MIRROR SYMMETRY IN 53/Co₂₆ AND 53/Fe₂₇ - S. J. Williams¹, M. A. Bentley¹, J. Ekman², D. T. Joss³, C. D. O'Leary⁴, D. Rudolph², D. D. Warner³, C. Andriou², A. M. Bruce⁵, J. A. Cameron⁶, M. P. Carpenter⁷, R. M. Clark⁸, C. Fahlander², P. Fallon⁸, L. Frankland⁵, W. Gelletly⁹, E. Ideguchi¹⁰, C. J. Lister⁷, A. O. Macchiavelli⁸, G. Martínez-Pinedo¹¹, M. N. Mineva², A. Poves¹², P. H. Regan⁹, P. Reiter¹³, W. Reviol¹⁰, B. Rubio¹⁴, J. Sanchez-Solano⁹, D. G. Sarantites¹⁰, D. Seweryniak⁷, C. Svensson¹⁵, S. M. Vincent⁹ - ¹ School of Chemistry and Physics, Keele University, Keele, Staffordshire, ST5 5BG, UK. ² Department of Physics, Lund University, S-22100, Sweden. - ³ CLRC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK. - ⁴ Department of Physics, University of York, Heslington, York YO1 4DD, UK. - ⁵ School of Engineering, University of Brighton, Brighton, BN2 4GJ, UK. - ⁶ McMaster University, Hamilton, Ontario, Canada L8S 4K1. - Argonne National Laboratory, 9700 South Cass Cavenue, Argonne, Illinois, 60439 USA. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA. - ⁹ School of Physics and Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK. - ¹⁰ Chemistry Department, Washington University, St. Louis, MO 63130, USA. - ¹¹ Departement Physik and Astronomie, Klingelbergstrasse 82, 4056 Basel, Switzerland. - Departamento de Física Teórica C-XI, Universidad Autónoma de Madrid, E-28049, Madrid, Spain. - LMU Munchen, Geschwister-Scholl-Platz 1, 80539 Munchen, Germany. CSIC Universitat de València, E-46071 València, Spain. - ¹⁵ Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1. In two recent experiments the large gamma-ray spectrometer array, GAMMASPHERE, was used to identify gamma decays from high-spin states in the mirror-pair nuclei $^{53}_{27}\text{Co}_{26}$ and $^{53}_{26}\text{Fe}_{27}$. The reaction $^{32}\text{S} + ^{24}\text{Mg} \longrightarrow ^{56}\text{Ni}^*$ at a beam energy of 95MeV was used in the first instance, with reaction channel selection afforded by the FRAGMENT MASS ANALYSER recoil separator and an ion-chamber. In the second instance the reaction $^{32}\text{S} + ^{28}\text{Si} \longrightarrow ^{60}\text{Zn}^*$ at a beam energy of 125MeV was used, with channel selection provided by the MICROBALL light charged particle detector and NEUTRON SHELL neutron detector. States up to the $f_{\frac{7}{2}}$ -shell band termination of $J^{\pi}=\frac{19}{2}^{-}$ were identified in both A=53 mirror-pair nuclei, and the Coulomb Energy Difference (CED) was calculated as $Ex(^{53}\text{Co})$ - $Ex(^{53}\text{Fe})$ for each level throughout the entire spin range. Changes in the CED will be interpreted in terms of non-collective particle alignment effects. The CED will also be compared to the results of large-scale shell-model calculations in the full-fp valence space. A discussion of the physical significance of the Coulomb Matrix Elements used in the calculations will be presented, and the results of a fit of the measured CED to these Matrix elements will be shown.