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ABSTRACT
We prove the existence of solutions for the stochastic differen-
tial equation dXt = b(t, Xt−)dZt + a(t, Xt)dt, X0 ∈ IR, t ≥ 0, with the
measurable coefficients a and b satisfying the condition 0 < μ ≤
|b(t, x)| ≤ ν and |a(t, x)| ≤ K for all t ≥ 0, x ∈ IR, where μ, ν, and K
are constants. The driving process Z is a symmetric stable process
of index 1 < α < 2. This generalizes the result of Krylov [Controlled
Diffusion Processes, Springer, New York, 1980] for the case of α = 2,
that is, when Z is a Brownian motion. The proof is based on integral
estimates of the Krylov type for the given equation, which are also
derived in this note andareof independent interest.Moreover, unlike
in Krylov [Controlled Diffusion Processes, Springer, New York, 1980],
we use a different approach to derive the corresponding integral
estimates.
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1. Introduction

We consider here a stochastic differential equation of the form

dXt = b(t,Xt−) dZt + a(t,Xt) dt, X0 = x0 ∈ IR, t ≥ 0. (1)

For the case when the driving process Z is a Brownian motion, the existence of solutions
for Equation (1) withmeasurable coefficients a and b was first established by Krylov in [7].
His proof was based on corresponding integral estimates for solutions X of (1), which he
was also the first to derive. Those integral estimates turned out later to be very useful in
various areas of stochastic processes, including the optimal control of processes described
by Equation (1). Estimates of this kind are often referred to as Krylov type estimates.

In order to prove the corresponding integral estimates, Krylov used the Bellman prin-
ciple of optimality, known in the control theory of stochastic processes. Given a smooth
function f (t, x), (t, x) ∈ IR2, he considered the value function

v(t, x) := sup
β∈B

E
∫ ∞

0
e−φ

β
s ψ

β
s f (t + rβs , x + Xβs ) ds, (2)

where (φβ ,ψβ) and (rβ ,Xβ) are appropriately chosen stochastic processes and B is a
suitably chosen set of control parameters.
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Krylov derived the correspondingBellman equation for the function v(t, x), and upon
integrating it he received estimates of the form

sup
(t,x)∈IR2

|v(t, x)| ≤ M‖f ‖Lp , (3)

where ‖f ‖Lp := (
∫
IR2 |f (t, x)|p dt dx)1/p, p ∈ [1,∞), is the Lp-norm of the function f.

Finally, using Itó’s formula and the estimates (3), he obtained integral estimates of the form

E
∫ ∞

0
f (s,Xs) ds ≤ M‖f ‖Lp , (4)

known now as Krylov type estimates.
As an application of (4), Krylov proved the existence of solutions of Equation (1) in the

case when Z is a Brownian motion and the measurable coefficients a and b are such that,
for all (t, x) ∈ [0,∞)× IR, it holds that

0 < μ ≤ |b(t, x)| ≤ ν, |a(t, x)| ≤ K (5)

for some constants μ, ν, and K.
In this note we consider Equation (1) when the driving process Z is a symmetric stable

process of index 1 < α ≤ 2. For α = 2, Z is a Brownian motion process.
One of the main results here is the proof of the existence of solutions of Equation (1)

when the coefficients a and b are measurable and satisfy the condition (5). This extends
the result of Krylov for the Brownionmotion case to the case of a symmetric stable process
with index 1 < α ≤ 2.

The coefficients a(t, x) and b(t, x) of stochastic Equation (1) are defined only on
[0,∞)× IR.However, it will be convenient for us later towork on the space IR2 instead of its
subset [0,∞)× IR. For that reason, we do extend a and b to functions ā and b̄, respectively,
in the following way:

ā(t, x) :=
{
a(−t, x), (t, x) ∈ (−∞, 0)× IR,
a(t, x), (t, x) ∈ [0,∞)× IR,

and

b̄(t, x) :=
{
b(−t, x), (t, x) ∈ (−∞, 0)× IR,
b(t, x), (t, x) ∈ [0,∞)× IR.

It is clear that functions ā and b̄ satisfy the condition (5) if and only if the functions a and
b satisfy that condition.

Let (X,Z) be a solution of Equation (1) on a probability space (�,F ,P). Since, for any
t ≥ 0, ∫ t

0
b̄(s,Xs−) dZs =

∫ t

0
b(s,Xs−) dZs

and ∫ t

0
ā(s,Xs) ds =

∫ t

0
a(s,Xs) ds
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P-a.s., it follows that the pair (X,Z) solves the equation

dXt = b̄(t,Xt−) dZt + ā(t,Xt) dt, X0 = x0 ∈ IR, t ≥ 0, (6)

on the same probability space (�,F ,P) as well. The converse is obviously also true.
To prove the existence of solutions of Equation (1), wewill first derive the corresponding

Krylov type estimates for processes X satisfying Equation (6). However, unlike in [7], we
do not use any facts from the optimal control theory for stochastic processes but instead
consider a parabolic integro-differential equation of the form

ut + |b̄|αLu + āux − λ(1 + |b̄|α)u + f = 0 a.e. in IR2, (7)

where L is the generator of the process Z (see definitions below), λ is a fixed positive
constant, and ut , ux are partial derivatives of u in t and x, respectively.

To be more precise, we will consider Equation (7) for such values of λ > 0, so that

μα
(
λ+ 1

2
|x|α

)2 ≥ 4K2

μα
x2 (8)

for all x ∈ IR.
Since α ∈ (1, 2), it is clear that there exists λ0 > 0 such that (8) is satisfied for all λ ∈

[λ0,∞). We also note that any value of λ satisfying (8) depends on μ,K, and α only.
Assuming that the functions a and b satisfy the condition (5), we will prove some

important a priori estimates for Equation (7), of the form

‖u‖L2 + ‖ut‖L2 + ‖Lu‖L2 ≤ M‖f ‖L2 , (9)

which, in turn, will imply the estimates

sup
(t,x)∈IR2

|u(t, x)| ≤ M‖f ‖L2 .

Moreover, a priori estimates (9) are then also used to prove the existence of a solution
u of Equation (7) given a fixed function f ∈ C∞

c (IR2)1 and a fixed value of λ satisfying
condition (8). The latter fact is important to derive the corresponding integral estimates.

Finally, we give a brief overview of existence results for Equation (1) with measurable
coefficients a and b and 1 < α < 2 known for some particular cases.

Zanzotto [14] studied Equation (1) without drift (that is, when a = 0) and with time-
independent coefficient b. The approach in [14] was a systematic use of the method of
random time change.

The time-dependent Equation (1) without drift was studied by Pragarauskas and Zan-
zotto [12]. To prove the existence of solutions, they used the method of integral estimates
similar to [7]. The corresponding integral estimates were proven by Pragarauskas in [11].
Engelbert andKurenok [5] studied the time-dependent Equation (1) without drift andwith
0 < α < 2, and they found different sufficient existence conditions for solutions. Their
approach relied on time change techniques.

In [9], the author proved the existence of solutions for Equation (1) with time-
independent and measurable coefficients a and b satisfying the condition

0 < μ ≤ |b(x)| ≤ ν, |a(x)| ≤ K,

for all x ∈ IR and the constants μ, ν, and K.
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2. Some preliminary facts

As usual, byD[0,∞)(IR) we denote the Skorokhod space, i.e. the set of all real-valued func-
tions z : [0,∞) → IR with right-continuous trajectories and with finite left limits (also
called càdlàg functions). For simplicity, we shall write D instead of D[0,∞)(IR). We will
equip D with the σ -algebra D of Borel subsets of D in the Skorokhod topology. By Dn

we denote the n-dimensional Skorokhod space defined as Dn = D × · · · × D, with the
corresponding σ -algebraDn being the direct product of n one-dimensional σ -algebrasD.

Let (�,F ,P) be a complete probability space with a filtration IF = (Ft). We use the
notation (Z, IF) to indicate that a process Z is adapted to IF. A process (Z, IF) is called a
symmetric stable process of index α ∈ (0, 2] if the trajectories ofZ are càdlàg functions and
E(exp(iξ(Zt − Zs))|Fs) = exp(−(t − s)c|ξ |α) for all 0 ≤ s < t and ξ ∈ IR, where c>0 is
a constant. The function ψ(ξ) = c|ξ |α is called the characteristic exponent of the process
Z.

The process Z is a process with independent increments, and thus is a Markov process.
For any bounded measurable function u : IR → IR and t ≥ 0, the operator

(Ttu)(x) := E
(
u(x + Zt)

)
, x ∈ IR,

is the semigroupof convolution operators associatedwithZ.We can introduce the so-called
infinitesimal generator L of the process Z as

(Lu)(x) = lim
t↓0

(Ttu)(x)− u(x)
t

, u ∈ D(L), (10)

where the domainD(L) ofL consists of all boundedmeasurable real functions u such that
the limit in (10) exists uniformly.

It is known (see, e.g. [13], section 4.1) that for α < 2

(Lu)(x) =
∫
IR\{0}

[u(x + z)− u(x)− 1{|z|<1}u′(x)z]
c1

|z|1+α dz (11)

for any u ∈ C2
b(IR), where C

2
b(IR) is the set of all bounded and twice continuously differen-

tiable functionsu : IR → IRwhose derivatives are also bounded.We shall assume fromnow
on the constant c1 is chosen so thatψ(ξ) = 1/2|ξ |α . In the case of α = 2, the infinitesimal
generator of Z is the second derivative operator, that is, Lu(x) = 1

2u
′′(x).

On the other hand, in the case of α ∈ (0, 2), the process Z as a purely discontinuous
Markov process can be described by its Poisson jump measure (the jump measure of Z on
interval [0, t]) defined as

N(U × [0, t]) =
∑
s≤t

1U(Zs − Zs−).

The above equation describes the number of times before the time t thatZ has jumpswhose
size lies in the set U ∈ IR \ 0. The corresponding Lévy measure of N is given by

N̂(U) = EN(U × [0, 1]) =
∫
U

c1
|z|1+α dz, U ∈ IR \ 0.
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We recall that, for any u ∈ L1(IR2), there exists its Fourier transform Fu defined as

[Fu](τ ,w) =
∫
IR2

eisτ eixwu(s, x) ds dx, (τ ,w) ∈ IR2.

Moreover, if Fu ∈ L1(IR2), then also the inverse Fourier transform F−1 of the function Fu
exists, and

u(s, x) = 1
(2π)2

∫
IR2
[Fu](τ ,w)e−isτ e−ixw dτ dw, (s, x) ∈ IR2. (12)

Clearly, calculating the Fourier transform of a function of two variables can be performed
by first calculating the single Fourier transform in one variable and then in the other, in
any order.

Next, we extend the operator L, acting on suitable functions u(t, x), (t, x) ∈ IR2, in the
following way. For any fixed t, we define

(Lu(t, ·))(x) =
∫
IR\{0}

[u(t, x + z)− u(t, x)− 1{|z|<1}ux(t, x)z]
c1

|z|1+α dz. (13)

The following statement will be used frequently later.

Proposition 2.1: Let 0 < α ≤ 2 and u ∈ S(IR2),where S(IR2) is the Schwarz space of rapidly
decreasing functions. Then, it holds that

(a) F[Lu](τ ,w) = − 1
2 |w|αF[u](τ ,w);

(b) F[ut](τ ,w) = −iτF[u](τ ,w));
(c) F[ux](τ ,w) = −iwF[u](τ ,w)).

Proof: We calculate

F[Lu](τ ,w) =
∫
IR
eiτ t

(∫
IR
eixw(Lu(t, ·)(x) dx

)
dt. (14)

The inner integral in (14) is the Fourier transform of the functionL(u(t, ·)) in the variable
x where t is fixed. For any fixed t, the function u(t, ·) belongs to the space S(IR) so that the
inner integral is equal to

−1
2
|w|αFx[u](t,w),

where Fx[u] is the Fourier transform of u(t, x) in variable x (cf. Applebaum [2],
Theorem 3.3.3). This proves statement (a).

The relations (b) and (c) follow easily by using partial integration. �

Finally, let us introduce the following space of functions associatedwith the infinitisimal
operatorL of a symmetric stable process of index α. For any u ∈ C∞

c (IR2), define the norm

‖u‖H := ‖u‖L2 + ‖ut‖L2 + ‖Lu‖L2 , (15)

where the right-hand side in (15) is finite. The finiteness of norms ‖u‖L2 and ‖ut‖L2 is
obvious. Moreover, by Proposition 2.1 and Plancherel’s identity, ‖Lu‖L2 = ‖F(Lu)‖L2 =
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‖|w|αF(u)‖L2 . Since F(u) ∈ S(IR2), it follows that |w|αF(u) ∈ S(IR2), and since S(IR2) is a
subspace of L2(IR2), it implies Lu ∈ L2(IR2).

We say that a function u ∈ L2(IR2) belongs to the space H(IR2) if there is a sequence of
functions un ∈ C∞

c (IR2) such that

‖un‖H < ∞ for all n = 1, 2, . . . ,

‖un − u‖L2 → 0 as n → ∞,

and

‖unt − umt ‖L2 → 0, ‖Lun − Lum‖L2 → 0 as n,m → ∞.

Any such sequence of functions un is called a defining sequence for u. The space H is
then called a Sobolev space. The functions ut and ux in Equation (7) are understood as
generalized derivatives of u in the variables t and x, correspondingly.

3. Analytic a priori estimates

In this section we consider the integro-differential equation of parabolic type (7) in the
Sobolev space H with the norm ‖ · ‖H defined in (15). We assume that α ∈ (1, 2), that the
coefficients a and b satisfy the condition (5), and that a fixed value of λ exists such that the
inequality (8) holds.

We are interested in deriving some a priori estimates for a solution u of Equation (7) in
terms of the L2-norm of the function f. Since the existence of a solution is not known yet,
such estimates are called a priori estimates. These estimates will be crucial in Section 4
for deriving integral estimates of the Krylov type for processes X satisfying stochastic
Equation (6).

Moreover, the a priori estimates obtained here can be used to prove the existence of a
solution u ∈ H(IR2) of Equation (7) for any f ∈ C∞

c (IR2) and any λ satisfying the condi-
tion (8). The corresponding proof is based on themethod of continuity and themethod of a
priori estimates known in the theory of classical elliptic and parabolic equations; that is, L
is the second derivative operator. The proof of the existence of a solution of Equation (7)
is provided in the Appendix.

Lemma 3.1: Let u ∈ C∞
c (IR2) be a solution of Equation (7) with f ∈ L2(IR2). Then there are

constants M1 and M2 such that

‖u‖H ≤ M1‖f ‖L2 (16)

and

sup
(t,x)∈IR2

|u(t, x)| ≤ M2‖f ‖L2 , (17)

where the values of M1 and M2 depend on ν,μ,K, and α only.
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Proof: It follows from (7) that

[(ut − λu)+ |b̄|α(Lu − λu)]2 = (āux + f )2 ≤ 2ā2u2x + 2f 2

and
1

|b̄|α (ut − λu)2 + 2(ut − λu)(Lu − λu)+ |b̄|α(Lu − λu)2 ≤ 2
|b̄|α (K

2u2x + f 2).

The condition (5) implies that

1
να
(ut − λu)2 + 2(ut − λu)(Lu − λu)+ μα(Lu − λu)2 ≤ 2

μα
(K2u2x + f 2). (18)

Wenote further thatu ∈ S(IR2), sinceC∞
c (IR2) is a subspace of S(IR2). Using Plancherel’s

identity and Proposition 2.1, we obtain∫
IR2

(
ut(s, y)− λu(s, y)

)2
ds dy =

∫
IR2

∣∣∣F[ut − λu](τ ,w)
∣∣∣2 dτ dw

=
∫
IR2

|F[u](τ ,w)|2(λ2 + τ 2) dτ dw, (19)∫
IR2

(
Lu(s, y)− λu(s, y)

)2
ds dy =

∫
IR2

|F[Lu − λu](τ ,w)|2 dτ dw

=
∫
IR2

|F[u](τ ,w)|2
(
λ+ 1

2
|w|α

)2
dτ dw, (20)

and ∫
IR2

u2x(s, y) ds dy =
∫
IR2

|F[ux](τ ,w)|2 dτ dw =
∫
IR2

|w|2|F[u](τ ,w)|2 dτ dw. (21)

Now, we integrate inequality (18) over IR2 and use identities (19)–(21) and (8) to obtain

1
να

∫
IR2

|F[u](τ ,w)|2(λ2 + τ 2) dτ dw + 2
∫
IR2

(
(ut − λu)(s, y)

)(
(Lu − λu)(s, y)

)
ds dy

+ μα

2

∫
IR2

(
λ+ 1

2
|w|α

)2|F[u](τ ,w)|2 dτ dw ≤ 2
μα

∫
IR2

f 2(s, y) ds dy. (22)

The last inequality implies

λ2

να

∫
IR2

|F[u](τ ,w)|2 dτ dw + 2
∫
IR2

(
(ut − λu)(s, y)

)(
(Lu − λu)(s, y)

)
ds dy

+ μαλ2

2

∫
IR2

|F[u](τ ,w)|dτ dw2 ≤ 2
μα

∫
IR2

f 2(s, y) ds dy,

or (
μαλ2

2
+ λ2

να

)
‖u‖2L2 + 2

∫
IR2

(
(ut − λu)(s, y)

)(
(Lu − λu)(s, y)

)
ds dy

≤ 2
μα

∫
IR2

f 2(s, y) ds dy. (23)
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To estimate the second term on the left-hand side of inequality (23), we first notice that its
value is a real number. Using again then Plancherel’s identity yields∫

IR2

(
(ut − λu)(s, y)

)(
(Lu − λu)(s, y)

)
ds dy

=
∫
IR2

F[ut − λu](τ ,w)× F[Lu − λu](τ ,w) dτ dw

= Re
[∫

IR2
(λ− iτ)

(
λ+ 1

2
|w|α

)
|F[u]|2(τ ,w) dτ dw

]

=
∫
IR2
λ

(
λ+ 1

2
|w|α

)
|F[u](τ ,w))|2 dτ dw

≥
∫
IR2
λ2|F[u](τ ,w))|2 dτ dw = λ2‖u‖2L2 ≥ 0.

We have shown that (
μαλ2

2
+ λ2

να
+ λ2

)
‖u‖2L2 ≤ 2

μα
‖f ‖2L2 ,

or

‖u‖L2 ≤ M‖f ‖L2 , (24)

where the constantM only depends on μ, ν,K, and α.
Obviously,

‖Lu‖L2 ≤ ‖Lu − λu‖L2 + λ‖u‖L2 ,
and

‖ut‖L2 ≤ ‖ut − λu‖L2 + λ‖u‖L2 ,
so that estimate (16) follows then from (24), the inequality (22), and the established fact
that the second term on the left-hand side of (18) is non-negative.

To prove estimate (17), we first notice that F[u] ∈ L1(IR2), since u ∈ S(IR2). Using the
Fourier inversion formula and the Cauchy-Schwarz inequality, we estimate

|u(t, x)|2

≤
( 1
(2π)2

∫
IR2

|F[u]|(τ ,w) dτ dw
)2

= 1
16π4

(∫
IR2

|F[u](τ ,w)|
(∣∣∣∣−2λ− iτ − 1

2

∣∣∣∣w|α|
)(∣∣∣∣−2λ− iτ − 1

2

∣∣∣∣w|α|
)−1

dτ dw
)2

≤ 1
16π4 I1I2,

where

I1 =
∫
IR2

|F[u]|2(τ ,w)
∣∣∣∣−2λ− iτ − 1

2

∣∣∣∣w|α|2 dτ dω
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and

I2 =
∫
IR2

| − 2λ− iτ − |ω|α|−2 dτ dω.

Since α ∈ (1, 2), it follows that

I2 =
∫
IR2

dτ dω
τ 2 + (2λ+ |ω|α)2 = π

∫
IR

dω
2λ+ |ω|α := M3 < ∞.

The term I1 can be estimated as

I1 ≤ 2
∫
IR2

|F[u]|2(τ ,w)| − λ− iτ |2 dτ dω + 2
∫
IR2

|F[u]|2(τ ,w)
∣∣∣∣−λ− 1

2

∣∣∣∣w|α|2 dτ dω

= 2
∫
IR2

|F[ut − λu]|2(τ ,w) dτ dω + 2
∫
IR2

|F[Lu − λu]|2(τ ,w) dτ dω

= 2‖ut − λu‖2L2 + 2‖Lu − λu‖2L2 .

Thus, we have shown that

|u(t, x)|2 ≤ M1

8π4

(
‖ut − λu‖2L2 + ‖Lu − λu‖2L2

)

for all (t, x) ∈ IR2. Estimate (17) then follows because of (16). �

The estimates from Lemma 3.1 can be extended in the following way.

Corollary 3.2: Let f ∈ L2(IR2) and λ be any value satisfying the inequality (8). Then,

(a) any solution u ∈ H(IR2) of Equation (7) satisfies the estimate

‖u‖H ≤ M1‖f ‖L2 , (25)

and
(b) any solution u ∈ H(IR2) ∩ C∞(IR2) of Equation (7) satisfies the estimate

sup
(t,x)∈IR2

|u(t, x)| ≤ M2‖f ‖L2 , (26)

where the values of M1 and M2 depend on ν,μ,K, and α only.

Proof: (a) Since the spaceC∞
c (IR2) is dense inH(IR2), there is a sequence of functions un ∈

C∞
c (IR2), n = 1, 2, . . . such that ‖un − u‖H → 0 as n → ∞, implying also that ‖un − u‖L2

as n → ∞.
For n = 1, 2, . . ., define

f n := −unt − |b̄|αLun − āunx + λ(1 + |b̄|α)un.

It can easily be seen that f n ∈ L2(IR2). Moreover, ‖f n − f ‖L2 as n → ∞. The above expres-
sionmeans that, for any fixed n = 1, 2, . . ., the function un is a solution of Equation (7)with
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the function f n. Lemma 3.1 then implies that

‖un‖H ≤ M1‖f n‖L2 , (27)

where the constantM1 depends on μ, ν,K, and α only. Letting n → ∞ in (27), we obtain

‖u‖H ≤ M1‖f ‖L2 ,

proving estimate (25).
(b) Let BN := {(t, x) ∈ IR2|t2 + x2 ≤ N2} and uN := uhN for N = 1, 2, . . ., where hN is

a sequence of functions infinitely often differentiable and vanishing outside of BN , con-
verging increasingly pointwise to 1. It is then clear that uN ∈ C∞

c (IR2),N = 1, 2, . . . , and
that uN converges to u as N → ∞ pointwise. We also define

uNt := ∂t(uN), uNx := ∂x(uN), LuN := L(uhN)

and set

f N := −uNt − |b̄|αLuN − āuNx + λ(1 + |b̄|α)uN , N = 1, 2, . . . (28)

We observe further that, for all N = 1, 2, . . .,

(uN − u)2 ≤ 2u2, (uNt − ut)2 ≤ 2u2t , (uNx − ux)2 ≤ 2u2x, (LuN − Lu)2 ≤ 2(Lu)2,

and, since u ∈ H(IR2), by Lebesgue’s dominated convergence theorem,

‖un − u‖L2 → 0, ‖uNt − ut‖L2 → 0, ‖uNx − ux‖L2 → 0, ‖LuN − Lu‖L2 → 0,

implying ‖f N − f ‖L2 → 0 as N → ∞. It is also clear that f N ∈ L2(IR2),N = 1, 2, . . . .
The relation (28) means that uN is a solution of Equation (7) with f = f N , so that we

obtain by Lemma 3.1

|uN(t, x)| ≤ M1‖f N‖L2 ,
holding true for all (t, x) ∈ IR2. By lettingN → ∞ in the above inequality, we arrive at the
estimate (26). �

4. Some integral estimates

Now, using the analytic estimates from the previous section, we will derive the corre-
sponding integral estimates of the Krylov type for the solutions of stochastic Equations (1)
and (6).

First, we choose a non-negative function ψ(t, x) ∈ C∞
c (IR2) with ψ(t, x) = 0 for all

(t, x), such that |t| + |x| ≥ 1 and
∫
IR2 ψ(t, x) dt dx = 1. For ε > 0, let

ψ(ε)(t, x) = 1
ε2
ψ

( t
ε
,
x
ε

)
.

Clearly, ψ(ε) ∈ C∞
c (IR2) and

∫
IR2 ψ

(ε)(s, x) ds dx = 1.
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For any function u ∈ H(IR2), we define u(ε) := u � ψ(ε) to be the convolution of u with
ψ(ε), i.e.

u(ε)(t, x) =
∫
IR2

u(s, y)ψ(ε)(t − s, x − y) ds dy.

Since ‖u � ψ(ε)‖L2 ≤ ‖u‖L2‖ψ(ε)‖L1 (see, e.g. Lemma I.8.1, in [8]), it follows that u(ε) ∈
L2(IR2). Obviously, u(ε) ∈ C∞(IR2), and u(ε) → u as ε → 0 a.e. in IR2 and in L2(IR2). We
also define

u(ε)t := ut � ψ(ε), u(ε)x := ux � ψ(ε) (29)

and note that (see, e.g.[8], Lemma I.8.2)

u(ε)t = u � ∂t
(
ψ(ε)

)
= ∂t

(
u(ε)

)
and u(ε)x = u � ∂x

(
ψ(ε)

)
= ∂x

(
u(ε)

)
.

Moreover, it can be verified directly that, for all ε > 0,

Lu(ε) = (Lu)(ε). (30)

Theorem 4.1: Let X be a solution of Equation (6) where α ∈ (1, 2) and the coefficients a and
b satisfy condition (5). Then, for any measurable function f : IR2 → IR and a fixed value of
λ satisfying the condition (8), it holds that

E
∫ ∞

0
e−λφs |f |(s,Xs) ds ≤ M‖f ‖L2 , (31)

whereφt = ∫ t
0 (1 + |b̄(s,Xs)|α) ds, t > 0, and the constantM depends on ν,μ,K, and α only.

Proof: We assume first that f ∈ C∞
c (IR2). It follows then (see Proposition A.10 in the

Appendix) that Equation (7) has a solution u ∈ H(IR2).
For N = 1, 2, . . ., define

uN(t, x) :=
{
u(t, x), if |u(t, x)| + |ut(t, x)| + |ux(t, x)| + |Lu(t, x)| ≤ N
0, otherwise.

(32)

We can see that, for any fixed N, uN ∈ H(IR2), uN is a bounded function, and uN(t, x) →
u(t, x) as N → ∞ a.e. in IR2.

Let uN,(ε), uN,(ε)
t , uN,(ε)

x , and LuN,(ε) be the corresponding mollified functions for
uN , uNt , uNx , and LuN , respectively. Using the above mentioned properties of mollified
functions, we can see that, for any ε > 0 and N = 1, 2, . . ., uN,(ε) ∈ H(IR2) ∩ C∞(IR2).
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For any ε > 0 and N = 1, 2, .., we also define

f N,(ε) := −uN,(ε)
t − |b̄|αLuN,(ε) − āuN,(ε)

x + λ(1 + |b̄|α)uN,(ε)

so that the function uN,(ε) solves the equation

uN,(ε)
t + |b̄|αLuN,(ε) + āuN,(ε)

x − λ(1 + |b̄|α)uN,(ε) + f N,(ε) = 0. (33)

Applying Lemma I.8.1 in [8], we see that

‖uN,(ε)
t ‖L2 ≤ ‖ut‖L2 , ‖uN,(ε)

x ‖L2 ≤ ‖ux‖L2 , ‖LuN,(ε)‖L2 ≤ ‖Lu‖L2 (34)

for all ε > 0 and N = 1, 2, . . .. By Lebesgue’s dominated convergence theorem, it follows
then from (33) that ‖f N,(ε) − f N‖L2 → 0 as ε → 0, where

f N = −uNt − |b̄|αLuN − āuNx + λ(1 + |b̄|α)uN a.e. in IR2. (35)

Applying Itó’s formula to the process uN,(ε)(t,Xt)e−λφt , t ≥ 0, (see, e.g.[10], Proposition
2.1) and using Equation (33), we obtain

EuN,(ε)(t,Xt)e−λφt − uN,(ε)(0, x0)

= E
∫ t

0
e−λφs

{
uN,(ε)
t (s,Xs)+ |b̄(s,Xs)|αLuN,(ε)(s,Xs)

+ ā(s,Xs)uN,(ε)
x (s,Xs)− λ(1 + |b̄|α(s,Xs))uN,(ε)(s,Xs)

}
ds

= −E
∫ t

0
e−λφs f N,(ε)(s,Xs) ds

which yields

E
∫ t

0
e−λφs f N,(ε)(s,Xs) ds ≤ |uN,(ε)(0, x0)| + E|uN,(ε)(t,Xt)| ≤ 2 sup

(s,x)∈IR2
|uN,(ε)(s, x)|.

Using Corollary 3.2, we obtain

E
∫ t

0
e−λφs f N,(ε)(s,Xs) ds ≤ M2‖f N,(ε)‖L2 ,

and relations (34) together with Lemma 3.1 imply further that

E
∫ t

0
e−λφs f N,(ε)(s,Xs) ds ≤ M3‖f ‖L2 , (36)

where the constantsM2 andM3 depend on μ, ν,K,and α only.
Using Lebesgue’s dominated convergence theorem and (32), we let ε → 0 in (36) to

obtain

E
∫ t

0
e−λφs f N(s,Xs) ds ≤ M3‖f ‖L2 . (37)

Finally, we notice that uN = 0 implies f N = 0, and if uN �= 0, then it follows that uN =
u, uNx = ux, uNt = ut , and LuN = Lu, so that f N = f a.e. in IR2. It implies that |f N − f | ≤
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|f |, and since |f | is a bounded function, we can apply Lebesgue’s dominated convergence
theorem once again by letting N → ∞ in (37), yielding

E
∫ t

0
e−λφs f (s,Xs) ds ≤ M3‖f ‖L2 . (38)

Now, let δ > 0 and fδ(s, x) := e−δ(s+x)f (s, x), (s, x) ∈ IR2. Since, for any f ∈ C∞
c IR2), the

function fδ also belongs to C∞
c (IR2), we can conclude that

E
∫ t

0
e−λφs e−δ(s+Xs)f (s,Xs) ds ≤ M2

(∫
IR2

e−2δ(s+x)f 2(s, x) ds dx
)1/2

(39)

for any t>0 and all f ∈ C∞
c (IR2).

LetH be the system of all bounded measurable functions f such that (39) holds. Then
H is closed under uniform convergence and under monotone convergence of uniformly
bounded sequences. Indeed, if (f n) is a sequence of such type converging to f, then f n
converges to f pointwise, and, for some C>0, we have |f n| ≤ C. Inserting f n in (39) and
applying Lebesgue’s dominated convergence theorem on both sides of (39), we get (39) for
f. We also note that A := C∞

c (IR2) is an algebra of functions which generates the Borel
σ -algebra B(IR2). Obviously, there exists f n ∈ C∞

c (IR2) such that 0 ≤ f n ≤ 1 and f n ↑ 1
pointwise. Consequently, the assumptions of theMonotone Class Theorem (see [3], chap-
ter I, (22.2)) are satisfied. Therefore, we can conclude that (39) holds for all bounded and
measurable functions f.

In the next step, we fix an arbitrary boundedmeasurable function f in (39) and let δ ↓ 0.
The left-hand side converges to the left-hand side of (38) in view of Lebesgue’s dominated
convergence theorem. The right-hand side of (39) converges to the right-hand side of (38)
by monotone convergence. As a result, (38) holds true for every bounded measurable
function. Hence

E
∫ t

0
e−λφs |f |(s,Xs) ds ≤ M2‖f ‖L2 (40)

for every bounded measurable function f.
In the last step, let f be an arbitrary measurable function and put f n := (f ∨ (−n)) ∧

n, n ≥ 1. Obviously, we have |f n| ↑ |f | and (f n)2 ↑ f 2 as n → ∞ pointwise. From inequal-
ity (40) being true for f n, it follows by monotone convergence that (40) holds for f,
too.

By Fatou’s lemma, in (40) we can let t → ∞, yielding

E
∫ ∞

0
e−λφs |f |(s,Xs) ds ≤ M2‖f ‖L2 ,

where the constantM2 depends on μ, ν,K, and α only. Thus, Theorem 4.1 is proven. �

We can also obtain a local version of estimate (31). For that, for any t>0 and m ∈ IN,
we define ‖f ‖2,m,t := (

∫ t
0
∫
[−m,m] f

2(s, x) ds dx)1/2 as the L2-norm of f on [0, t] × [−m,m].
We also let τm(X) = inf{t ≥ 0 : |Xt| > m}. Then, applying (31) to the function f̄ (s, x) =
f (s, x)1[0,t]×[−m,m](s, x), where we set f (s, x) = 0 for s ∈ (−∞, 0), we obtain the following
corollary.
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Corollary 4.2: Let X be a solution of Equation (1) with α ∈ (1, 2) and let assumption (5) be
satisfied. Then, for any t > 0,m ∈ IN, and any measurable function f : [0,∞)× IR → IR, it
holds that

E
∫ t∧τm(X)

0
|f |(s,Xs) ds ≤ M‖f ‖2,m,t , (41)

where the constant M depends on μ, ν,K, t,α, and m only.

5. Existence of solutions for stochastic equations withmeasurable
coefficients

As an application of the integral estimates derived in the previous section, we prove here
the existence of solutions for Equation (1) under assumption (5), where Z is a symmetric
stable process of index α ∈ (1, 2].

For α = 2, the existence of solutions under (5) is well-known (cf. [7]). Henceforth, we
restrict ourselves to the case where 1 < α < 2.

Theorem 5.1: Assume that a, b : [0,∞)× IR → IR are two measurable functions satisfying
condition (5) and thatα ∈ (1, 2). Then, for any x0 ∈ IR, there exists a solution of Equation (1).

Proof: Because of (5), forn = 1, 2, . . ., there are sequences of functions an(t, x) and bn(t, x)
such that they are globally Lipschitz continuous, uniformly bounded, and an → a, bn → b
a.e. as n → ∞. Therefore, for any n = 1, 2, . . ., Equation (1) has a unique solution, even a
so-called strong solution (see, for example, Theorem 9.1 from chapter 4 in [6]). That is, for
any fixed symmetric stable process Z defined on a probability space (�,F ,P), there exists
a sequence of processes Xn, n = 1, 2 . . . , such that

dXn
t = bn(t,Xn

t−) dZt + an(t,Xn
t ) dt, Xn

0 = x0 ∈ IR, t ≥ 0. (42)

Let

Mn
t :=

∫ t

0
bn(s,Xn

s−) dZs and Yn
t :=

∫ t

0
an(s,Xn

s ) ds

so that

Xn = x0 + Mn + Yn, n ≥ 1.

As next step, we show that the sequence Hn = (Xn,Mn,Yn,Z), n ≥ 1, is tight in the
sense of weak convergence in (ID4,D4). Due to the well-known criterion of Aldous ([1]),
it suffices to show that

lim
l→∞

lim sup
n→∞

P
[
sup
0≤s≤t

‖Hn
s ‖ > l

]
= 0 (43)

for all t ≥ 0 and

lim sup
n→∞

P
[
‖Hn

t∧(τn+δn) − Hn
t∧τn‖ > ε

]
= 0 (44)

for all t ≥ 0, ε > 0, for every sequence of IF-stopping times τn, and for every sequence of
real numbers δn such that δn ↓ 0. Here ‖ · ‖ denotes the Euclidean norm of a vector.
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It suffices to verify that the sequence of processes (Mn,Yn) is tight in (ID2,D2). But this
is trivially fulfilled because of the uniform boundness of the coefficients an and bn for all
n ≥ 1.

From the tightness of the sequence {Hn}, we conclude that there exists a subsequence
{nk}, k = 1, 2, . . . and a process H̄ defined on a probability space (�̃, F̃ , P̃) such that Hnk

converges weakly (in distribution) to H̄ as k → ∞. For simplicity, let {nk} = {n}.
We now use the well-known principle of Skorokhod (see, e.g. Theorem 2.7 from chapter

1 in [6]) to obtain the convergence of the sequence {Hn} a.s. in the following sense: there
exist processes H̃ = (X̃, M̃, Ỹ , Z̃) and H̃n = (X̃n, M̃n, Ỹn, Z̃n), n = 1, 2, . . . , defined on a
probability space (�̃, F̃ , P̃) such that

(1) H̃n → H̃ in (ID4,D4) as n → ∞ P̃-a.s., and
(2) H̃n = Hn in distribution for all n = 1, 2, . . . .

Using standard measurability arguments ([7], chapter 2), we can easily verify that the
processes Z̃n and Z̃ are symmetric stable processes of indexαwith respect to the augmented
filtrations ĨFn and ĨF generated by the processes H̃n and H̃, respectively.

Relying on the above properties (1) and (2), and onEquation (42), we obtain (see, e.g.[7],
chapter 2) that

X̃n
t = x0 +

∫ t

0
bn(s,Xn

s−)Z̃
n
s +

∫ t

0
an(s, X̃n

s ) ds, t ≥ 0, P̃-a.s.

At the same time, from properties (1), (2) and the quasi-left continuity of the the processes
X̃n, it follows that

lim
n→∞ X̃n

t = X̃t , t ≥ 0, P̃-a.s. (45)

Hence, in order to show that the process X̃ is a solution of the Equation (1), it is enough to
prove that there is a subsequence (nk) of (n) such that, for all t ≥ 0, it holds that

lim
k→∞

∫ t

0
bnk(s, X̃

nk
s ) dZ̃

nk
s =

∫ t

0
b(X̃s) dZ̃s P̃-a.s. (46)

and

lim
k→∞

∫ t

0
ank(s, X̃

nk
s ) ds =

∫ t

0
a(X̃s) ds P̃-a.s. (47)

Now we remark that from the convergence in probability it follows that there is a sub-
sequence for which the convergence with probability one holds. Therefore, to verify (46)
and (47), it suffices to show that for all t ≥ 0 and ε > 0 we have

lim
n→∞ P̃

[∣∣∣∣
∫ t

0
bn(s, X̃n

s ) dZ̃
n
s −

∫ t

0
b(s, X̃s) dZ̃s

∣∣∣∣ > ε
]

= 0 (48)

and

lim
n→∞ P̃

[∣∣∣∣
∫ t

0
an(s, X̃n

s ) ds −
∫ t

0
a(s, X̃s) ds

∣∣∣∣ > ε
]

= 0. (49)

We will also need the following result, which can be proven in the same way as Lemma 4.2
in [9].
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Lemma 5.2: Let X̃ be the process as defined above. Then, for any Borel measurable function
f : [0,∞)× IR → IR and any t ≥ 0, there exists a sequence mk ∈ (0,∞), k = 1, 2, . . . such
that mk ↑ ∞ as k → ∞, and it holds that

QE
∫ t∧τmk (X̃)

0
|f |(s, X̃s) ds ≤ M‖f ‖2,mk,t ,

where the constant M depends on λ,α, t, and mk only. Moreover, it holds that

P̃
[
τmk(X̃

n) < t
]

→ P̃
[
τmk(X̃) < t

]
as n → ∞. (50)

Without loss of generality, we can assume {mk} = {m}.
Let us prove (48) and (49). For a fixed k1 ∈ IN we have

P̃
[∣∣∣∣

∫ t

0
bn(s, X̃n

s−) dZ̃
n
s −

∫ t

0
b(s, X̃s−) dZ̃s

∣∣∣∣ > ε
]

≤ P̃
[∣∣∣∣

∫ t

0
bk1(s, X̃

n
s−) dZ̃

n
s −

∫ t

0
bk1(s, X̃s−) dZ̃s

∣∣∣∣ > ε

3

]

+ P̃
[∣∣∣∣∣

∫ t∧τm(X̃n)

0
bk1(s, X̃

n
s ) dZ̃

n
s −

∫ t∧τm(X̃n)

0
bn(s, X̃n

s−) dZ̃
n
s

∣∣∣∣∣ > ε

3

]

+ P̃
[∣∣∣∣∣

∫ t∧τm(X̃)

0
bk1(s,Xs) dZ̃s −

∫ t∧τm(X̃)

0
b(s, X̃s−) dZ̃s

∣∣∣∣∣ > ε

3

]

+ P̃
[
τm(X̃n) < t

]
+ P̃

[
τm(X̃) < t

]
.

The first term on the right side of the inequality above converges to 0 as n → ∞ by Cheby-
shev’s inequality and Skorokhod’s lemma for stable integrals (see [12], Lemma 2.3). To
show the convergence to 0 asn → ∞ of the second and third termswe use first Chebyshev’s
inequality and then Corollary 41 and Lemma 5.2, respectively. We obtain

P̃
[∣∣∣∣∣

∫ t∧τm(X̃n)

0
bk1(s, X̃

n
s ) dZ̃

n
s −

∫ t∧τm(X̃n)

0
bn(s, X̃n

s−) dZ̃
n
s

∣∣∣∣∣ > ε

3

]

≤ 3
ε
Ẽ

∣∣∣∣∣
∫ t∧τm(s,X̃n)

0
|bk1 − bn|α(s, X̃n

s−) ds

∣∣∣∣∣ ≤ 3
ε
M‖|bk1 − bn|α‖2,m,t (51)

and

P̃
[∣∣∣∣∣

∫ t∧τm(X̃)

0
bk1(s,Xs) dZ̃s −

∫ t∧τm(X̃)

0
b(s, X̃s−) dZ̃s

∣∣∣∣∣ > ε

3

]

≤ 3
ε
Ẽ

∣∣∣∣∣
∫ t∧τm(X̃)

0
|bk1 − b|α(s, X̃s−) ds

∣∣∣∣∣ ≤ 3
ε
M‖|bk1 − b|α‖2,m,t (52)

where the constantM depends on μ, ν,K,m, t, and α only.
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It follows from the definition of the sequence bn that, for any t>0 and m ∈ IN, |bk1 −
bn|α → 0 by letting first n and then k1 tend to infinity. Similarly, |bk1 − b|α → 0 as k1 →
∞ in the L2,m,t-norm. Then, passing to the limit in (51) and (52) first n → ∞ and then
k1 → ∞, we obtain that the right end sides of (51) and (52) converge to 0.

Because of (50), the remaining terms P̃[τm(X̃n) < t] and P̃[τm(X̃) < t] can be made
arbitrarily small by choosing large enoughm for all n, due to the fact that the sequence of
processes X̃n satisfies (43). This verifies (48). The convergence (49) can be verified similarly,
so we omit the details.

Thus, we have proven the existence of a process X̃ that solves the Equation (1). �

Note

1. C∞
c (IR2) defines the class of infinitely differentiable functions with compact support in IR2.
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Appendix

Here we prove the existence of a solution of Equation (7) in the Sobolev space H(IR2) for any f ∈
C∞
c (IR2) and with coefficients a and b satisfying condition (5). We use the method of continuity

and the method of a priori estimates in a similar way as in [8] for classical elliptic and parabolic
equations.

We start with the equation
ut + Lu − λu = f , (A1)

where λ > 0.
To solve (A1) in H(IR2), we will need several lemmas and a corollary.

Lemma A.3: Let f ∈ L1(IR2) ∩ L2(IR2) and u ∈ C∞
c (IR2) be a solution of (A1). Then, it holds that

‖ut‖2L2 + λ2‖u‖2L2 + ‖Lu‖2L2 ≤ ‖f ‖2L2 . (A2)

Proof: Applying the Fourier transform in variables (t, x) to Equation (A1) andusing Proposition 2.1,
we obtain

−iτF[u] − (λ+ |w|α)F[u] = F[f ],
or (

|τ |2 + (λ+ |w|α)2
)
|F[u]|2 = |F[f ]|2,

which implies
|τ |2|F[u]|2 + λ2|F[u]|2 + |w|2α)|F[u]|2 ≤ |F[f ]|2.

Integrating the last relation over IR2 and using Plancherel’s identity, we obtain (A2). �

Corollary A.4: Let f ∈ L1(IR2) ∩ L2(IR2) and u ∈ C∞
b (IR

2) ∩ L2(IR2) be a solution of Equation (A1).
Then, for any λ > 0,

‖u‖L2 ≤ 1
λ

‖f ‖L2 . (A3)

Proof: Since C∞
c (IR2) is dense in L2(IR2), there is a sequence of functions un ∈ C∞

c (IR2), n =
1, 2, . . . so that ‖un − u‖L2 → 0 as n → ∞. Set

f n := −unt − Lun + λun, n = 1, 2, . . . .

It can easily be seen that, for any n = 1, 2, . . ., f n ∈ L1(IR2) ∩ L2(IR2) and un solves the equation

unt + Lun − λun = f n. (A4)

Using (A1) and (A4), we obtain that ‖f n − f ‖L2 as n → ∞.
Lemma A.3 implies then

‖un‖L2 ≤ 1
λ

‖f n‖L2 ,
and upon letting n → ∞, we arrive at (A3). �

The next statement is an immediate consequence of Corollary A.4 with f = 0.

Lemma A.5: Let u ∈ C∞
b (IR

2) ∩ L2(IR2) be a solution of equation

ut + Lu − λu = 0.

Then u = 0 a.e.
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Now, we consider the set of functions

A := {g : g(t, x) = ∂tu(t, x)+ Lu(t, x)− λu(t, x) for some u ∈ C∞
c (IR

2)}.

Lemma A.6: The setA is dense in L2(IR2).

Proof: It is enough to prove thatA⊥ = {0}whereA⊥ is the orthogonal complement ofA in L2(IR2).
For that, we choose an arbitrary function h ∈ L2(IR2) so that∫

R2
h(t, x)

(
∂t + L − λ

)
u(t, x) dt dx = 0

for all u ∈ C∞
c (IR2). We have to verify that h = 0.

The last relation also implies that∫
R2

h(t, x)
(
∂t + L − λ

)
u(τ − t, y − x) dt dx = 0, (A5)

since u(τ − ·, y − ·) ∈ C∞
c (IR2) for all fixed (τ , y) ∈ IR2.

Using convolution, (A5) is then written as

h �
∂

∂t
u(τ , y)+ h � Lu(τ , y)− λh � u(τ , y) = 0. (A6)

Clearly,

h �
∂

∂t
u = ∂

∂t

(
h � u

)
. (A7)

We also have that

h � Lu(τ , y)

=
∫
IR2

h(t, x)Lu(τ − t, y − x) dt dx

=
∫
IR2

h(t, x)
∫
IR

[
u(τ − t, y − x + z)− u(τ − t, y − x)− 1|z|<1ux(τ − t, y − x)z

] dz
|z|1+α dt dx

and

L(h � u)(τ , y)

=
∫
IR

(∫
IR2

h(t, x)u(τ − t, y − x + z) dt dx

−
∫
IR2

h(t, x)u(τ − t, y − x) dt dx −
∫
IR2

zh(t, x)ux(τ − t, y − x)1|z|<1 dt dx
) dz

|z|1+α

=
∫
IR2

h(t, x)
∫
IR

[
u(τ − t, y − x + z)− u(τ − t, y − x)− 1|z|<1ux(τ − t, y − x)z

] dz
|z|1+α dt dx,

where we used the fact that (h � u)x = h � ux.
Comparing the above relations, we conclude that

h � Lu = L(h � u). (A8)

Using (A7) and (A8), Equation (A6) becomes(
∂t + L − λ

)
h � u(τ , y) = 0.

We also observe that h � u ∈ C∞
b (IR

2). Indeed, any derivative of h � u is equal to a convolution of h
with the corresponding derivative of u. The claim then follows from the Cauchy-Schwarz inequality,
since h, ∂tu, and ∂xu are all L2 functions.
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Applying Lemma A.5, we obtain

h � u(τ , y) =
∫
IR2

h(t, x)u(τ − t, y − x) dt dx = 0

for all u ∈ C∞
c (IR2) and a.e. (τ , y) ∈ IR2. It follows from the general integration theory that h = 0

a.e. in IR2, implying ‖h‖L2 = 0. �

Lemma A.7: Let λ > 0 and f ∈ C∞
c (IR2). Then there is a solution u ∈ H(IR2) of the Equation (A1).

Proof: By Lemma A.6, there is a sequence of functions un ∈ C∞
c (IR2) so that(

unt + Lun − λun
)

→ f as n → ∞

in L2(IR2).
Define

f n :=
(
unt + Lun − λun

)
, n = 1, 2, . . . (A9)

Using Lemma A.3, we obtain that

‖unt − umt ‖2L2 + λ2‖un − um‖2L2 + ‖Lun − Lum‖2L2 ≤ ‖f n − f m‖2L2
for all n,m = 1, 2, . . .

Since (f n) converges in L2(IR2), it is a Cauchy sequence so that ‖f n − f m‖L2 → 0 as n,m → ∞.
This implies that the sequences (un), (unt ), and (Lun) are also Cauchy sequences. Because of the
completeness of L2(IR2), the following limits exist in L2(IR2):

v(t, x) := lim
n→∞ un(t, x), ũ(t, x) := lim

n→∞ unt (t, x), û(t, x) := lim
n→∞Lun(t, x).

Using similar arguments as in [8] (see, e.g. Lemma 3 and Theorem 11 in chapter 1), one can show
then that vt exists and is independent of the choice of defining sequence. Also, if un,1 and un,2 are
two defining sequences for u, then we can easily verify that limn→∞ Lun,1 and limn→∞ Lun,2 in
L2(IR2) coincide, so that we can define the closure of the operator L on the space L2(IR2) as L̂u :=
limn→∞ Lun, where u ∈ L2(IR2), and un is a defining sequence for u. For simplicity, we use the same
notation L for the closure operator L̂. In particular, if u ∈ C∞

c (IR2), then L̂u = Lu.
It follows then from (A9) that

vt + Lv − λv = f a.e. in IR2.

Therefore, v is a solution of Equation (A1) in the sense described above, which is often referred to
as a generalized solution in the Sobolev space H. �

Remark A.8: For an alternative way to solve Equation (A1), we refer to [4], where it is shown that
the solution of (A1) can be written as

u(t, x) = −
∫ ∞

t
e−λ(s−t) ds

∫
IR
g(s − t, x, y)f (s, y) dy,

where g(t, x, y) = 1
2π

∫
IR exp(i(x − y)ξ − 1

2 t|ξ |α) dξ .
In particular, the authors derive estimates for the kernel function g and its fractional derivatives,

which then can be used to solve Equation (A1).

Now, for λ > 0 and α ∈ (1, 2), we consider the operator
L := ∂t + |b̄|αL + ā∂x − λ(1 + |b̄|α),

where the real-valued functions a, b satisfy assumption (5) and ā, b̄ are their extensions as defined
in Section 1.
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For any s ∈ [0, 1], we set
Ls := (1 − s)(∂t + L − λ)+ sL.

The following result is an analog of Theorem 1.4.4 from [8]. The proof is entirely based on general
functional analysis and we refer for details to [8].

Proposition A.9: Assume that there are constants λ > 0 and M ∈ (0,∞) such that for any u ∈
C∞
c (IR2) and s ∈ [0, 1] it holds that

‖u‖H ≤ M‖Lsu‖L2 . (A10)

Then, for any f ∈ C∞
c (IR2), there is a function u ∈ H(IR2) satisfying Lu = f.

Condition (A10) can be reformulated as follows: for any u ∈ H(IR2) satisfying the equation Lsu =
f , it holds that

‖u‖H ≤ M‖f ‖L2 . (A11)
Estimate (A11) is called an a priori estimate for the equation Lsu = f , since we do not yet know the
existence of such a solution.

Proposition A.10: For any function f ∈ C∞
c (IR2) and a fixed value of λ > 0 satisfying condition (8),

there is a solution u ∈ H(IR2) of the equation Lu = f.

Proof: Let us first prove the statement for ā = 0.
It follows from Lemma 3.1 that, for any u ∈ C2

c (IR2) and λ satisfying (8), it holds that

‖ut‖2L2 + λ2‖u‖2L2 + ‖Lu‖2L2 ≤ M‖ut + |b̄|αLu − λ(1 + |b̄|α)u‖2L2 , (A12)

where the constantM depends on ν and μ only.
For s ∈ [0, 1], we consider

L̃su := (1 − s)(ut + Lu − 2λu)+ s
(
ut + |b̄|αLu − λ(1 + |b̄|α)u

)
.

It can easily be seen that

L̃su = ut + [1 − s + s|b̄|α]Lu − λ[1 + 1 − s + s|b̄|α]u
= ut + σ(s)Lu − λ[1 + σ(s)]u,

where
σ(s) = 1 − s + s|b̄|α .

Because of Lemma A.7, the equation ut + Lu − 2λu = f has a solution u ∈ H(IR2) for any λ satis-
fying (8) and f ∈ C∞

c (IR2). By Proposition A.9, the claim is then proved if, for any s ∈ [0, 1] and any
u ∈ C∞

c (IR2), it follows that
‖u‖H ≤ M‖L̃su‖L2 .

The latter, however, follows from (A12) if we replace |b̄|α by σ(s) and note that, for any s ∈ [0, 1], it
holds that

0 < min{1,μα} ≤ σ(s) ≤ max{1, να}
since σ(s) is a linear function in s.

To prove the general case, we consider, for s ∈ [0, 1], the operator

Lsu = (1 − s)
(
ut + |b̄|αLu − λ(1 + |b̄|α)u

)
+ sLu

= ut + |b̄|αLu − λ(1 + |b̄|α)u + sāux.

Using (A12), we obtain that, for any u ∈ C∞
c (IR2) and λ satisfying (8), it holds that

‖ut‖L2 + λ‖u‖L2 + ‖Lu‖L2 ≤ M1‖Ls‖L2 + M2‖ux‖L2 , (A13)

where the constantsM1 andM2 depend on the bounds of the coefficients ā and b̄.
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It can be easily seen that, for any fixed 1 < α < 2, there exists λ0 satisfying (8) so that

M2|ω|2 ≤ 1
2
(λ0 + |ω|α)2, ω ∈ IR.

It follows then that

M2‖ux‖L2 ≤ 1
2
‖Lu‖L2 + λ0

2
‖u‖L2 ,

and by (A13) we conclude that

‖ut‖L2 +
(
λ− λ0

2

)
‖u‖L2 + 1

2
‖Lu‖L2 ≤ M1‖Lsu‖L2 .

The last relation implies the a priori estimate

‖u‖H ≤ M‖Lsu‖L2
for λ > λ0/2 withM depending on the bounds of ā and b̄. The latter, in turn, implies the existence of
a solution u ∈ H(IR2) of the equation Lu = f for any f ∈ C∞

c (IR2) because of Proposition A.9. �


