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During perception, people segment continuous activity into discrete events. They do so in
part by monitoring changes in features of an ongoing activity. Characterizing these features
is important for theories of event perception and may be helpful for designing information
systems. The three experiments reported here asked whether the body movements of an
actor predict when viewers will perceive event boundaries. Body movements were
recorded using a magnetic motion tracking system and compared with viewers’ segmenta-
tion of his activity into events. Changes in movement features were strongly associated
with segmentation. This was more true for fine-grained than for coarse-grained bound-
aries, and was strengthened when the stimulus displays were reduced from live-action
movies to simplified animations. These results suggest that movement variables play an
important role in the process of segmenting activity into meaningful events, and that the
influence of movement on segmentation depends on the availability of other information
sources.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Event segmentation is the process by which people break
up a continuous, fluid activity into meaningful events. For
example, an observer of a baseball game might perceive it
as consisting of innings, at-bats, and individual pitches. For
activities less structured than baseball there may not be
strong norms for where the boundaries between events
go; nonetheless observers often show excellent agreement
in placing their boundaries (Dickman, 1963; Newtson,
1976). Neuroimaging and EEG studies suggest that event
segmentation is an ongoing concomitant of normal percep-
tion—people do it all the time, whether or not they are con-
sciously attending to events and their boundaries (Sharp,
Lee, & Donaldson, 2007; Speer, Reynolds, & Zacks, 2007;
Zacks, Swallow, Vettel, & McAvoy, 2006c; Zacks et al.,
2001a).

The event boundaries that people identify are important
for later memory. In immediate memory, one’s representa-
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ks).
tion of the current event appears to act as a working mem-
ory buffer, with information in the buffer more accessible
than comparable information from previous events
(Gernsbacher, 1990; Speer & Zacks, 2005; Swallow, Zacks,
& Abrams, 2009). After viewing a movie, pictures taken
from event boundaries are remembered better than pic-
tures taking from intervening moments (Newtson & Eng-
quist, 1976). Asking viewers to attend to events at
different temporal grains affects their later memory (Han-
son & Hirst, 1989, 1991; Lassiter, 1988; Lassiter & Slaw,
1991; Lassiter, Stone, & Rogers, 1988). Finally, across indi-
viduals, event segmentation is correlated with later mem-
ory for events (Zacks, Speer, Vettel, & Jacoby, 2006a). This
suggests that better understanding of event segmentation
may be important for understanding and improving mem-
ory. Understanding event segmentation also may be help-
ful for constructing systems to automatically segment
continuous data streams such as video recordings or sensor
data (Mann & Jepson, 2002; Rubin & Richards, 1985; Rui &
Anandan, 2000)—if one can quantitatively characterize the
cognitively natural breaks between events it may be possi-
ble to identify them automatically and use them to select
key frames for visualization or units of analysis.
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How does the mind-brain identify event boundaries
from the continuous stream of sensory input? Event Seg-
mentation Theory (EST) (Zacks, Speer, Swallow, Braver, &
Reynolds, 2007) proposes that event segmentation arises
as a side effect of ongoing understanding. To understand
an ongoing event, an observer processes incoming infor-
mation to generate predictions about what will happen
in the near future. Such predictions allow for adaptive pro-
active actions, and are a key feature of models of control in
psychology (Neisser, 1967) and neuroscience (Schultz &
Dickinson, 2000). EST proposes that everyday activity in-
cludes substantial sequential dependency, which can help
prediction. For example, consider watching a friend make
salad. One can make predictions about what will come
next based on conceptual features such as inferred
goals—if the friend takes out a knife this implies the goal
of cutting something. One can also make predictions based
on perceptual features such as those that arise from biolog-
ical motion—if the friend begins chopping with a particular
frequency and amplitude those parameters are likely to be
stable. According to EST, perceivers take advantage of such
predictability by maintaining working memory represen-
tations of the current event, called event models. However,
when one event ends and another begins (when the friend
finishes the salad), many of the predictive relationships
will no longer hold. At such points one’s predictions will
tend to generate more errors, and it would be adaptive to
update one’s event models to capture the new event that
has begun. EST proposes that when prediction error in-
creases transiently, comprehenders update their event
models. This is perceived as an event boundary. Event
boundaries are processed simultaneously on multiple
timescales, a suggestion supported by physiological stud-
ies (Sharp et al., 2007; Speer et al., 2007; Zacks et al.,
2001a). For identifying fine-grained event boundaries, the
system monitors prediction error over shorter time inter-
vals and identifies brief transient increases; for identifying
coarse-grained event boundaries, the system monitors
longer intervals and identifies increases that are larger
and longer.

EST and other psychological accounts of event segmen-
tation (Newtson, 1976; Zacks et al., 2007) argue that seg-
mentation depends on the processing of feature
changes—particularly those that are not predicted. Feature
changes may be conceptual, such as changes in actor’s
goals, or perceptual, such as changes in movement pat-
terns. Previous studies have provided evidence that both
sorts of feature changes are correlated with event segmen-
tation. Conceptual changes predict the locations of event
boundaries when comprehenders read or hear narratives
(Zacks, Speer, & Reynolds, 2009), and when they view mov-
ies (Zacks, Swallow, Speer, & Maley, 2006b). Physical
changes—particularly movement—have been studied both
qualitatively and quantitatively. One qualitative study
coded the positions of actors’ bodies at 1-s intervals, and
found that changes in body configuration were associated
with event segmentation (Newtson, Engquist, & Bois,
1977). Another study (Hard, Tversky, & Lang, 2006) used
a simple animation based on the classic event perception
work of Heider and Simmel (1944). The animation was
coded for qualitative changes in motion, such as changes
in direction or speed of motion. Such changes were corre-
lated with event segmentation.

A pair of previous studies used simple animations of
pairs of point objects moving on a white background
(Zacks, 2004; Zacks et al., 2006c). Movements were charac-
terized quantitatively by computing the speed and acceler-
ation of each of the objects, the distance between the
objects, and their speed and acceleration relative to each
other. Viewers’ segmentation of such animations was sig-
nificantly correlated with changes in these movement vari-
ables (Zacks, 2004). Correlations were stronger when
participants segmented the activity into fine-grained
events and less strong when they identified coarse-grained
events. Correlations were stronger for stimuli that viewers
interpreted as depicting random motion rather than goal-
directed actions. Brain activity in regions specialized for
motion processing covaried both with changes in move-
ment information and with changes in objects’ speed
(Zacks et al., 2006c). This is consistent with the hypothesis
that comprehenders perceive event boundaries in part due
to processing changes in movement variables. However,
the simple stimuli used in these experiments place limits
on the conclusions they can support. Naturalistic everyday
action provides rich cues from facial expression, eye gaze,
and the objects in the environment. One possibility is that
observers may monitor movement information when there
is little else available, but for rich depictions of naturalistic
activity other cues dominate movement.

This psychological approach is consistent with work in
artificial intelligence on the individuation of actions from
motion. Thibadeau (1986) described a computational
scheme for identifying event boundaries in simple anima-
tions. The animations are coded to provide descriptions of
the state of the on-screen world for each frame. Changes in
states of the system correspond to changes in, for example,
the position of an object. Second-order changes are
changes in first-order changes. Event boundaries are
drawn from the set of second-order changes. Thus, con-
stant-velocity motion does not constitute a boundary, but
acceleration does. A formal analysis provided by Rubin
(1985) came to a similar conclusion. They showed there
is a class of motion transitions that can be reliably identi-
fied from the two-dimensional projection of a three-
dimensional motion sequence and that corresponds to psy-
chological boundaries. The primitive transitions are starts,
stops, and discontinuities of force. These can be composed
to form 15 motion transitions (e.g., a stop and a start can be
composed into a pause). Rubin and Richards proposed that
such motion transitions may correspond with observers’
perceptual segmentation of motion sequences. Force dis-
continuities can be directly identified from object’s accel-
eration, provided that mass is constant. Thus, this
analysis converges with Thibadeau’s (1986) hypothesis
that second-order changes are important for detecting psy-
chological boundaries. Subsequent work (e.g., Mann & Jep-
son, 2002) has built on such formal analyses to design
systems that can segment motion sequences in video.

Thus, previous results suggest that when viewers watch
everyday activities, they perceive event boundaries in part
due to processing changes in the movement in those activ-
ities. However, important questions remain. First and fore-
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most, to this point there has been no quantitative evidence
that movement features predict how viewers segment nat-
uralistic action. It is tempting to generalize from the stud-
ies just reviewed that used simple animations. However,
such animations are quite impoverished compared to
live-action movies of naturalistic action. Comprehension
of such animations depends solely on rigid body motion
information. On the other hand, everyday activity is rich
with information about the objects being acted upon, the
expressions and eye gaze of actors, and the nonrigid artic-
ulation of the body. It would not be surprising if the pres-
ence of this additional information rendered the
relationship between movement information and event
segmentation negligible. Therefore, a first important ques-
tion is this: Are movement variables robustly correlated
with event segmentation when viewing naturalistic every-
day activities? The two experiments reported here asked
this question by recording movements while an actor per-
formed a set of everyday activities and then asking a set of
viewers to segment those activities.

A second, related question is: If movement variables are
correlated with event segmentation during naturalistic
activities, does removing some of the other information
that live-action video provides change this relation? If seg-
mentation depends in part on information about objects,
gaze, and facial expression, then removing those cues
might strengthen the dependence of segmentation on
movement features, and perhaps to change the nature of
the relations between movement and segmentation.
Experiments 2a and 2b investigated this possibility by
comparing segmentation of live-action videos to segmen-
tation of simple animations generated from the movement
information captured by the motion tracking system.

Third, if movement and segmentation are related when
viewing naturalistic action, does this relation vary with seg-
mentation grain? Events on different timescales may be
characterized by changes in different sorts of features,
ranging from physical perceptual-motor features for events
on the timescale of seconds to abstract conceptual features
for events on the timescale of months to years (Barker &
Wright, 1954). Everyday events occupy timescales from a
few seconds to tens of minutes, and there is evidence that
within this range of timescales different features character-
ize events at different levels. More fine-grained events
(with median lengths of 10–15 s) are more strongly associ-
ated with specific actions on objects whereas more coarse-
grained events (with median lengths of 40–60 s) are more
associated with action contexts (Zacks, Tversky, & Iyer,
2001b) or conceptual features such as goals and causes
(Baldwin & Baird, 1999). Such results support an interpreta-
tion that for everyday activities fine-grained events are
more perceptually determined, whereas coarse-grained
events are more conceptually determined. Data from sim-
ple animations also are consistent with this view, indicat-
ing that movement variables are more strongly related to
fine-grained event boundaries than coarse-grained event
boundaries (Zacks, 2004). Does this hold for naturalistic ac-
tion? To answer this question, Experiment 1 manipulated
the grain at which viewers segmented activity.

Finally, these studies investigated how conceptual
information interacts with movement information to
determine event segmentation. Previous studies have
found that providing comprehenders with a conceptual
frame for an activity before reading about it can pro-
foundly affect comprehension (Bransford & Johnson,
1972; George, Kutas, Martinez, & Sereno, 1999; Maguire,
Frith, & Morris, 1999). Conceptual framing can affect pro-
cesses that are generally thought to be fast and early in
comprehension, including the resolution of lexical ambigu-
ity (Wiley & Rayner, 2000). Conceptual framing has also
been shown to affect event comprehension and segmenta-
tion (Massad, Michael, & Newtson, 1979). Does one’s con-
ceptual frame affect how one processes movement
information to extract meaning? One way of describing
conceptual representations of events is in terms of sche-
mata, which are structured knowledge representations of
types of things and events that one has encountered in
the past (Rumelhart, 1980). Schemata represent typical
feature values for a type of entity and relations amongst
those features. For example, a schema for ‘‘folding laundry”
might include information about the sorts of objects that
are typically involved (e.g., clothes, baskets) and the order
in which steps are typically performed. If a viewer familiar
with laundry-folding views a movie that shows a pile of
clothes, a basket, and a person performing steps such
reaching into the basket, the viewer might well activate
their schema for folding laundry, as well as schemata cor-
responding to the different object types present, and a per-
son schema.

Schema activation can have two distinct effects on
ongoing perception. First, active schemata provide new
information. Activating a schema for folding laundry pro-
vides information about what objects are likely to be pres-
ent, what steps are likely to be performed, and in which
order. If these additional information sources play a role
in event segmentation, then their presence might weaken
effects of movement variables on segmentation. Second,
active schemata can change how information is processed,
by biasing processing or modulating attention. For exam-
ple, imagine the viewer sees an ambiguous, partly oc-
cluded motion pattern that is consistent with the actor
folding a towel in half or wringing it out. In the context
of an active laundry-folding schema that sensory signal
might receive an interpretation consistent with folding,
whereas in the context of an active kitchen-cleaning sche-
ma the same signal might receive an interpretation consis-
tent with wringing out. Another example: activating a
laundry-folding schema might increase attention to the
distance between the hands, whereas activating a hair-
combing schema might increase attention to the distance
between the dominant hand and the head. Thus, activating
a schema for an activity may affect not just the weight gi-
ven to movement information, but also how that informa-
tion is processed. This would be expected to affect which
movement features are correlated with segmentation.

Thus, conceptual framing could have two distinct ef-
fects on the relations between movement and event seg-
mentation: Weakening the overall strength of relations
between movement and segmentation, and changing
which features of movement are correlated with segmen-
tation. These two possibilities are not mutually exclusive.
Experiment 2 investigated these two potential effects of
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conceptual framing by manipulating how much informa-
tion viewers had about variables other than movement be-
fore they segmented an activity and while they were
segmenting.

In short, the experiments reported here aimed to an-
swer four questions about the role of movement informa-
tion in event segmentation. First, does movement
quantitatively predict segmentation of naturalistic activ-
ity? Second, does removing some of the visual information
provided by naturalistic videos increase viewers’ depen-
dence on movement features for segmentation? Third, do
the relations between movement and segmentation de-
pend on the grain at which the viewer segments? Finally,
do the relations between movement and segmentation de-
pend on conceptual framing?
Fig. 1. Still frames taken from the laundry (top), Duplos (middle), and
videogame (bottom) movies used in Experiments 1 and 2.
2. Experiment 1

In Experiment 1, participants segmented movies of
everyday activities performed by a single actor using a
set of objects on a tabletop. The actor’s movements were
recorded with a magnetic tracking system, allowing us to
analyze the relations between movement variables and
event segmentation in naturalistic activity. Viewers seg-
mented the activity at both a fine and coarse grain, allow-
ing us to ask whether movement was more strongly
related to fine-grained than coarse-grained segmentation.

2.1. Method

2.1.1. Participants
Twenty-six students at Washington University (ages

18–22, 20 female) participated in partial fulfillment of a
course requirement. An additional five participants failed
to complete the experiment due to computer problems
(two), illness (one), or failure to follow the instructions
(two).

2.1.2. Stimuli
Participants watched three movies of a college-aged

man performing everyday tabletop activities—folding
laundry (498 s), building a house from Duplos (371 s; Lego
Group, www.lego.com), and assembling a video game sys-
tem (240 s). For training, the initial 180 s of a movie show-
ing the man assembling a cardboard shelving unit was
used. The movies were filmed from a fixed head-height
perspective using a digital camera and reduced to
320 � 240 pixel resolution for display. All movies began
and ended with several seconds of the actor sitting still.
Examples of the stimuli are shown in Fig. 1. The complete
videos are available at http://dcl.wustl.edu/DCL/
Stimuli.html.

During filming, the actor was outfitted with three mag-
netic sensors to record the position of his hands and head.
The hand sensors were attached to the back of the hands
with medical tape; the head sensor was attached to the
rear top of the head using tape and a woolen cap (see
Fig. 1). The motion tracking apparatus (Flock of Birds,
Ascension Technologies, Burlington VT) was controlled by
a PC and synchronized with the video recording after data
acquisition. Positions were recorded at 29.27 Hz. (During
recording of the videogame event, the system lost signal
from 159.9 to 170.5 s in the movie. These frames were ex-
cluded from analysis.)

2.1.3. Segmentation task
Participants segmented each movie to identify bound-

aries between events. They were told that they would be
watching movies of everyday activities and that they
should press a button on a button box whenever, in their
judgment, one natural and meaningful unit of activity
ended and another began. They were told that the actor
would be wearing sensors to track the positions of his head
and hands, and that they could ignore the sensors. Each

http://dcl.wustl.edu/DCL/Stimuli.html
http://dcl.wustl.edu/DCL/Stimuli.html
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participant segmented all three movies twice, once to mark
coarse event boundaries and once to mark fine boundaries.
For coarse segmentation they were asked to identify the
largest units of activity that were meaningful to them.
For fine segmentation they were asked to identify the
smallest units of activity.

Movies were presented on a Macintosh computer
(www.apple.com) with a 19 in monitor, using PsyScope
software (Cohen, MacWhinney, Flatt, & Provost, 1993). Re-
sponses were recorded using the PsyScope button box.

2.1.4. Procedure
Each participant was given either fine-grained or

coarse-grained instructions for the segmentation task and
then trained using the 180 s practice movie. The experi-
menter offered to answer any questions. The participant
then segmented the three stimulus movies. This procedure
was repeated for the other segmentation grain. Order of
segmentation grain and movie order was counterbalanced
across participants.

2.2. Results

2.2.1. Movement analysis
We analyzed the motion tracking recordings to provide

a record of the actor’s movement over time. First, the tran-
sient data collection errors were corrected by visual
inspection. Next, a set of 15 variables describing the actor’s
movement were calculated from the position information:

� the speed of each hand and the head,
� the acceleration of each hand and the head,
� the pairwise distance between each of the three tracked

points (left hand, right hand, head),
� the pairwise relative speed, and
� the pairwise relative acceleration.
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For example, if the actor were resting his left hand on his
head and then began to move it toward the table, the pair-
wise left-hand-to-head distance would increase, the pair-
wise left-hand-to-head speed would become positive
(indicating that distance was increasing over time), and
the pairwise left-hand-to-head acceleration would become
positive (indicating that the rate of increase of distance
was increasing over time). As the hand reached the table
the pairwise distance would change more slowly, the pair-
wise speed would approach zero, and the pairwise acceler-
ation would pass through zero, become negative, and then
reach zero again. The movement variables were then
resampled to a 1 Hz rate for comparison with the behav-
ioral data, using kernel estimation with a 1-s bandwidth.

2.2.2. Relationship between movement and segmentation
To compare participants’ segmentation to the move-

ment variables, we first binned each participant’s segmen-
tation data to 1 s intervals. For each interval in each movie
we then counted the number of participants who identified
a fine event boundary and the number who identified a
coarse boundary, producing two time series. As can be seen
in the example in Fig. 2, event boundaries were clustered
such that some intervals were marked as boundaries by a
high proportion of participants and others were marked
as boundaries by few participants. These measures of fre-
quency of segmentation over time were then compared
to the movement variables.

One simple and intuitive measure of the strength of
relationship between a movement variable and segmenta-
tion frequency is the correlation coefficient, r. For example,
a positive correlation between head speed and segmenta-
tion indicates that participants tended to segment when
the head was moving rapidly. However, the simple correla-
tion presumes that the movement variables and segmenta-
tion are perfectly in phase. This assumption is likely not
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Table 1
Correlations between movement variables and event segmentation after shifting the movement variables by up to 5 s to maximize the absolute value of the
correlations. Values are means across movies (SDs in parentheses).

Experiment 1 (fine and coarse) Experiment 2a (fine) Experiment 2b (coarse)

Largest correlation Optimal lag Largest correlation Optimal lag Largest correlation Optimal lag

Speed
Right hand 0.19 (0.08) �0.33 (0.58) 0.44 (0.10) 0 (0) 0.28 (0.10) 0.33 (0.52)
Left hand 0.33 (0.08) �0.33 (0.58) 0.66 (0.05) 0 (0) 0.38 (0.05) 0 (0)
Head 0.31 (0.1) �0.33 (0.58) 0.56 (0.08) 0 (0) 0.46 (0.07) 0 (0)

Acceleration
Right hand 0.16 (0.06) 0 (1) 0.34 (0.07) 0.33 (0.52) 0.25 (0.12) �0.33 (2.58)
Left hand 0.24 (0.04) �0.33 (0.58) 0.49 (0.12) 0 (0) 0.25 (0.10) �0.33 (1.97)
Head 0.3 (0.07) �0.33 (0.58) 0.52 (0.11) 0 (0) 0.42 (0.08) 0 (0)

Distance
Right hand–left hand 0.26 (0.06) �0.33 (1.53) 0.44 (0.09) 0 (0) 0.26 (0.05) 0 (0)
Right hand–head 0.18 (0.03) 0.33 (1.15) 0.18 (0.20) 0.5 (2.35) 0.04 (0.23) �0.83 (2.79)
Left hand–head 0.26 (0.09) �0.33 (0.58) 0.36 (0.10) �0.33 (0.52) 0.22 (0.12) 0.17 (0.75)

Relative speed
Right Hand–Left Hand �0.08 (0.15) �0.33 (1.53) 0.13 (0.16) 0.67 (82) 0.11 (0.13) 1.33 (1.97)
Right hand–head �0.14 (0.04) �1.33 (0.58) �0.01 (0.14) 0.33 (2.16) 0.04 (0.18) 0.17 (3.66)
Left hand–head �0.13 (0.02) �2.33 (1.53) 0.06 (0.17) 0.17 (0.98) 0.07 (0.13) �0.17 (0.75)

Relative acceleration
Right hand–left hand 0.02 (0.09) 1.67 (2.52) �0.17 (0.09) 0.17 (0.41) �0.08 (0.11) �0.67 (1.97)
Right hand–head �0.03 (0.07) �1.67 (1.15) 0.05 (0.09) 1.67 (2.42) �0.03 (0.13) 0.50 (2.66)
Left hand–head �0.04 (0.11) 1.67 (1.53) �0.07 (0.14) �0.17 (1.33) �0.13 (0.05) 0.17 (2.79)

Note: Positive lag indicates that segmentation frequency correlated most strongly with subsequent values of a movement feature; negative lag indicates
segmentation frequency correlated most strongly with previous values of a movement feature.
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segmentation in Experiment 1, particularly for fine-grained segmenta-
tion. (Error bars are 95% confidence intervals.)

1 Positive lags indicate that the effect of a change in a movement variable
on segmentation is seen before the change in the movement feature itself.
This at first appears paradoxical, but can occur due to autocorrelation in the
movement variables.
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warranted. For example, suppose a viewer tried deliber-
ately to segment when the actor’s hands were maximally
outstretched (i.e., at local maxima in the right hand–left
hand distance). The viewer could not know precisely when
these maxima have occurred until after they are over. Thus,
the effects of hand distance on segmentation would have a
temporal lag. To account for these phase relationships we
fitted cross-correlation sequences between each move-
ment variable and segmentation frequency for each movie
(Zacks, 2004). Coarse and fine segmentation were com-
bined by dividing each frequency time series by its stan-
dard deviation (to compensate for greater numbers of
boundaries in the fine segmentation condition) and sum-
ming the two time series. We then calculated the cross-
correlation between the summed segmentation frequency
series and each movement variable, using lags from �5
to 5 1-s bins, and noted the lag with the largest correlation.
The lag and correlation were stored, and the movement
variable was shifted in time using the noted lag to maxi-
mize the correlation between the movement variable and
the segmentation frequency series. The means across mov-
ies of the highest correlations and optimal lags are given in
Table 1. As can be seen in the table, the speed and acceler-
ation of the left hand and head were consistently positively
correlated with segmentation, as were the distances be-
tween the two hands and between each hand and the head.
For all of these features the mean lags were small, between
�.33 and .33. Larger lags tended to be associated with
smaller optimal correlations; this makes sense because
when the cross-correlation sequence has no strong maxi-
mum the estimate of the optimal lag will be variable. The
most frequently occurring lag was zero (16 of 45), followed
by �1 (14 of 45) and 1 (5 or 45), indicating that effects of
changes in movement variables on segmentation were
generally seen during the same 1-s interval as the change
or during the following interval.1

With these optimally shifted movement variables in
hand, we performed multiple linear regression analyses



Table 2
Movement variables that were significantly correlated with event segmentation for each combination of movie and segmentation grain (p < .05 corrected for
multiple comparisons across movement features).

Coarse Fine

Videogame Duplos Laundry Videogame Duplos Laundry

Speed
Right hand + + +
Left hand + + + +
Head + + + +

Acceleration
Right hand + + + +
Left hand + + +
Head + + + + +

Distance
Right hand–left hand + + + +
Right hand–head +
Left hand–Head + + + +

Relative speed
Right hand–left hand �
Right hand–head �
Left hand–head �

Relative acceleration
Right hand–left hand
Right hand–head
Left hand–head �

+: Relationship between movement variable and segmentation was positive.
�: Relationship between movement variable and segmentation was negative.
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to answer three questions: First, how strong was the over-
all relationship between movement variables and event
segmentation for these movies? Second, did the strength
of this relationship change with segmentation grain?
Third, which particular movement variables were predic-
tive of segmentation? For each movie, we fit two linear
regressions, one predicting the proportion of participants
who identified a coarse boundary during each 1-s interval,
and another predicting the proportion of participants who
identified a fine boundary. The predictors for both models
were the 15 optimally shifted movement variables. We
took the total variance accounted for in the regression
(R2) as a measure of the total strength of the relation be-
tween movement and segmentation, and examined the
individual regression coefficients to characterize the sign
and strength of the relation for individual movement
features.

As can be seen in Fig. 3, movement variables were sig-
nificant predictors of segmentation, accounting for 8% to
33% of the variance in segmentation. For all three movies
the relationship between movement variables and seg-
mentation was substantially stronger for fine segmenta-
tion than for coarse segmentation.2 Table 2 indicates
which features were significantly correlated with event seg-
mentation for each combination of movie and segmentation
grain. The most consistent predictors of segmentation were
the speed and acceleration of body parts and the distance
between the left hand and other body parts. These relation-
2 We repeated the analyses using optimal lags computed separately for
fine and coarse segmentation. The results were similar, with movement
features still predicting fine segmentation more strongly than coarse
segmentation.
ships were always positive, indicating that participants
tended to segment when the hands and head were acceler-
ating or moving quickly, and when the left hand was far
from the right hand or head. (It is worth noting that the ac-
tor was left-handed.)

2.2.3. Event unit lengths
The lengths of the units participants identified are given

in Table 3. As can be seen in the table, participants were
able to modulate their segmentation grain as instructed,
identifying larger units for coarse-grained segmentation
and smaller units for fine-grained segmentation. The table
also indicates that the units identified in the videogame
movie were generally shorter than those in the other mov-
ies, particularly for coarse-grained segmentation. These
patterns led to significant main effects of segmentation
grain [F(1, 25) = 76.2, p < .001] and movie [F(2, 50) = 13.1,
p < .001], as well as a significant interaction
[F(2, 50) = 11.0, p < .001].

2.2.4. Hierarchical organization
The degree to which viewers grouped fine events hier-

archically into coarse events was assessed using the enclo-
sure measure proposed by Hard, Recchia, & Tversky
(submitted for publication), and using the alignment mea-
sure proposed by Zacks, Tversky, & Iyer (2001). Enclosure
is calculated by comparing each coarse event boundary
to the nearest fine boundary identified by the same partic-
ipant. If viewers spontaneously group fine-grained events
into coarse-grained events, the majority of these nearest
fine boundaries should fall before the coarse boundary to
which they are closest. Therefore, enclosure is calculated
as the proportion of coarse boundaries that fall after their



Table 3
Coarse and fine unit lengths in seconds as a function of movie and
segmentation grain in Experiment 1. Values are means across participants
(SDs in parentheses).

Experiment 1 Coarse Fine

Videogame 33.56 (14.33) 8.52 (6)
Duplos 62.60 (41.94) 10.51 (8.84)
Laundry 60.89 (41.54) 11.24 (8.55)
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nearest fine boundary. Enclosure scores greater than 0.5
indicate hierarchical organization. The mean enclosure
score was 0.59 (SD across participants = .13), which dif-
fered significantly from 0.5, t(25) = 23.7, p < .001. There
were no significant differences in enclosure across the
three movies, F(2, 50) = .04, p = .96.

Alignment measures the degree to which coarse event
boundaries correspond to a subset of fine boundaries. It
is calculated by measuring the distance from each coarse
event boundary to its nearest fine event boundary, and
comparing those distances to that which would be ex-
pected if there were no relationship between the locations
of coarse and fine boundaries. Observed distances had a
mean of 1.67 s (SD across participants = 1.39), whereas
the null expectation was 4.82 s (SD = 3.72 s),
t(25) = �5.49, p < .001. The difference was smaller for the
videogame movie (M = 2.15 s, SD = 2.55 s) than for the
Duplos movie or the laundry movie (M = 3.75 s,
SD = 3.41 s, and M = 3.56 s, SD = 4.35 s, respectively), and
this effect of movie was statistically significant,
F(2, 50) = 3.48, p = .04. This likely reflects a scaling effect;
the videogame movie produced finer-grained segmenta-
tion overall, leading to smaller actual and observed
distances.

2.3. Discussion

This experiment provided a clear answer to our first
question: Movement variables were robustly correlated
with event segmentation when viewing naturalistic every-
day activities. Viewers were more sensitive to the move-
ments of individual body parts and the distance between
them than to the relative speed and acceleration of the
body parts with respect to each other. This may reflect that
body part movements are coded with respect to a common
trunk-centered reference frame (Johansson, 1973) rather
than in terms of effector-to-effector relations. Viewers
were more sensitive to movements of the left hand than
of the right hand. This may reflect the handedness of the
actor—being left-handed, it is likely that he provided more
informative cues with the left than the right hand. Another
possibility, which we think less likely, is that the left hand
was processed more thoroughly because it was generally
closer to the camera in the shots we selected. In future
studies it would be of interest to systematically vary the
handedness of actors and the orientation of the camera.

The experiment also clearly answered our second ques-
tion: Movement variables were better predictors of fine-
grained segmentation than coarse-grained segmentation.
This replicates previous findings using simple animations
(Zacks, 2004), and is consistent with the view that fine
events are particularly focused on individual actions on
objects.
3. Experiments 2a and 2b

Experiments 2a and 2b investigated the interaction be-
tween perceptual and conceptual information in event seg-
mentation. Specifically, they were designed to answer two
questions: First, does removing other cues to event seg-
mentation strengthen the relations between movement
variables and segmentation? Second, does one’s prior con-
ceptual representation of an activity affect the ongoing
processing of movement information?

To test both of these possibilities, we manipulated the
degree to which viewers had information about the activ-
ity being performed, the objects being interacted with,
and the actor’s gaze and expression. In the video condition,
participants segmented movies while watching live-action
movies as in Experiment 1. For the animation-informed
condition, we created animations of the actor’s hands
and head from the motion tracking data. Participants seg-
mented these animations, but before doing so viewed a
40-s preview of the live-action video. Finally, participants
in the animation-uninformed condition viewed the same
animations but without the live-action preview. In all
three conditions, observers had access to the movements
of the head and hands. The conditions were designed to
vary in the additional information present. Compared to
the video condition, the animation condition was designed
to deprive participants of two potential bases for segmen-
tation: conceptual knowledge about the activity being per-
formed (schemata) and visual features other than the
motion of the head and hands. In the video condition
observers should have been able to easily recognize the
activity being performed and thus to activate relevant
event schemata, cued by the objects present and the actor’s
interaction with those objects. They also had ongoing ac-
cess to a number of visual features beyond the motion of
the head and hands: Videos provide ongoing information
about objects’ identities and locations, the actor’s contact
with those objects, and the actor’s facial expression and
gaze. Videos also provide much information about move-
ment features not captured by the animations—for exam-
ple, the angular motion of the head, the relative
movements of the fingers, and the movements of the el-
bows. We predicted that participants in the animation con-
ditions would show stronger relations between movement
and segmentation than those in the video condition, be-
cause they would have access to fewer additional features
that might affect their segmentation.

We also hypothesized that if one’s prior conceptualiza-
tion of an activity affects how movement features are pro-
cessed, then the two animation groups should differ in the
relation between their segmentation and movement fea-
tures. The animation-informed condition was specifically
designed to provide observers an opportunity to activate
relevant schemata (during the 40-s preview) while equat-
ing the visual features present during segmentation with
the animation-uninformed condition. Because participants
segmented identical stimuli in the two animation condi-



Fig. 4. Two still frames from the laundry animation used in Experiment 2.
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tions, any differences in their segmentation patterns would
likely be due to conceptual representations formed by the
animation-informed group during the preview stage. Prior
conceptualization, if present, should affect both the magni-
tude and nature of the relations between movement fea-
tures and segmentation. First, it should change how
strongly movement features predict segmentation. We
hypothesized that if activating a schema for an activity
provided additional conceptual features that fed into event
segmentation, this would render movement features less
strongly related to segmentation. Second, prior conceptu-
alization should change which movement features predict
segmentation, rendering features that are more schema-
relevant more predictive and features that are less sche-
ma-relevant less predictive.

The effect of conceptual representations on event per-
ception might differ for different grains of segmentation.
One possibility is that fine-grained segmentation is more
perceptually driven, whereas the grouping of fine-grained
units into larger structures is more conceptually driven. If
so, one would expect the animation-informed and anima-
tion-uninformed groups to differ more for coarse-grained
segmentation than for fine-grained segmentation. On the
other hand, fine-grained segmentation appears to be re-
lated more strongly to movement features than does
coarse-grained segmentation (Experiment 1; Zacks,
2004). Therefore, if conceptual structure modulates the
relationship between movement and segmentation, then
differences between the animation-informed and anima-
tion-uninformed groups might be more apparent in fine-
grained segmentation. To test these possibilities, Experi-
ment 2a measured fine-grained segmentation whereas
Experiment 2b measured coarse-grained segmentation.

A secondary goal of these experiments was to replicate
the primary finding of Experiment 1—a robust relation be-
tween movement variables and event segmentation in nat-
uralistic action—using a larger stimulus set. To that end we
tested participants on six everyday activities. With this lar-
ger stimulus set, task fatigue and boredom were a concern,
so segmentation grain was manipulated between partici-
pants to reduce the session length. Fine-grained segmenta-
tion was tested first, in Experiment 2a, and coarse-grained
segmentation was tested second, in Experiment 2b.

3.1. Method

3.1.1. Design
Experiments 2a and 2b were run sequentially; however

they will be considered together as one study for most
analyses. Viewed this way, there were two independent
variables, both manipulated between participants. Grain
of segmentation was fine in Experiment 2a and coarse in
Experiment 2b. Stimulus condition was manipulated be-
tween participants within each experiment by randomly
assigning each participant to either the video, animation-
informed, or animation-uninformed stimuli and
instructions.

3.1.2. Participants
Fifty-four students at Washington University partici-

pated in each experiment in partial fulfillment of a course
requirement (Experiment 2a: ages 18–22, 40 female;
Experiment 2b: ages 18–22, 39 female). An additional
two participants in Experiment 2a declined to complete
the experiment and were excused; one additional partici-
pant in Experiment 2b was unable to complete the proto-
col due to experimenter error.

3.1.3. Stimuli
The three stimulus activities from Experiment 1 were

used again in Experiment 2, but the durations of the inter-
vals before and after the actor appeared were changed
slightly in editing, resulting in slightly different movie
durations: 501 s for folding laundry, 380 s for building a
house from Duplos, and 245 s for assembling a videogame
system. In addition, three new activities were used: paying
bills (388 s), improvising an abstract structure with Duplos
(365 s), and making a peanut butter and jelly sandwich
(332 s).

For each of the activities, an animation was constructed
by rendering the left and right hands as reflective green
and red balls, respectively, and the head as a reflective blue
ball (see Fig. 4). The left and right hand balls were con-
nected to the head ball with thin gray rods whose length
varied as the distance between the hands and head chan-
ged. To maximize accurate depth perception, the scene
was rendered with a ground plane corresponding to the
tabletop height, onto which the balls cast shadows. The
animations were created with raster3d (http://
www.bmsc.washington.edu/raster3d). Both the live-action
movies and animations were presented at 720 � 480 reso-
lution. Animations were rendered at 10 fps, which was suf-
ficient to produce smooth-appearing motion; live-action
movies were displayed at their native 29.97 fps.

In this version of the videogame stimulus, the motion
tracking acquisition failure (see Experiment 1 Method) be-

http://www.bmsc.washington.edu/raster3d
http://www.bmsc.washington.edu/raster3d
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Fig. 5. Movement variables accounted for substantial variance in event
segmentation in Experiments 2a and 2b. This was stronger for fine
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gan at 163.9 s and ended at 174.6 s. During this interval the
animation showed a large red X instead of the three balls.
Data from this interval and the following 70.1 s were ex-
cluded from all analyses.

3.1.4. Segmentation task
Participants performed the segmentation task as in

Experiment 1. Rather than segmenting twice to mark fine
and coarse units, each participant segmented once. In
Experiment 2a they were given fine-grained segmentation
instructions; in Experiment 2b they were given coarse-
grained instructions.

3.1.5. Procedure
Each participant was assigned to one of the video, ani-

mation-uninformed, or animation-informed stimulus con-
ditions. Participants in the video condition were trained as
were participants in Experiment 1, using the same practice
activity. They were told that they would be viewing a mo-
vie of an actor engaged in an everyday activity, and that
the objects attached to his hands and his head are there
to record his movements. Participants in the animation-
uninformed condition were told that they would be view-
ing a video of the movements of three colored balls con-
nected by two rods, and that they should interpret the
movements as being meaningful and goal-directed. Partic-
ipants in the animation-informed condition were told that
they would be viewing animations generated from the
movements of an actor’s head and hands. For the practice
movie, the animation was superimposed on the corre-
sponding live-action movie, in the upper left corner, to
illustrate that the rendered points corresponded to the ac-
tor’s head and hands.

Participants then went on to segment the six target
movies, with order counterbalanced across participants.
For participants in the animation-informed condition, each
animation to be segmented was preceded by 40 s of the
corresponding live-action movie. This was done to maxi-
mize the degree to which viewers would be able to form
a vivid image of the actions performed from the move-
ments of the balls in the animation.

3.2. Results

For all analyses, data from the first 40 s of each movie
were excluded, because participants in the animation-in-
formed condition had previously viewed the live-action vi-
deo corresponding to those 40 s.

3.2.1. Relationship between movement and segmentation
Movement information was analyzed using the same

procedures as for Experiment 1. The movement informa-
tion was captured, filtered, and resampled to a 1-s sam-
pling rate. The segmentation data were binned to 1 s
intervals and the segmentation counts for each interval
were averaged (separately for each group) to estimate
the frequency of segmentation over time.

For each movement feature we calculated the cross-cor-
relation between that feature and the combined segmenta-
tion data for the three groups; this was performed
separately for each feature and each movie, and separately
for Experiments 2a and 2b. As can be seen in Table 1, cor-
relations were overall higher than those in Experiment 1.
This probably reflects the fact that with a larger number
of participants estimates of segmentation are more reli-
able. The pattern of correlation across features was quite
similar to that in Experiment 1: Speed and acceleration
were again strong predictors, particularly those of the left
hand, followed by the distances between the left hand
and the head and between the left and right hands. As in
Experiment 1, the most frequently occurring best-fitting
lag was 0 (59 of 90 in Experiment 2a, 50 of 90 in Experi-
ment 2b), followed by 1 (14 of 90 in Experiment 2a, 10
of 90 in Experiment 2b) and �1 (8 of 90 in Experiment
2a, 6 of 90 in Experiment 2b). Larger lags occurred mostly
with small (i.e., unreliable) correlations.

As for Experiment 1, we performed multiple linear
regression analyses with segmentation frequency as the
dependent measure and the 15 movement variables as
the predictors. Regressions were performed separately for
each movie and each group. As can be seen in Fig. 5, move-
ment variables were again strong predictors of segmenta-
tion frequency. Replicating Experiment 1, movement
predicted fine segmentation (Experiment 2a) more
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strongly than coarse segmentation (Experiment 2b), lead-
ing to higher R2 values. To test whether the difference in
R2 between coarse and fine segmentation was statistically
robust, and to assess whether R2 differed across the stimu-
lus conditions, we conducted an analysis of variance (ANO-
VA) with the R2 value from each regression as the
dependent measure, grain and stimulus condition as the
independent measures, and movie as a blocking variable.
The difference between fine and coarse grains was statisti-
cally significant, F(1, 25) = 122.6, p < .001. Movement also
predicted segmentation more strongly in the two anima-
tion conditions than in the video conditions,
F(2, 25) = 15.4, p < .001. However, the effect of stimulus
-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

R
ig

ht
 H

an
d 

Le
ft 

H
an

d 

H
ea

d 

R
ig

ht
 H

an
d 

Le
ft 

H
an

d 

H
ea

d 

R
ig

ht
-L

ef
t 

* 

* 

* 

* 

* 
* 

Fine

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

R
ig

ht
 H

an
d 

Le
ft 

H
an

d 

H
ea

d 

R
ig

ht
 H

an
d 

Le
ft 

H
an

d 

H
ea

d 

R
ig

ht
-L

ef
t 

Speed Acceleration Distan

* 

Coarse

C
or

re
la

tio
n 

w
ith

 S
eg

m
en

ta
tio

n 
Fr

eq
ue

nc
y 

Fig. 6. Speed, acceleration and distance were positively correlated with segmenta
are standard errors of the mean. Asterisks mark features for which there was
features.)
condition was qualified by a marginally significant grain-
by-stimulus condition interaction, F(2, 25) = 3.10, p = .06.
To follow this up we conducted ANOVAs separately for
Experiments 2a and 2b. For Experiment 2a there was a sig-
nificant effect of stimulus condition, F(2, 10) = 16.3,
p < .001, whereas for Experiment 2b this effect was not sig-
nificant, F(2, 10) = 2.0, p = .19. To test the specific hypothe-
sis that viewers’ conceptual frames affected the strength of
the relationship between movement and segmentation, we
compared the R2 statistics for the two animation groups in
each experiment. In neither case was this difference statis-
tically significant [Experiment 2a: t(5) = 0.74, p = .87;
Experiment 2b: t(5) = 0.87, p = .43].
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tion in Experiment 2, particularly for the animation conditions. (Error bars
a significant group difference, corrected for multiple comparisons across
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To assess the strength of the relationship between indi-
vidual movement features and segmentation, we com-
puted correlations between each movement feature
separately for each movie for each group in each of the
two experiments. The results are plotted in Fig. 6. Similar
to Experiment 1, the speed and acceleration of body parts,
and the distances between them, were the best predictors
of segmentation. Correlations for speed and acceleration
again were positive, indicating that viewers segmented
when body parts were moving quickly and speeding up.
Correlations for distances generally again were positive,
indicating that viewers segmented when body parts were
far apart. Similar groups of features were related to seg-
mentation across experimental conditions. To test these
statistically, we converted the correlations to normally dis-
tributed variables with Fisher’s z transformation and sub-
jected them to one group t-tests for each movement
variable, with a Bonferroni correction across the 15 fea-
tures for each of the two experiments. The speed and accel-
eration of the hands and head were significantly correlated
with segmentation [Experiment 2a: smallest t(35) = 8.36,
corrected p < .001; Experiment 2b: smallest t(35) = 9.71,
corrected p < .001]. The distance between the head and
each hand, and the distance between the hands, were all
significantly correlated with segmentation, [Experiment
2a: smallest t(35) = 5.07, corrected p < .001; Experiment
2b: smallest t(35) = 3.51, corrected p = .001]. Finally, the
relative speed of the two hands, and their relative acceler-
ation, both were negatively correlated with segmentation.
The correlation for relative speed was not significant for
Experiment 2a [t35) = �2.06, corrected p = .83] but was
significant for Experiment 2b [t(35) = �3.55, corrected
p = 0.001. The correlation for relative acceleration was sig-
nificant for both experiments [Experiment 2a:
t(35) = �5.18, corrected p = .001; Experiment 2b:
t(35) = �5.45, corrected p < .001].

To test whether stimulus condition affected how
strongly individual movement variables correlated with
event segmentation, we conducted a set of univariate AN-
OVAs with stimulus condition as the independent measure
and movie as a blocking variable. This analysis was con-
ducted separately for the fine (Experiment 2a) and coarse
Table 4
Coarse and fine unit lengths in seconds as a function of movie and segmentation g
parentheses).

Video

Fine segmentation (Experiment 2a)
Bills 12.84 (8.08)
Laundry 14.34 (9.04)
Duplos house 9.77 (8.66)
Duplos improvisation 11.41 (9.96)
Peanut butter and jelly 9.29 (5.48)
Videogame 8.23 (4.45)

Coarse segmentation (Experiment 2b)
Bills 45.97 (25.48)
Laundry 70.64 (65.33)
Duplos house 73.95 (47.46)
Duplos improvisation 59.21 (25.80)
Peanut butter and jelly 46.18 (22.38)
Videogame 31.46 (12.61)
(Experiment 2b) segmentation groups. For each ANOVA
the dependent measure was the Fisher-transformed corre-
lation between a movement variable and segmentation
frequency. The results are indicated with asterisks in
Fig. 6. As can be seen in the figure, for fine segmentation
stimulus condition significantly affected the strength of
the correlation between segmentation frequency and six
variables: the speed and acceleration of the left and right
hands and the head. In all cases, follow-up t-tests indicated
that the video group had a significantly smaller correlation
than one or both of the animation groups. There were no
group differences in the correlations of segmentation fre-
quency with distances between body parts, or with relative
speed or acceleration of body parts. For coarse segmenta-
tion the only effect of stimulus condition on the correla-
tions was for the speed of the head. Follow-up t-tests
indicated that the two animation groups had significantly
higher correlations than the video group.

In sum, movement variables were again strongly corre-
lated with event segmentation. Movement was more
strongly related to segmentation for those who segmented
at a fine grain, particularly when they watched animations
rather than live-action video. Participants were more likely
to identify event boundaries (a) when the head and hands
were moving quickly, (b) when the speed of the head and
hands was increasing, (c) when the head and hands were
far apart, (d) when the hands were moving toward each
other, and (e) when the hands were accelerating toward
each other. For neither fine nor coarse segmentation was
there evidence that the two animation groups differed
from each other in the strength of the relationship between
movement and segmentation or in which movement fea-
tures predicted segmentation. Therefore, there was no evi-
dence for an effect of conceptual frame on segmentation.

3.2.2. Event unit lengths
As can be seen in Table 4, unit lengths in Experiments

2a were comparable to those from the fine segmentation
condition in Experiment 1, and unit lengths from Experi-
ment 2b were comparable to the coarse condition in Exper-
iment 1. A mixed ANOVA with segmentation grain and
stimulus condition as between-participants variables and
rain in Experiments 2a and 2b. Values are means across participants (SDs in

Animation informed Animation uninformed

9.05 (5.72) 11.56 (10.31)
7.10 (6.39) 9.66 (9.09)
5.20 (5.32) 6.88 (8.08)
6.56 (4.92) 7.56 (5.96)
8.34 (6.06) 9.19 (8.25)
7.05 (3.46) 8.84 (6.49)

24.43 (15.02) 23.85 (10.78)
26.20 (20.01) 25.85 (24.35)
22.85 (14.66) 22.89 (18.72)
21.76 (15.31) 25.03 (24.34)
20.89 (10.05) 29.52 (26.33)
18.99 (14.13) 16.98 (7.31)



J.M. Zacks et al. / Cognition 112 (2009) 201–216 213
movie as a repeated measure indicated that coarse units
were significantly larger than fine units, as expected,
F(1, 102) = 70.51, p < .001. The video group identified larger
units than the two animation groups, particularly for
coarse segmentation, leading to a significant main effect
of stimulus condition [F(2, 102) = 15.19, p < .001] and a sig-
nificant grain-by-stimulus condition interaction
[F(2, 102) = 10.41, p < .001]. As in Experiment 1, unit
lengths varied across the movies: There was a significant
main effect of movie and all the interactions involving mo-
vie were significant, indicating that the grain and stimulus
condition effects varied across the movies (smallest
F = 3.44, p < .001). To better characterize the grain-by-
stimulus condition interaction, we evaluated the main ef-
fect of stimulus condition in separate follow-up ANOVAs
for each of the two experiments. For fine segmentation
(Experiment 2a), there was no significant effect of stimulus
condition, F(2, 51) = 1.51, p = .23. For coarse segmentation,
the effect of stimulus condition was significant,
F(2, 51) = 13.93, p < .001. In sum, participants identified
somewhat larger event units from videos than from anima-
tions. This was particularly true when they identified
coarse-grained events.

3.3. Discussion

3.3.1. Experiments 2a and 2b provided a robust replication of
the primary result of Experiment 1

Movement variables were strongly correlated with seg-
mentation of naturalistic everyday activities. This experi-
ment also provided a clear answer to our question as to
whether movement would be more strongly related to seg-
mentation when other cues to segmentation were re-
moved: The two groups who viewed relatively
impoverished animations showed stronger correlations be-
tween movement variables and segmentation than did the
group who viewed the live-action videos. We interpret this
as indicating that the segmentation of the video groups de-
pended on movement features as in the animation condi-
tions, and also on the additional features that video
provides. This may include information about objects’
identities and locations, information about the actor such
as his facial expression and gaze. It also may include infor-
mation about movement that is not available in the anima-
tions. We also note that participants in the video groups
produced coarser units than those in the two animation
groups. Given that coarse segmentation is associated with
weaker correlations between segmentation and move-
ment, it is possible that the video group’s weaker correla-
tions were caused by their coarser segmentation. In
future work it will be important to explore this further,
for example by constraining segmentation grain more
tightly.

This experiment gave a surprising answer to our final
question: Does one’s prior conceptual representation of
an activity affect the ongoing processing of movement
information? If conceptual information such as that pro-
vided by an event schema allows viewers to establish a
conceptual frame to integrate perceptual information dur-
ing viewing, one would expect that providing a 40-s pre-
view of an activity would be sufficient to establish such a
frame in the animation-informed condition. If so, then
the animation-informed groups should have differed from
the animation-uninformed groups either in the strength
with which movement features were related to segmenta-
tion, or in which particular features were correlated with
segmentation. However, in neither experiment did we find
evidence for such effects. Of course, this is a null result and
as such it should be interpreted with caution. However, the
differences between the animation groups and the video
group indicate that this design had sufficient power to de-
tect effects of the stimulus condition manipulation.

One account of this null result (suggested by an anony-
mous reviewer) is that for the impoverished animations,
viewers might attend especially carefully to movement
features, attempting to fit the movement information into
whatever conceptual frame had been established. If so,
then one would expect that activating a schema for an
activity would preserve or even strengthen the degree to
which movement features predict segmentation. However,
on this interpretation one would expect that conceptual
framing would affect how movement features relate to
event segmentation, even if it does not affect how strongly.
If this were the case one would expect that the preview
manipulation would have affected the sign or magnitude
of the correlations between individual movement features
and segmentation; Fig. 6 shows this was clearly not the
case.

Another possibility is that the 40-s previews provided
in this experiment did not constrain viewers’ conceptual
representations enough to affect segmentation such that
our measures could capture these effects. This could occur
if viewers formed conceptual representations during the
previews but then failed to retain them in memory
throughout the animation. It also could occur if viewers’
conceptual representations were not sufficient to tie the
movement in the animations back to the objects and goals
established in the preview. To investigate this, we fit linear
models for the two animation groups using only the data
from the first 40 s of each movie—the intervals that had
previously been excluded from analysis because the ani-
mation-informed group previewed them prior to segmen-
tation. If effects of conceptual framing on segmentation
are present they should be especially strong for those first
40 s, because viewers will have just seen the previews and
will have direct knowledge of how the movements in video
relate to the objects in the scene. This analysis has the po-
tential to overestimate effects of conceptual framing, be-
cause the animation-informed groups not only have been
given a conceptual frame but also have seen the specific
actions depicted as full-motion videos; this is why the first
40 s was excluded from the main analyses. Despite the po-
tential to overestimate effects of conceptual framing, we
observed no significant differences between the anima-
tion-informed and animation-uniformed conditions in the
strength of the relationship between movement features
and segmentation. There also were no significant differ-
ences in the correlations between individual movement
features and fine segmentation. For coarse segmentation,
three movement features showed small reductions in their
correlations with segmentation that were significant at the
.05 level but failed to survive corrections for multiple com-
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parisons. In short, even in an analysis biased in favor of
finding effects of conceptual framing on segmentation,
there was little evidence for such effects.
4. General discussion

These experiments gave clear answers to three of the
four questions we set out to answer. First, movement vari-
ables were significant predictors of event segmentation in
naturalistic everyday activities. Second, when other
sources of information for perceptual prediction were re-
moved by reducing the live-action movies to simple ani-
mations, relations between movement and segmentation
were strengthened. Third, relations between movement
and segmentation were stronger for fine-grained segmen-
tation than for coarse-grained segmentation.

These results are consistent with the account of event
segmentation provided by EST (Zacks et al., 2007), which
holds that event boundaries are detected in virtue of pro-
cessing unpredicted feature changes. However, correla-
tions between movement changes and event
segmentation also may be predicted by other theories of
event segmentation. For example, one account of event
segmentation holds that the behavior stream consists of
a spike structure in which brief bursts of change in features
monitored by an observer form ‘‘points of definition”
(Newtson, Hairfield, Bloomingdale, & Cutino, 1987). A
change in one or more movement features could be de-
fined to be such a burst. However, what determines which
feature changes form spikes and what it means to be a
point of definition are underspecified in this account. To
discriminate between prediction error-based accounts
and other ones it would be valuable to obtain more direct
measures of prediction and prediction accuracy over time.
This could be done using behavioral paradigms with an ex-
plicit predictive response, such as a visuomotor tracking
task. Prediction errors also could be investigated without
an explicit task by measuring physiological correlates such
as electroencephalographic responses associated with er-
rors (Holroyd & Coles, 2002).

The finding that movement features were more strongly
correlated with fine segmentation than with coarse seg-
mentation replicates previous results (Hard et al., 2006;
Zacks, 2004). This pattern supports the proposal that fine
segmentation depends more strongly than coarse segmen-
tation on the processing of movement features, whereas
coarse segmentation may depend more strongly on con-
ceptual features (Zacks & Tversky, 2001). However, the fact
that coarse segmentation of animations was not affected
by the manipulation of prior information (Experiment 2b)
offers a hint about the sort of information that may drive
coarse segmentation: It suggests that the features driving
coarse segmentation may not be particularly susceptible
to top-down influences. In future research it would be
valuable to test this hypothesis using other manipulations
of top-down processing.

The finding that movement features predict when view-
ers will segment activity may have applications in the de-
sign of information systems. In domains such as medical
data analysis (Christoffersen, Woods, & Blike, 2007), video
surveillance (Chellappa, Cuntoor, Joo, Subrahmanian, &
Turaga, 2008) and film production (Murch, 2001) it is
important to segment a continuous data stream into psy-
chologically meaningful events. Research in artificial intel-
ligence and human-computer interaction has addressed
this problem with some success (Chellappa et al., 2008;
Davis, 1995; Rui & Anandan, 2000). Systems that use
movement cues to define boundaries in data streams in
the same way that people use those cues may produce
more human-usable segmentations. Of course, in many do-
mains it is impractical to invasively record actors’ body
movements as was done here. However, improvements
in computer vision algorithms for biological motion recov-
ery may render invasive motion tracking unnecessary
(Sidenbladh, Black, & Fleet, 2000; Zhang & Troje, 2007).
Automatic segmentation of activity into psychologically
meaningful units would be helpful for producing visual
summaries of data streams such as storyboards. Automatic
segmentation also may be valuable as preprocessing for
models designed to recognize actors, actions, or affect
based on movement patterns (Pollick, Lestou, Ryu, & Cho,
2002; Troje, Westhoff, & Lavrov, 2005).

The final question addressed by these experiments was:
Does one’s prior conceptual representation of an ongoing
activity affect the ongoing processing of movement infor-
mation? We saw little evidence for effects of one’s prior
conceptual representation on movement processing. It is
possible that we lacked detection power or that our analy-
ses failed to quantify the movement variables affected by
the experimental manipulation, or it could reflect a true
null result. If so, it is at first blush a somewhat surprising
result. In studies of the comprehension of texts (Bransford,
Barclay, & Franks, 1972) and movies (Massad et al., 1979),
providing a prior conceptual frame has consistently been
found to have large effects on comprehension and later
memory. The standard account of such phenomena is that
providing a conceptual frame, say, by giving an informative
title before reading a story, allows the reader to activate
semantic knowledge structures that facilitate integration
of incoming information. These knowledge structures, usu-
ally referred to as event schemata, capture information
about actors, actions, objects, and their relations. One pos-
sibility is that typical event schemata represent informa-
tion at a temporal grain coarser even than the coarse
grain studied in Experiment 2b. The events in that study
corresponded approximately to actions at the level of
‘‘spreading peanut butter on bread” or ‘‘folding a pile of
shirts.” It is possible that effects of conceptual framing on
segmentation would be observed not at the level at which
‘‘spreading peanut butter” fits into ‘‘making a peanut but-
ter sandwich” but at the level at which ‘‘making a peanut
butter sandwich” fits into ‘‘packing lunch.” However, this
seems unlikely on its face. The temporal scale of the coarse
grain measured in this study corresponds well to some of
the components of event schemata measured in normative
studies (Galambos, 1983; Rosen, Caplan, Sheesley, Rodri-
guez, & Grafman, 2003), and to units that have been iden-
tified with goal units and causal units in understanding
everyday human behavior (Bower, 1982; Cooper & Shallice,
2006; Magliano, Taylor, & Kim, 2005; Trabasso & Stein,
1994; Zwaan & Radvansky, 1998). Another possibility is
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that conceptual framing affects how perceptual details are
consolidated into long term memory or affects the recon-
struction of events during retrieval without affecting the
segmentation of activity into events on line. Effects of
schemata on event memory sometimes reflect differences
in reconstruction at retrieval time rather than effects on
encoding processes (Anderson & Pichert, 1978; Thorndyke
& Hayes-Roth, 1979). The present failure to find effects of
prior conceptualization on event segmentation is consis-
tent with such accounts. Whether one of these interpreta-
tions should be adopted awaits confirmation and extension
of this intriguing null result.

Heraclitus wrote that ‘‘you can never step in the same
river twice,” in part because the river is no longer the same.
This is an apt metaphor for the dynamic, fluid, and ever-
changing stream of behavior. Given the complexity and
variety of everyday activity and the fact that no previous
event ever repeats perfectly, humans’ ability to navigate
our environment is really quite impressive. One way peo-
ple cope with the complexity and dynamics of everyday
activity is by segmenting it into meaningful chunks. The
fact that some sequences of movement features are pre-
dictable appears to allow perceivers to pick out currents
in the larger stream that form meaningful events.
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