Our lab combines multimodal and advanced measurement techniques with sophisticated computational approaches to understand the neural mechanisms and neural computations underlying social attention, face processing, emotion, memory, and decision making. Overarching questions involve how the brain figures out what is important in the environment, how socially relevant stimuli pop out and attract attention, how faces are processed and represented in general, and how memory is modulated by attention. We are particularly interested in the neural computations underlying these cognitive processes: multimodal approaches allow us to investigate these questions from the microscopic single-neuron and neural circuit level using our state-of-the-art human single-neuron recordings as well as macroscopic level using fMRI, EEG, and intracranial EEG (sEEG and ECoG). These multimodal experimental approaches are powered by sophisticated computational approaches that can deal with complex and large datasets.

We study both healthy individuals and neurological populations such as people with autism and stroke patients. A major goal of the laboratory is to bridge the divide between autism research and autism intervention to benefit individuals with autism and their families.