Featured Publications
Microneedles for ultrasensitive biomarker detection
The detection and quantification of protein biomarkers in interstitial fluid is hampered by challenges in its sampling and analysis. Here we report the use of a microneedle patch for fast in vivo sampling and on-needle quantification of target protein biomarkers in interstitial fluid. We used plasmonic fluor—an ultrabright fluorescent label—to improve the limit of detection […]
Immunostaining of Skeletal Tissues
Immunostaining is the process of identifying proteins in tissue sections by incubating the sample with antibodies specific to the protein of interest, then visualizing the bound antibody using a chromogen (immunohistochemistry or IHC) or fluorescence (immunofluorescence or IF). Unlike in situ hybridization, which identifies gene transcripts in cells, immunostaining identifies the products themselves and provides […]
Marrow adipose tissue has distinct roles in glucose homeostasis
Great to see this manuscript come together in the Cawthorn lab after many years of hard work, including his brand new BMAT imaging and analysis techniques and lots of lingering data generated by Drs. Cawthorn and Scheller when they worked together as postdocs in the MacDougald lab (Dr. Scheller made some of the blots in […]
Refreshable Nanobiosensor Based on Organosilica Encapsulation
Implantable and wearable biosensors that enable monitoring of biophysical and biochemical parameters over long durations are highly attractive for early and presymptomatic diagnosis of pathological conditions and timely clinical intervention. Poor stability of antibodies used as biorecognition elements and the lack of effective methods to refresh the biosensors upon demand without severely compromising the functionality […]
Bone marrow adipose tissue does not express UCP1
Adipocytes within the skeleton are collectively termed bone marrow adipose tissue (BMAT). BMAT contributes to peripheral and local metabolism, however, its capacity for cell-autonomous expression of uncoupling protein 1 (UCP1), a biomarker of beige and brown adipogenesis, remains unclear. To overcome this, Ucp1-Cre was used to drive diphtheria toxin expression in cells expressing UCP1 (Ucp1Cre+/DTA+). Despite […]
Shared Autonomic Pathways Connect Bone and Adipose Tissue.
Bone marrow adipose tissue (BMAT) is increased in both obesity and anorexia. This is unique relative to white adipose tissue (WAT), which is generally more attuned to metabolic demand. It suggests that there may be regulatory pathways that are common to both BMAT and WAT and also those that are specific to BMAT alone. The […]
Peripheral Neuropathy as a Component of Diabetic Skeletal Disease
The goal of this review is to explore clinical associations between peripheral neuropathy and diabetic bone disease and to discuss how nerve dysfunction may contribute to dysregulation of bone metabolism, reduced bone quality, and fracture risk. In addition, we address therapeutic and experimental considerations to guide patient care and future research evaluating the emerging relationship […]
Nerves in bone: evolving concepts in pain and anabolism.
This review provides a historical perspective of the field of skeletal neurobiology which highlights the diverse yet interconnected nature of nerves and skeletal health, particularly in the context of bone anabolism and pain.
Exploiting Self-Capacitances for Wireless Power Transfer.
Conventional approaches for wireless power transfer rely on the mutual coupling (near-field or far-field) between the transmitter and receiver transducers. In this paper, we show that when the operational power-budget requirements are in the order of microwatts, a self-capacitance (SC)-based power delivery has significant advantages in terms of the power transfer-efficiency, receiver form-factor, and system […]
Characterization of the bone marrow adipocyte niche with 3D-EM.
The bone marrow adipocyte (BMA) exists in a microenvironment containing unique populations of hematopoietic and skeletal cells. To study this microenvironment at the sub-cellular level, we performed a three-dimensional analysis of the ultrastructure of the BMA niche with focused ion beam scanning electron microscopy (FIB-SEM).