HIGH SPIN STATES IN ¹¹⁴Xe: BUILDING A BRIDGE BETWEEN THE MASS 110 AND 130 REGIONS* - E. S. Paul¹, A. J. Boston¹, M. P. Carpenter², H. J. Chantler¹, C. J. Chiara³, A. M. Fletcher⁴, D. B. Fossan³, R. V. F. Janssens², T. Koike³, F. G. Kondev², D. R. LaFosse³, J. C. Lisle⁴, P. J. Nolan¹, D. Patel⁴, W. Reviol⁵, D. G. Sarantites⁵, D. Seweryniak², J. F. Smith⁴, K. Starosta³, R. Wadsworth⁶, A. N. Wilson⁶, I. Ragnarsson⁷ - ¹ Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE UK. - ² Physics Division, Argonne National Laboratory, Argonne, IL 60439 USA. - ³ Department of Physics and Astronomy, SUNY, Stony Brook, NY 11794 USA. - ⁴ Schuster Laboratory, University of Manchester, Manchester, M13 9PL UK. - ⁵ Department of Chemistry, Washington University, St. Louis, MO 63130 USA. - ⁶ Department of Physics, University of York, Heslington, York, Y01 5DD UK. - ⁷ Department of Mathematical Physics, Lund Institute of Technology, S-22100 Lund, Sweden. Superdeformed (SD) nuclei in the mass 130 region were initially believed to be driven solely by the occupation of $\nu i_{13/2}$ intruder orbitals from the N_{osc}=6 shell [1]. This was consistent with the original observation of a strongly populated (5%) SD band in ¹³²Ce (N=74) [2], while only recently have SD bands been found for N \leq 72 [3]; this work did however show that the presence of holes in the $\pi g_{9/2}$ orbital, which originates below the Z=50 spherical shell gap, are just as important in forming SD shapes in Z \sim 58 nuclei; superdeformation still persists as the neutron Fermi surface falls well below the $\nu i_{13/2}$ intruder orbitals [4]. The $\pi g_{9/2}$ holes are also a crucial ingredient of smoothly terminating bands seen in $A\approx$ 110 nuclei with $Z\approx$ 50 [5]. New results have been obtained for $^{114}_{54}$ Xe, populated with the 230-MeV 58 Ni(58 Ni,2p) reaction at Argonne National Laboratory. GAMMASPHERE was used in conjunction with the MICROBALL charged-particle detector in order to select evaporation residues of interest. The yrast band of this nucleus has been greatly extended by fourteen transitions to a spin of $52\hbar$ and shows high-spin features consistent with smooth band termination. This band represents the first firm evidence for a core-excited (6-particle, 2-hole) proton configuration above Z=53 involving two $\pi g_{9/2}$ holes. Results of cranked Nilsson-Strutinsky calculations predict a deformation of $\varepsilon_2\approx 0.30$ for the band, much larger than the ground-state deformation of 114 Xe. This demonstrates the shape-driving aspect of holes occupying a strongly upsloping ($\partial E/\partial \varepsilon_2>0$) orbital and explains the connection between mass 110 terminating bands and mass 130 SD bands ($\varepsilon_2\approx 0.35$). The SD bands, with a larger valence space, can accommodate more spin before termination is reached; for instance, the yrast SD band in 132 Ce is expected to terminate at $I^{\pi}=78^+$, $22\hbar$ higher than that predicted (56+) for the new band in 114 Xe. The present results for Z=54 advances the bridge between these two structural features in the two mass regions. - 1. R. Wyss et al., Phys. Lett. **B215** (1988) 211. - 2. A. J. Kirwan et al., Phys. Rev. Lett. 58 (1987) 467. - 3. A. Galindo-Uribarri et al., Phys. Rev. C 50 (1994) R2655; 54 (1996) R454. - 4. A. V. Afanasjev and I. Ragnarsson, Nucl. Phys. A608 (1996) 176. - 5. A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322 (1999) 1. ^{*} This work supported by the UK EPSRC, and US NSF and DOE.