic Theory 145 (2010) 2203–2217

www.elsevier.com/locate/jet

Testing theories with learnable and
predictive representations ✩

Nabil I. Al-Najjar a,∗, Alvaro Sandroni a,b, Rann Smorodinsky c,
Jonathan Weinstein a

a Department of Managerial Economics and Decision Sciences, Kellogg School of Management,
Northwestern University, Evanston, IL 60208, United States

b Department of Economics, University of Pennsylvania, United States
c Davidson Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel

Received 12 May 2009; final version received 3 February 2010; accepted 15 April 2010

Available online 23 July 2010

Abstract

We study the problem of testing an expert whose theory has a learnable and predictive parametric rep-
resentation, as do standard processes used in statistics. We design a test in which the expert is required to
submit a date T by which he will have learned enough to deliver a sharp, testable prediction about future
frequencies. We show that this test passes an expert who knows the data-generating process and cannot be
manipulated by a uninformed one. Such a test is not possible if the theory is unrestricted.
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1. Introduction

Forecasting is central to all aspects of economic activity. Consumers, firms, investors and gov-
ernments base their decisions on forecasts of variables such as demand, cost, stock prices and
indices, GDP, unemployment and interest rates. The prevailing practice in economic modeling
sidesteps the problem of forecasting by envisioning economic agents who know the underly-
ing data-generating process. In practice, however, decision makers almost never know the true
process, and must therefore either learn from data and/or seek the advice of ‘experts.’ Entire
industries, such as management consulting and the countless forms of financial advising and
analysis, are dedicated to the business of supplying such forecasts. Looking beyond economic
activities, self-declared ‘experts’ thrive in all environments fraught with ambiguity, volunteering
predictions on subjects ranging from war and politics, to diet and climate change.

Can forecasts be tested? Can we tell apart true experts from charlatans? Cures from quacks?
Science from pseudo-science? These questions have been the focus of a growing number of
recent papers. The purported expert in this setting announces, at the beginning of each period, a
history-dependent probabilistic forecast for that period’s outcome. A (pure) forecasting strategy,
or theory, for this expert is a function that assigns to each finite history of past outcomes an
element of �(A), the simplex over the (finite) set of outcomes A. A test τ takes as input the
expert’s theory and the actual sequence of realized outcomes, and decides whether to accept or
reject the expert.

This literature’s most robust—and startling—finding is that all reasonable tests can be manip-
ulated. Manipulation means that a strategic expert has a mixed strategy that is guaranteed to pass
the test with high probability, regardless of how the data is generated. The key assumption lead-
ing to manipulation is that an expert who reports any data-generating process μ is guaranteed to
pass the test with high μ-probability. It is important for this result that the expert is free to submit
any probability distribution whatsoever.

One way around the impossibility result, then, is to restrict the theories the expert is allowed
to submit. Restrictions, however, should not be arbitrary. Ideally, they should be aligned with
normative standards, such as those typically expected of scientific theories and statistical models.
Two such appealing standards are that theories should be:

1. Learnable: the expert should be able to refine his initial theory by learning from data; and
2. Predictive: the expert does not need to keep learning forever; eventually, he will have learned

enough so that new evidence will have a small effect on his predictions about the distant
future.

We follow the formalization of these ideas introduced in [7]. The main result of this paper is
to show that the class of theories that are learnable and predictive, denoted P �, can be tested.
Specifically, we construct a test τ that passes any theory in P � and is not manipulable.

To make the notions of learnability and predictiveness precise, we first express any theory μ

as a probability distribution λ on a set of parameters Θ , with each θ ∈ Θ indexing a stochastic
process μθ .1 Here, λ represents prior beliefs about the likelihood of various values of the true
parameter θ . As observations accumulate, the expert refines his initial theory by updating his
beliefs over the parameters. We consider only parametric representations that are learnable in

1 The classic example is de Finetti’s representation of exchangeable processes with outcomes in {0,1} as a two stage
lottery. Here, Θ = [0,1] and μθ is i.i.d. with mean θ .
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the sense that, as data accumulate, the expert is eventually able to forecast as if he knew the true
parameter θ to any desired degree of precision.

The restriction to learnable parametrizations is, by itself, vacuous since any μ has a trivial
“learnable” representation with a singleton Θ = {θ} and μθ = μ. The force of the model comes
from requiring that the parameters generate sharp enough predictions about future realizations to
be tested against new evidence.

The key assumption is that the theory μ has a learnable and predictive parametrization.
The property of predictiveness, introduced and characterized by Jackson, Kalai and Smorodin-
sky [7],2 requires that, given a parameter θ and an integer t , the outcomes of the next t periods
do not improve predictions of outcomes in the distant future. This formalizes the intuition that
the θ is indeed a parameter in the sense that, as in statistical models, it summarizes all that can be
learned from the data. The requirement that a representation is learnable and predictive then says
that the theory has been decomposed into its ‘smallest’ learnable components. Any coarser rep-
resentation overlooks patterns that could have been learned, while finer representations contain
parameters whose values are impossible to learn.

We show that the class of learnable and predictive theories, denoted P �, is testable. Specifi-
cally, there is a test τ such that: (1) any expert who knows the true μ ∈ P � can pass; and (2) the
test is non-manipulable: for any randomization ϕ over theories by a manipulating expert there is
μ ∈ P � such that the expert is rejected with arbitrarily high probability.

Our ability to construct such a test hinges on a key property of learnable and predictive the-
ories, which is a consequence of Lemma A.2. For any theory in P � there is a date T and, as
a function of the observations up to time T , a distribution α ∈ �(A) and subsequent dates
m1 < m2 < · · · such that the time-T conditional forecast of the outcome at these dates is ap-
proximately i.i.d. with distribution α. Our test is based on a classical hypothesis test of these
i.i.d. conditional predictions.

An expert with a theory in P � learns in the sense that his conditional forecast α and dates
m1,m2, . . . are all functions of the observations up to time T . Crucially, however, although the
expert is allowed to learn from the data, he is not free to revise his theory arbitrarily. He must
pre-specify a time T at which he learns enough to make sharp predictions.

In the literature, a test τ is manipulable if for every ε > 0 the expert has a mixed strategy ϕ

that passes the test on every sample path with probability 1 − ε. This strong criterion for manip-
ulability is what makes impossibility results so striking. For our positive result, we introduce a
stronger criterion than the negation of manipulability. First, for every expert’s mixed strategy ϕ

there is a path at which the expert’s probability of passing is no more than ε. Second, conditional
on the announced T , a fixed μ, that does not depend on the mixed strategy used, holds the ex-
pert to a low probability of passing. This says that announcing that T periods are sufficient for
learning is a substantial commitment that a manipulative expert cannot get around.

1.1. Literature

The impossibility of designing non-manipulable tests was first established for the special class
of calibration tests by Foster and Vohra [5].3 Sandroni [15] showed that this result holds for all
finite-horizon tests. These are tests that condition only on observations during a pre-specified

2 What we call predictive is “sufficient for predictions” in their terminology.
3 Their result was subsequently strengthened by various authors, including Fudenberg and Levine [6], Kalai, Lehrer

and Smorodinsky [9], Lehrer [10] and Sandroni, Smorodinsky and Vohra [16].
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finite number of periods T . Finite-horizon tests are restrictive because for every T there may
exist theories that are sufficiently complex to require more than T periods to test. In the infinite
horizon, some non-manipulable tests do exist, but these must lack certain desirable properties.
For instance, Olszewski and Sandroni [12] showed that they cannot be future-independent and
Shmaya [17] showed that they must condition on counter-factual predictions.4

Most relevant to our work is Olszewski and Sandroni [14] who show that, when the class of
theories is unrestricted, a non-manipulable test cannot be an acceptance test. An acceptance test
is one where, if the expert is accepted on an infinite path, there is an initial segment of the path
on which he is accepted for any continuation. Rejection tests are defined similarly. Our test is
both an acceptance test and a rejection test, i.e., it always gives an answer in finite time. Such a
test could not be effective without any restriction on the set of theories.

Note that while our test always answers in finite time, this advantage is mitigated by the fact
that there is no uniform bound on the time required. In particular, the expert can delay rejection
for any finite duration he wishes. The good news is that he must specify this delay at the start of
time. This means that the tester would be free not to “hire” him if the delay is too long, though
rejecting experts with long delays would lead to rejection of some true experts with theories
in P �. A practical-minded reader, who wishes to insist on tests that answer in a pre-specified
finite time, may imagine replacing our test with a family of tests in which the time allowed goes
to infinity and the set of accepted theories converges to P �.

Olszewski and Sandroni [14] also construct a non-manipulable test by restricting the class of
theories to a non-convex set of distributions.5 Their restriction lacks the statistical motivation of
learnability and predictiveness we have given earlier. We also argue in Sections 3.4 and 4.3 that
convexity is a desirable property of a class of theories because it corresponds to allowing the
expert to learn.

Dekel and Feinberg [2] and Olszewski and Sandroni [13] showed the existence of non-
manipulable tests without restricting the class of theories. However, these are necessarily not
acceptance tests, and thus may not return any outcome in finite time. In addition, as the results
of Olszewski and Sandroni [12] and Shmaya [17] show, these tests are difficult to implement. In
contrast, our test is a simple adaptation of a test frequently used in practice.

Al-Najjar and Weinstein [1] and Feinberg and Stewart [3] consider the problem of testing mul-
tiple experts when one expert knows the true process. As shown by Al-Najjar and Weinstein [1],
the positive results in these papers do not circumvent the single-expert testing problem because
there is no way to test if there is at least one expert who knows the truth.

Finally, Fortnow and Vohra [4] proved positive results based on algorithmic complexity of
theories. Roughly, there is a test that cannot be manipulated by an expert who submits (algorith-
mically) simple forecasts.

2. Tests and their properties

2.1. Model and notation

• Fix a finite set A representing outcomes in any given period. For any set let �(·) denote the
set of probability distributions on that set.

4 A test is future-independent if, whenever a theory f is rejected at some history hT , the test rejects all other theories
f ′ that make the same predictions as f until period T + 1. A test does not condition on counter-factual predictions if its
decision to accept or reject depends only on the forecasts made along the actual history h∞.

5 The class they rule out consist of all theories that are sufficiently close to a given theory μ.
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• Assume, for expository reasons, that A = {0,1}. All of our analysis goes through with any
finite A.

• The horizon is infinite, with time periods indexed by t = 1,2, . . . . Let H∞ denote the set of
infinite sequences of outcomes, which we shall also refer to as complete histories.6

• The set of histories up to and including time t is denoted Ht , with generic element ht .
• At a history h∞, the outcome at time t is denoted at (h

∞), or simply at when h∞ is clear
from the context.

• Let F t
n denote the algebra of events determined by the outcomes between periods n and t .

When n = 0, we simply write F t instead of F t
0.

• Let F ∞
n denote the σ -algebra of events determined by the outcomes at all times t � n. Again,

we shall write F ∞ instead of F ∞
0 .

• The set of (countably additive) probability measures on H∞ is denoted P and is endowed
with the weak topology.

• A theory is a probability measure μ in P .

2.2. Tests

We shall define tests and their properties in a more general setting than typically done in the
literature. In our setting, an expert communicates a message m, assumed to be an element of
some measurable space of messages M. A test is any measurable function

τ : M × H∞ → {0,1}
with the interpretation that the test takes as input a message m and an infinite path h∞ and
delivers a verdict of either accepting or rejecting the expert (1 or 0, respectively).

This formulation is more general than what is common in the literature, where the standard
assumption is M = P , so the expert reports a probability distribution as his message.7 Our reason
for the more general setting is expositional: making the set of messages explicit gives a better
sense of how much information the test needs in order to render a verdict.

2.3. Properties of tests

First we introduce some notation. Define

V (ϕ,μ) ≡
∫
m

μ
{
h∞: τ(m, h∞) = 1

}
dϕ(m),

which is the expert’s payoff, namely the probability of passing given that the expert uses the
mixed strategy ϕ and the true process is μ. For notational convenience we will sometimes use
the message m or the path h∞ to indicate Dirac measures that put unit mass on m and h∞
respectively.

Let P ′ ⊆ P be an arbitrary set of theories.

6 To minimize repetition, from this point on, all product spaces are endowed with the product topology and the Borel
σ -algebra.

7 This does not weaken our result. We could recast our test into the standard setting by having the expert report a
probability measure and then converting it to a message as in the proof of Proposition 4.1.
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Definition 1. A test τ passes all theories in P ′ with probability 1 − ε if for every μ ∈ P ′ there is
a message mμ such that

V (mμ,μ) > 1 − ε.

In the testing literature, this assumption is usually stated for P ′ = P and mμ = μ. That is, no
restriction on the class of permitted processes is made and the test passes with high probability
an expert who reports the true process. This is the crucial substantive assumption responsible for
the impossibility theorems. The goal of this paper is to identify reasonable restrictions on the
class of theories to enable effective testing.

Definition 2. A test τ can be ignorantly passed with probability 1 − ε if there is a mixed strategy
ϕ ∈ �(M) such that, for every μ ∈ P ,

V (ϕ,μ) > 1 − ε.

As indicated in the Introduction, the manipulability of a test is a strong and striking property in
the context of impossibility theorems. Inevitably, this means that the negation of manipulability
is a weak requirement: a test is not manipulable provided only that each mixed strategy fails on
one sample path with probability greater than ε. Our definition of testability includes a notion of
non-manipulability which is stronger than the negation of manipulability:

Definition 3. A set of theories P ′ is ε-testable by a test τ if

1. τ passes all theories in P ′ with probability 1 − ε; and
2. for every ϕ ∈ �(M) there is μ ∈ P ′ such that V (ϕ,μ) < ε.

The set P ′ is testable if, for every ε > 0, P ′ is ε-testable by some test τ .

Note that in the second part of the definition, we require that for any strategic expert, there is
a μ ∈ P ′ on which he fails. This means that merely knowing that the distribution is in P ′ is not
enough to ensure that an expert passes; the expert must know the particular element of P ′. To
satisfy both parts of this definition, P ′ must be neither too big nor too small, but in an intermediate
range where knowing the particular μ is superior to knowing we are in the class P ′. We will not
give a full classification of testable theories in this paper; our main result is to show that the
class P � we are about to define is testable (and indeed, so are all classes lying between the
smaller class of Dirac measures and P �).

3. Learnable and predictive theories

3.1. Parametric representations of stochastic processes

We define the notions of learning and predictions in terms of parametric representations of
stochastic processes. Formally,

Definition 4. A parametric representation of a stochastic process μ is a quadruple (Θ, B, λ,

(μθ )θ∈Θ) where (Θ, B, λ) is a probability space and (μθ )θ∈Θ is a family of probability distribu-
tions on (H∞, F ∞) such that for every event S ∈ F ∞
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1. The function θ 	→ μθ(S) is measurable; and
2. μ(S) = ∫

Θ
μθ(S)dλ(θ).

The notion of a parametric representation is not useful without further structure; in fact, every
process always has two trivial parametrizations:

1. The coarsest parametrization: Θ = {θ},μθ = μ, and λ puts unit mass on θ ;
2. The finest parametrization: Θ = H∞, μh∞ is a Dirac measure on the infinite sequence of

outcomes h∞, and λ = μ.

Next we discuss formal criteria for evaluating representations that will rule these out, namely
learnability and predictiveness.

3.2. Learnability

A natural requirement to impose on a parametrization is for it to be “learnable.” This means
that, as evidence accumulates, the updated forecasts become close to those made if the true pa-
rameters were known. The idea of learnability is made formal using the notion of weak merging
introduced by Kalai and Lehrer [8].8 We follow Jackson, Kalai and Smorodinsky [7] and define:

Definition 5. A parametric representation (Θ, B, λ, (μθ )θ∈Θ) of a stochastic process μ is learn-
able if for λ-a.e. θ : for every ε > 0, non-negative integers l, and μθ -a.e. h∞, there is T such that
for all t � T

sup
n�t

S∈F n+l
n

∣∣μ(
S|F t

) − μθ

(
S|F t

)∣∣ < ε.

For a fixed θ , the above simply says that μ weakly merges with μθ , in the sense of [8].
Note that weak merging does not imply that one learns the true θ , only that the forecasts made
according to the conditional distribution and those made using μθ become close in the sense of
weak merging.

The notion of learnability rules out parametrizations that are too fine. In particular, a conse-
quence of the proof of Proposition 3.1 is that the finest parametrization introduced above is not
learnable whenever μ has uncountable support.

3.3. Predictive representations

Learnability, by itself, is not a very demanding property. Any process has coarse parametriza-
tions where knowledge of the true parameter is of little or no value. Effective testing requires
representations in which parameters are fine enough to yield sharp predictions that can be tested.

The following is a key concept, introduced by Jackson, Kalai and Smorodinsky [7]:

Definition 6. A probability distribution p over (H∞, F ∞) is sufficient for predictions if for all t

lim
n

sup
S∈F ∞

n

∣∣p(
S|F t

) − p(S)
∣∣ = 0.

8 See [18] for characterizations and links to the literature.
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A process p is sufficient for predictions if knowledge of the realizations in the near future is of
little help in refining forecasts about the distant future. Examples include i.i.d. distributions and
Dirac measures δh∞ . A less trivial example is irreducible Markov processes. Given any such pro-
cess, learning the next few realizations will typically have some value in predicting realizations
in the near future. However, realizations in the near future convey no useful information about
the behavior of the process in the distant future. On the other hand, any non-i.i.d. exchangeable
process, or mixture of irreducible Markov processes, is not sufficient for predictions.

Definition 7. A parametric representation (Θ, B, λ, (μθ )θ∈Θ) is predictive if μθ is sufficient for
predictions for λ-a.e. θ .

The key definition for our paper is:

Definition 8. P � denotes the class of all theories with a learnable and predictive representation.

Jackson, Kalai and Smorodinsky [7] proved that a stochastic process has a predictive and
learnable representation if and only if it satisfies a condition called asymptotic reverse mixing.
This provides a representation-free characterization of P �. Roughly, it says that we eventually
learn everything about the tail behavior that is relevant to predicting the near future. We refer the
reader to their paper for a precise definition and discussion of this condition, and for an example
of a distribution which is not in P �.9 In the present paper, we find it more useful to work with
the characterization via representations.

3.4. How appealing is P �?

The value of our approach depends on the appeal of the class of predictive theories, P �. Here
we provide some examples and considerations that can be helpful in illuminating this issue.

For a class of probability measures Q, let co Q denote its convex hull. Consider the following
classes of theories:

• Deterministic theories, PDet.
• i.i.d. theories, PIID.
• Markov theories, PMkv.

A deterministic theory is a (Dirac) measure δh∞ that puts unit mass on a single path h∞.
Such a theory makes deterministic predictions about the outcome in each period. The definition
of i.i.d. and Markov theories is standard. Note that by De Finetti’s theorem, the closure of the
convex hull of PIID is the class of exchangeable distributions PEx.

Our view is that any reasonable class of theories should include the three classes above. In-
deed, any theory in one of these classes above is sufficient for predictions, and thus belongs
to P �.10

We also argue that it is desirable that the expert should be allowed to learn. This corresponds to
accepting theories that are convex combinations of parameters. These represent prior beliefs that

9 The distribution which we use in the proof of Theorem 4.2 is also outside P � and is very similar to their example.
10 In this special case, the coarse parametrization with only one parameter is both learnable and predictive.
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can potentially be refined as data accumulates. To illustrate this, consider an expert who predicts
that the path will be either the deterministic sequence h∞

1 or h∞
2 with equal probability. This

expert will eventually be able to make deterministic predictions after an initial period of learning.
The general point is that we should not restrict the class of theories so it rules out experts who
know that the true parameter is either θ or θ ′ but who need data to be able to tell which. The class
of learnable and predictive theories, P �, is indeed convex, while the three classes above are not.
Note that P � is not subject to the impossibility results mentioned in the Introduction because it
is convex but not compact.

In addition to being convex and containing important classes of distributions as special cases,
P � is rich enough that the knowledge of a truthful expert cannot be imitated by someone who
merely knows that the process is in P �. This is in contrast with the class of exchangeable theories:
If one knows that the process lies in PEx, then there is a procedure that will always learn the true
parameter. In particular, if μ is the exchangeable distribution obtained by uniformly randomizing
on Θ , then the conditional distribution μ(·‖hT ) will weakly merge with the true μθ as data
accumulates. Restricting theories to be in PEx imposes so much structure that the value of the
true parameter can be inferred from the data in a purely empirically manner. In this case there is
no need to rely on an expert in the first place.

The next proposition shows that, by contrast, knowing merely that the process lies in P � is not
enough to guarantee that one can eventually predict as well as an expert who knows the particular
μ′ ∈ P �.

Proposition 3.1. There does not exist a belief μ ∈ P that weakly merges with every μ in P �.

Proof. Note that every Dirac measure is in P �, so it suffices to show that μ cannot weakly
merge with every such measure. Abusing notation, denote the measure that puts unit mass on the
path h∞ by h∞. We will say that με-merges with h∞ by time T if the statement in Definition 5
holds for ε and T , with l = 1.

Fix any ε < 0.5. We claim that for each partial history hT , με-merges with h∞ by time T for
at most one continuation h∞ of hT . Indeed, μ is required in each period to assign probability
greater than 0.5 to the realization along h∞, and this can be true for at most one continuation.
Since the set of partial histories is countable, while H∞ is uncountable, there is some h∞ with
which μ does not ε-merge by time T for any T , completing the proof. �

Indeed, the test we develop in this paper can be passed by an expert who knows the true μ

when μ ∈ P �, but not by an expert who merely knows that the process is some μ ∈ P � without
knowing which.

4. Main results

4.1. The test

We consider a family of tests, parametrized by the sharpness we require for the expert’s pre-
dictions, δ, and the testing time, L. We first fix a sequence of infinite sets of integers {NT }∞T =1
such that

1. Ni ∩ Nj = ∅ for i = j ;
2. n > T for every n ∈ NT .
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Given δ > 0 and integer L, define the test τ(δ,L) by these steps:

1. The expert submits a date T ;
2. At date T , having observed a history hT , the expert submits dates

m1, . . . ,mL ∈ NT

and a number α ∈ [0,1];
3. The expert passes if and only if:∣∣∣∣am1(h

∞) + · · · + amL
(h∞)

L
− α

∣∣∣∣ < δ. (1)

In terms of our formalism, the expert communicates a message that consists of a date T

and L + 1 F T -measurable functions α(hT ), m1(h
T ), . . . ,mL(hT ). The interpretation is that the

expert uses the data of the first T periods to calibrate his initial theory. At the end of the T periods,
and as a function of the history hT , he specifies L dates m1, . . . ,mL on which he predicts the
outcomes to be approximately i.i.d. with mean α. The test then requires the actual mean to be
close to α in the periods m1, . . . ,mL announced by the expert.

Other aspects of this test, including the need for the partition {NT }∞T =1, will be discussed in
Section 4.3.

4.2. Main theorem

Theorem 1. P � is testable.

This theorem is a consequence of Proposition 4.1 and Corollary 1. Proposition 4.1 shows
part (1) of the definition of testability (Definition 3):

Proposition 4.1. For every ε, δ > 0 there exists L̄ such that any expert who knows the truth
μ ∈ P � can pass the test τ(δ,L) with probability at least 1 − ε for every L > L̄.

The proof, found in Appendix A, uses lemmas that put uniform bounds on the times by which
learnability and sufficiency for predictions start to have a bite. The conclusion then follows from
a result of Lehrer [11] that establishes a law of large numbers for approximate i.i.d. sequences.

Next we turn to non-manipulability. We discuss the short proof of the following intermediate
result in the next subsection.

Proposition 4.2. For any ε > 0 there exist δ and L such that, fixing the test τ(δ,L), there is
μ ∈ P such that V (ϕ,μ) < ε for every ϕ ∈ �(M).

Proof. We construct μ ∈ P such that for any ϕ, V (ϕ,μ) < ε. We define μ through a two-
stage process. For each T select a number θT independently and uniformly from [0,1]. Con-
ditional on θT , the observations on the subset NT are independent with mean θT . On the set
N − ⋃∞

T =1 NT , μ assigns unit mass to the constant 0.
Next we bound the expected payoff the expert can achieve conditional on announcing any T ,

hT and α. Clearly, for every α the probability of θT ∈ [α − 2δ,α + 2δ] is at most 4δ. Further-
more, for every δ, ε2 > 0 using Lemma A.3 we can pick L such that fL /∈ [θT − δ, θT + δ] with
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probability at most ε2. Thus, fL ∈ [α − δ,α + δ] with probability at most 4δ + ε2. Since hT and
α were arbitrary, the probability that this expert passes is no more than (4δ + ε2)(1 − ε1) + ε1.
Since δ, ε1 and ε2 were arbitrary, we indeed have V (ϕ,μ) < ε. �

Proposition 4.2 does not directly deliver part (2) of definition of testability since the measure μ

constructed is not in P �. However, since Dirac measures are in P �, the following corollary suf-
fices to complete the proof of the theorem:

Corollary 1. Let μ be chosen as in the proposition, with ε = ν2. Then for every ϕ ∈ �(M), h∞
satisfies V (ϕ,h∞) < ν with μ-probability at least 1 − ν, hence for uncountably many h∞ (since
μ is atomless).

A variant of Proposition 4.2 states that once T is announced, there is an element μ ∈ P � for
which the expert can no longer pass (in Proposition 4.2 it is necessary that μ /∈ P �). This means
that announcing that T periods are sufficient for learning is a substantial enough commitment to
prevent the expert from passing for all μ ∈ P �.

Proposition 4.3. For every ε > 0 and T there exists μ ∈ P � such that V (ϕ,μ) < ε for any
ϕ ∈ �(M) such that ϕ(T � T̄ ) > (1 − ε).

Proof. Again we define μ through a two-stage process. First, for each T � T̄ select a number θT

independently and uniformly from [0,1]. Then, for each t ∈ NT , with T � T̄ , the observation

at time T is independent with mean θT . On the set N − ⋃T̄
T =1 NT , μ puts unit mass on the

constant 0. This distribution is clearly in P ∗ with parameter set [0,1]T̄ and uniform measure.
The remainder of the proof follows exactly as in the remainder of the proof of Proposition 4.2,
with ε replaced by any ε′ < ϕ(T � T̄ ) − (1 − ε). �
4.3. Discussion

The challenge in Proposition 4.2 is to construct a probability distribution for nature that foils
the false expert’s randomization. To gain some intuition, one may roughly think of the expert
as randomizing over: (1) the learning date T ; (2) the history-dependent subsequence of testing
dates m1, . . . ,mL; and (3) the predicted frequency α.

First, hold T fixed and consider the choice of testing dates. This choice is irrelevant against
the μ specified in the proof of Proposition 4.2. Acceptance and rejection are determined in a
manner that does not depend on the particular dates chosen because Nature’s randomization is
exchangeable across dates. Exchangeability renders the strategic expert’s freedom to manipulate
the testing dates useless. Also, the uniform choice of θ renders the freedom to choose α useless.

Consider next randomizations over the learning date T . By choosing μ to be independent
across different elements of the partition {NT }∞T =1, we guarantee that by any time T , the expert
has actually learned nothing about the dates NT on which he will be tested. This eliminates the
possibility of manipulating the test by the choice of T .

An interesting feature of our test is how it relates to convexity. A key assumption underlying
the impossibility theorems is the convexity of the set of distributions. Recall that the set P �

is convex. However, for any fixed T , the subset P � ⊂ P � consisting of theories with learning
T
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date T is not convex.11 Intuitively, this is because if we take a randomization over two theories
μ and μ′ ∈ P �

T , learning whether μ or μ is the true process may take more observations than T .
Given hT , the expert is required to commit to an element of the non-convex set of i.i.d. measures.
The non-convexity is crucial to our argument; if the expert could announce a mixture, the proof
would fail.

A natural question is the extent to which the requirement that the parametrization be sufficient
for predictions can be relaxed. The essential consequence of this requirement is that, conditional
on the parameter, forecasts are approximately i.i.d. with mean α on some infinite sequence of
dates (Lemma A.2). This is a key element of our proof that a true expert can pass our test.
Suppose we instead required only that processes can predict, as a function of the observations up
to time T , whether or not α belongs to some subset B � [0,1], but not the precise value of α. To
make sure true experts could pass, we would have to modify the test to ask only whether α ∈ B .
A manipulating expert could then guarantee a payoff of 0.5 by randomizing over whether to
predict α ∈ B . The full power of sufficiency for predictions is not necessary for our results—we
only need the consequence in Lemma A.2. But the condition in the conclusion of that lemma
would be rather artificial as a primitive assumption, so we have maintained the more natural
notion.

5. Concluding remarks

If the data-generating process is outside of P �, our test may reject an expert who knows
the true process. Whether we consider such rejection acceptable depends on our answer to the
question: What makes someone an expert? In our model, a legitimate theory is one that sets a date
by which learning is complete and sharp predictions about the future can be made. This accords
with our intuition of legitimate scientific theories as frameworks for predicting outcomes in a
given context based on information about the relevant details of that context. Just as it would
be unreasonable to expect a theory to deliver sharp predictions without data, a legitimate theory
should not be given unlimited freedom to adjust its predictions either. Rather, there must be a
point at which this theory makes predictions that can be tested.

Appendix A. Proof of Proposition 4.1

We begin with two uniformization lemmas. The first provides a uniform version of the learn-
ability condition:

Lemma A.1. Suppose that (Θ, B, λ, (μθ )θ∈Θ) is a learnable and predictive representation for
μ ∈ P �. Then for every ε1, ε2 > 0 and integer l there is an integer T = T (ε1, ε2, l) and a set
Θ1 ⊂ Θ with λ(Θ1) > 1 − ε1 such that for all t � T and θ ∈ Θ1

sup
n�t

S∈F n+l
n

∣∣μ(
S|F t

) − μθ

(
S|F t

)∣∣ < ε2.

Proof. Given ε2 and l, define the function

ϑε2,l : Θ → {0,1, . . . ,∞}

11 It should be noted that the learning dates associated with a theory also depend on ε. We suppress this dependence
here for expository clarity.
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by letting ϑε2,l(θ) be the smallest integer for which the definition of merging holds with l and ε2.
Then this function is measurable. Thus, λ(ϑ−1

ε2,l
({0,1, . . . , T })) is well defined and converges to 1

as T → ∞. The desired T = T (ε1, ε2, l) is chosen so that

λ
(
ϑ−1

ε2,l

({
0,1, . . . , T (ε1, ε2, l)

}))
> 1 − ε1

and

Θ1 = ϑ−1
ε2,l

({
0,1, . . . , T (ε1, ε2, l)

})
. �

Define:

• cov(amj
, ami

‖θ) to be the covariance between the two 0–1 random variables amj
and ami

computed according to the probability measure μθ ;
• cov(amj

, ami
‖F T ) to be the covariance between amj

and ami
computed according to condi-

tional distribution μ(·‖F T ).

The next lemma provides a uniform date at which the expert makes approximately i.i.d. pre-
dictions:

Lemma A.2. Suppose that (Θ, B, λ, (μθ )θ∈Θ) is a representation for a μ ∈ P �. Let ε3 > 0. Then
for every increasing sequence of positive integers {m̄1, . . .} there is an increasing subsequence of
positive integers {m1, . . .}, and a subset Θ2 ⊂ Θ with λ(Θ2) > 1 − ε3 such that for every θ ∈ Θ2

lim
j→∞ sup

0�i<j

∣∣cov(amj
, ami

|θ)
∣∣ = 0.

Proof. Fix a sequence {rj }∞j=1 such that
∑∞

j=1 rj < ε3. Next, define a sequence of integers
{mj , . . .} inductively as follows: set m1 = m̄1; for j > 1, define the function

�j : Θ × H∞ → {0,1, . . . ,∞}
by letting �j (θ,h∞) be the smallest integer in {m̄1, . . .} such that for every m > �j (θ,h∞)∣∣μθ

(
am|F mj−1

) − μθ(am)
∣∣ < rj

(here, and throughout the proof, we write am instead of am(h∞)). The fact that μ is in P �

guarantees that for λ-a.e. θ , �j is finite μθ -a.s.
Since the function �j is measurable, we can set mj to be the smallest integer in {m̄1, m̄2, . . .}

such that the set Θj ⊂ Θ of θ such that �j (θ,h∞) < mj satisfies λ(Θj ) > 1 − rj . Then the set
Θ̄ ≡ ⋂∞

j=1 Θj has λ-probability at least 1 − ε3.

Fixing θ ∈ Θ̄ , for all j∣∣μθ

(
amj

|F mj−1
) − μθ(amj

)
∣∣ < rj

from which it follows that

sup
0�i<j

∣∣cov(amj
, ami

|θ)
∣∣ → 0. �

The next lemma adapts a result of Lehrer [11] to establish a law of large numbers for asymp-
totically independent random variables:
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Lemma A.3. Let g1, g2, . . . be a sequence of bounded, 0-mean random variables such that

lim
j→∞ sup

0�i<j

cov(gj , gi) = 0.

Then there is a subsequence {gil } such that the random variable

fl ≡ gi1 + · · · + gil

l

converges to 0 a.s. In particular, for every ε, δ > 0, there is L such that for every L > L̄

Prob
{
fL ∈ [−δ, δ]} > 1 − ε. (2)

Proof. This follows directly from Lehrer [11, Theorem 2, p. 259]. His theorem delivers the
conclusion under the assumption that the covariances do not grow very rapidly. This can be
guaranteed by passing to a subsequence. �

We are now able to prove Proposition 4.1:

1. Use Lemma A.1 to pick T = T (ε1, ε1,0) satisfying the conclusions of that lemma.
2. Use Lemma A.2 to pick, as a function of ε3 and hT , a sequence of dates

{mi}∞i=1 ⊂ NT

that satisfy the conclusion of that lemma.
3. Partition the interval [0,1] into K equal subintervals, and choose 0 � k′ < K such that

k′

K
< E

(
ami

|F T
)
� k′ + 1

K

for infinitely many mi ’s. Let {m′
i}∞i=1 denote the infinite subsequence of dates on which this

occurs.
4. Now apply Lemma A.3 to

gmi
= ami

− E
(
ami

|F T
)

to extract a subsequence {m′′
l }∞l=1 and an integer L such that for every L > L̄ (2) holds, i.e.,

fL ∈ [−δ, δ] with probability 1 − ε.
5. The expert submits the dates {m′′

1, . . . ,m
′′
L} and sets α = (1/L)

∑L
i=1 E(ami

|F T ). By the
previous point, the conclusion of the proposition holds.
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