Human, rodent and fly studies clearly demonstrate that sleep plays an important role in memory consolidation. However, recent human studies reveal that sleep plays a much more intricate role in brain functioning than simply stabilizing and consolidating memories. Indeed, sleep is vital for the off-line processing of information including improving creative thinking and promoting the discovery of creative insights: An historical example is the discovery of the structure of the benzene ring during a dream.
The Shaw laboratory uses the genetic model organism Drosophila melanogaster to elucidate the molecular mechanisms linking sleep to neuronal plasticity. The lab has demonstrated that we can fully restore cognitive functioning to a diverse set of classic memory mutants simply by enhancing their sleep. In these experiments, sleep was able to reverse cognitive deficits without restoring the causal molecular lesion or structural defect. In addition, sleep reversed cognitive deficits in two separate models of Alzheimer’s disease.
Current studies are focused on the molecular mechanism that allows sleep to initiate such an extreme form of neuronal plasticity that allows sleep to reverse cognitive deficits even when they are caused by catastrophic genetic and structural lesions.