HIGH SPIN STATES IN ³⁸Ar - R.A.E. Austin¹, D.E. Appelbe^{1,2}, G.C. Ball³, M.P. Carpenter⁴, R.M. Clark⁵, M. Cromaz⁵, R.V.F. Janssens⁴, A.O. Machiavelli⁵, D. Rudolph⁶, D.G. Sarantites⁷, C.E. Svensson^{5,8}, and J.C. Waddington¹ - ¹ Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4M1 Canada - ² current address: Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, Cheshire, WA4 4AD, UK - ³ Triumf, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada - ⁴ Argonne National Laboratory, 9700 Cass Ave, Argonne, IL 60439 USA - ⁵ Lawrence Berkeley National Laboratory, MS 88, 1 Cyclotron Road, Berkeley, CA 94720 USA ⁶ Department of Physics, Lund University, S-22100 Lund, Sweden - ⁷ Chemistry Department, Washington University, St. Louis, MO 63130 USA - 8 current address: Department of Physics, McNaughton Building, Gordon St., University of Guelph, Guelph, ON N1G 2W1 Canada Recently superdeformed rotational bands have been discovered in 36 Ar[1], and 40 Ca[2]. The emergence of superdeformation in this mass region provides us with an opportunity to study the interplay between macroscopic and microscopic effects in light nuclear matter. The N \neq Z nucleus 38 Ar lies 2 neutrons more than 36 Ar and 2 protons less than 40 Ca. Highly deformed bands, firmly linked to states in 38 Ar, have been observed[3]. A level scheme and B(E2)'s for the bands of interest in 38 Ar will be presented. The 24 Mg(20 Ne, α 2p) 38 Ar reaction was used to populate the nuclide in an experiment conducted with the Gammasphere array in concert with the Microball charged particle array. - * This work supported by the National Sciences and Engineering Research Council of Canada. - 1. C.E. Svensson et al., Phys.Rev.Lett 85, 2693 (2000). - 2. E. Ideguchi et al., Phys.Rev.Lett 87, 222501 (2001). - 3. D. Rudolph et al., Phys.Rev.C 65, 034305 (2002).