
Identification of Excited States in the $T_z=\frac{1}{2}$ Nucleus $^{75}{ m Rb}^*$

C. J. Gross, ORNL, UNISOR; C. Baktash, D. M. Cullen, J. D. Garrett, ORNL; R. A. Cunningham, J. Simpson, D. D. Warner, DARESBURY LAB.; B. J. Varley, MANCHESTER U.; D. Rudolph, A. Harder, M. K. Kabadiyski, K. P. Lieb, U. of GÖTTINGEN; Ö. Skeppstedt, H. A. Roth, CHALMERS INST. of TECH.; W. Gelletly, U. of SURREY; D. G. Sarantites, WASHINGTON U.; C. J. Lister, YALE U.; J. A. Sheikh, JIHIR.

Excited states in the $T_z = \frac{1}{2}$ nucleus ⁷⁵Rb were observed for the first time using the 45 Compton-suppressed Ge Detectors of EUROGAM, the Daresbury recoil separator, and the reaction ⁴⁰Ca(⁴⁰Ca, α p) at 128 MeV. Recoiling nuclei were mass separated and passed through an ionization chamber which provided discrimination between ⁷⁵Rb and ⁷⁵Kr ions. The data was sorted into several γ gated two dimensional $\gamma\gamma$ matrices which were used to construct a level scheme. The data reveal a complicated level structure at low spin more similar to the light Br isotopes than to the other odd mass Rb nuclei. Only one rotational band is observed stretching up to $I^{\pi} = (\frac{41}{2}^+)$. The band's kinematical moment of inertia is larger (21-22 \hbar^2 /MeV) than most of the neighboring nuclei which may be characteristic of a reduction in pairing. Weaker pairing correlations are expected due to the large deformed shell gap at N=Z=38 and the blocking of the unpaired proton. In the same experiment, a cascade relationship is observed between the three γ -rays previously assigned [1] to the self-conjugate nucleus ⁷⁶Sr. The kinematical moment of inertia of ⁷⁶Sr is slightly larger than ⁷⁸Sr which is suggestive of a slight change in deformation or pairing correlations in ⁷⁶Sr.

[1] C.J. Lister, et al., Phys. Rev. C 42, R1191 (1990).

*Oak Ridge National Laboratory is managed by Martin Marietta Energy Systems, Inc. for the U.S. DOE under contract No. DE-AC05-84OR21400. UNISOR is a consortium of universities, the State of Tennessee, and ORNL and is partially supported by them and by the U.S. DOE under contract No. DE-AC05-76OR00033.