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The theory and properties of a new type of spectrometer for studying the properties of high-spin states in nuclei and the
mechanisms of heavy-ion induced nuclear reactions are presented in some detail. The spectrometer consists of a high efficiency 4=
Nal multidetector system with individual tightly packed detector elements. This instrument is capable of recording on an event-
by-event basis: (a) the y-ray multiplicity; (b) the pulse heights and under certain conditions the energies of individual y-transi-
tions; (c) the total pulse height and the associated y-ray multiplicity; (d) the associated neutron multiplicity; (¢) the angular
correlations among most of the y-rays in the cascade; and (f) the time correlations among the various groups of y-rays in each
cascade. This information is obtained simultaneously thus permitting many correlations to be made among several relevant
physical parameters that will enable us to learn more about the properties of nuclei at high-spin and about the role of angular mo-

mentum on the mechanism of many types of nuclear reaction.

1. Introduction

A promising tool in investigations of the
mechanisms of heavy-ion induced reactions and of
the properties of nuclei at very high angular momen-
tum depends upon the suitable detection of the
associated electromagnetic radiation. In such investi-
gations two nuclear quantities play the key role.
These are the excitation energy and the angular mo-
mentum. With the exception of Coulomb excitation
and perhaps the few nucleon transfer reactions, most
of the reactions currently under investigation involve
emission of many particles and y-rays. Consequently,
complete determination of the reaction parameters
would require a high order coincidence with a detec-
tion system approaching a 4n efficiency. Unlike
energy, the angular momenta involved in such inter-
actions cannot be directly observed and are inferred
only indirectly. In the majority of heavy-ion colli-
sions a large fraction of the incoming orbital angular
momentum is transferred to the main reaction pro-
ducts as intrinsic angular momentum. A more direct
determination of the transferred angular momentum
on an event-by-event basis can provide many new
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unique measurements that can increase substantially
our understanding of the complex interactions
involved.

In this paper we give the theory and expected
performance of a class of such 47 multidetector
spectrometers capable of providing this information.
The detailed performance of one of these spectrom-
eters, currently under construction, will be given in
detail in a forthcoming communication. Up to now
much of the information about the transferred
angular momentum in heavy-ion collisions has been
obtained from +-ray multiplicity measurements
[1—6]. In the decay of highly excited high-spin states
of equilibrated compound nuclei, most of the excita-
tion energy above the yrast line and only a small
fraction of the initial angular momentum is removed
by nucleon emission. The remainder of the excitation
energy (<50 MeV) and the angular momentum
(<70 1) is removed by vy-ray emission [2]. For lighter
nuclei a-particle emission is also probable and can
remove significant amounts of energy and angular
momentum. For product nuclei that are deformed
most of the angular momentum is known [7—11] to
be removed by stretched (AJ=-2) E2 transitions
with a few stretched dipole transitions contributing
through complicated cascades along many near
parallel collective bands. For product nuclei near
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closed shells most of the angular momentum has been
assumed to be removed [12] by about an equal num-
ber of stretched E2 and dipole transitions on the
yrast line. Thus, for a given de-excitation path or for
a collection of paths, there is a linear relationship
between {M,), the multiplicity of the cascades, and
the average angular momentum change (AJ,) in the
cascade. By analogy with the averages, knowledge of
M, for a given cascade gives a good estimate of the
initial angular momentum J., from where the cascade
started. In such a case, a spectrometer capable of
providing M, on an event-by-event basis can be
named a ‘“spin spectrometer” since it can associate
with each event a value of the transferred angular
momentum. In previous measurements of the y-ray
multiplicity and the associated few higher moments
of the y-ray multiplicity distribution, use was made
of arrangements with 7 to 16 Nal detectors with
triggering efficiencies per detector in the range
0.005-0.02. Thus, typically total efficiencies Q=
NS, were =0.1. Under these conditions it is not
possible to infer M. with any certainty from the
number of detectors k that fire in a given event.
Fig. 1 exemplifies this by giving the probability
Pni(M,) that k out of N = 20 detectors fire, each
with efficiency £,=0.008, when M, y-rays are
emitted. For this case Py(M,) is given by eq. (16)
of ref. [3].

A completely different situation arises when Q1 =
NSQ., approaches unity. Ideally, for N> M, with
Q> 1, the number of detectors k that fire in an
event uniquely gives M., . Realistically, Q1 can be
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Fig. 1. Probability distributions Py, (M) fora k-fold coinci-~
dence as a function of y-ray multiplicity,My, for a system of
twenty detectors each with an integral efficiency of 0.008.
The distributions fork =1,2,3,4,5,6,7, 8 and 9 are shown
for M,y up to 50.

made 0.95 £ 0.02 and N = 2 M, if shielding between
individual detectors is not permitted. Such an instru-
ment will provide M, from k with a rather small un-
certainty.

Further considerations regarding the design of a
“spin spectrometer” must include the possibility of
recording the full energy and the related total y-ray
energy released with as high an efficiency as possible.
Such information is essential in determining the
population of the so-called “enrty states” defined as
the states at (E*, J) after particle emission. The
requirement for a high efficiency for total energy
detection is coupled indirectly to the choice of the
number N of detectors and their size.

Other considerations regarding the design include
the efficiency for observing a signal in several
detectors when none of their immediate neighbors
trigger. Such events give pulse heights equal to the
transition energy E, of individual y-rays with high
probability. The number n of such occurrences out of
k detectors that fire increases with the number of
detectors V and may be a significant factor influenc-
ing the choice of N in a given instrument when
energy correlations are considered.

The angular resolution in obtaining angular
correlations and the time resolution for correlations
in time are somewhat less important in determining
the number of detectors NV in the spectrometer.

In the following sections we shall give the theory
for obtaining the response of the spectrometer for a
given input of M., y-rays with energies {Ei},-=1,___,M7.

2. Theory
2.1. General considerations

In the following discussion it will be understood
that together with the spectrometer one or more
additional selective detectors will be used in each
experiment. In most cases the selective detectors will
also be the gating detectors which define an “event”
and require the response of the instrument to be
noted. In certain cases some or all of the detectors
in the spectrometer that respond may be used to
define an event. A large variety of selective detectors
should be compatible with the spectrometer. These
could be classified as internal and as external to the
spectrometer. Internal selective detectors should be
placed in the hollow cavity of the spectrometer and
could include one or more high resolution Ge(Li)
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detectors, several AExE heavy-ion or light-particle
identifying telescopes, small avalanche counters, mini-
orange type e~ spectrometers, etc. External selective
detectors should be placed outside the spectrometer
and should view the target by removing individual
Nal detector elements. These may include large Nal
detectors, anti-Compton spectrometers, neutron time-
of-flight detectors, large avalanche counters, etc.

2.2. Experimentally observable quantities

It is convenient to classify the reactions to be
studied into two classes depending upon the number
of reaction products that emit detectable y-radiation.
In the first class we include all reactions that produce
only one residual nucleus that emits y-rays. The most
common process in this class is fusion, but for higher
energies incomplete fusion, in which different parts
of the projectile are captured by the target, may be
considered. In all these cases particle emission usually
precedes y-decay and each reaction residue is formed
in an “entry state” at excitation energy £ and spin
J. This state then de-excites to the ground state via
an observable y-cascade.

For heavy-ion collisions resulting in more than one
excited product that emits y-rays, the observed y-cas-
cade will be the sum of two or more cascades that de-
excite the reaction products. In this class of processes
we include quasi-elastic scattering, deeply inelastic
scattering, Coulomb excitation with both projectile
and target excited, prompt fission, sequential fission,
etc.

Consider now a selective detector that singles out
a particular class of events a at a rate Q§°‘) given by
QL =UQQ§°‘), where g, is the cross section for the
process of interest and Q,g") is the efficiency of the
selective detector including the solid angle. The
v-cascades to be investigated with the spectrometer
dissipate a total excitation energy E* and angular
momentum AJ in a cascade of M, 7y-rays with an
energy spectrum {E;};=; . p.. For the first class of

. A A .
mechanisms the total energy £~ coincides with the
entry state excitation and AJ is the difference
between the entry and ground state angular
momenta. For the second class of mechanisms the
total energy and angular momentum dissipated are
given by the sum of two or more entries to ground
state cascades.

Consider now the first class of processes. The de-
excitation of an entry state (£, J) to (0, Jg) can in
principle procede via a rather large number of path-

ways giving rise to many possible y-cascades. A large
number of observations of the decay (£, J) = (0, J4)
will result in a spectrum n(E) dE = Z; n(E;) dE; where
n(E;) is the number of transitions with energy
between E; and E; + dE; for the path i. The integral
of such a spectrum gives the average (M.,). Thus, there
is an average cascade that can represent the de-excita-
tion of a given entry state to the ground state. When
referring to the multiplicity of a y-cascade de-exciting
an entry state we shall use the same symbol M, for
the above average. Now the set of N detectors of the
spectrometer (each with detection efficiency £, ;) is
examined in coincidence with the selective detector
and the outcome of the measurement is a collection
of pulse heights {#;};=; , in response to
M.(,‘) v-rays emitted in the reaction.

The maximurh information is contained in the pro-
bability Ppy n,,...,n\(My) that detector 1 records
pulse height /,, etc., when only k of hy,... Ay are
above threshold. These probabilities can be extracted
experimentally from the associated coincidence
rates

ngx,hl,...,hN= Uaﬂéa)Pf\%g,hl,...,hN(My) (1

as the ratios Qg?‘%hl’.__’hN/Qs("‘). More limited infor-
mation can be extracted if one reports only the pro-
babilities PX‘?‘QH(MAY) associated with coincidence events
when k out of N detectors fire above a threshold Ay,
and the total pulse height is

k
H=2Ih .
=1

Even more limited information is obtained by report-
ing the probabilities Pf\?f)k@/[y) that £ out of N
detectors fire above a threshold 4,y,.

It is quite clear that the angular correlation infor-
mation for the {Ej};=; m., cascade is contained in
PNk‘hl,__”hN(My) despite the complications arising
from the possibility that a given detector may have
recorded either two or more 7y-rays of a y-ray scat-
tered from another detector in the apparatus.

The detection probabilities can be classified
according to the time evolution by giving the pro-
bability Py, nytqaty,....antnaTNM,) for detector 1
recording pulse height 4; in a time interval between 2,
and f; + Aty, etc. Most often, however, we may be

interested in reporting Py ,,(M,) giving the proba-
bility that & out of V detectors are in prompt coinci-
dence with the gating detector and m in delayed
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coincidence occurring between ¢ and ¢ + At.

We shall be interested in predicting the response
of the spectrometer to the above mentioned experi-
mental situations.

2.3. The response of the instrument

2.3.1. Detection statistics and generating functions

There are *several physical effects that contribute
to the detection statistics and thus determine the
performance of the spectrometer. These are: (a)
Incomplete detection that arises from the fact that
for a realistic nearly 47 instrument the total detection
efficiency Q2 is less than 1. This reduced efficiency
leads to finite probabilities for different numbers of
y-1ays escaping detection when M, are emitted in a
given event. (b) Crystal-to-crystal scattering that
arises from lack of shielding between detector ele-
ments. The lack of shielding is necessary to counter-
act the effect of (a) above. A consequence of this is
the fact that one or more detector elements may
respond to a single y-ray. (¢) Coincidence summing
that arises from the finite probability that more than
one y-ray from a given event may strike the same
detector element simultaneously causing a single
response. (d) Indistinguishable pulses arising from the
fact that in addition to +y-rays detection of particles
such as neutrons or high energy protons etc., is
possible in a given detector element. A small pro-
bability exists that such indistinguishable pulses may
accompany a given nuclear event, despite the fact
that the apparatus may be designed to distinguish
pulses from most of the associated particles which
can trigger one or more detector elements. Indis-
tinguishable pulses may in turn cause responses of the
type (a) through (c) described above.

The general formalism for the detection statistics
can be derived by giving the complete response of the
instrument to a single incident y-ray or particle
accounting for all the possibilities described in (a)
through (d) above. This is accomplished by construct-
ing the generating function in terms of the
appropriate counting variables. We shall postpone the
discussion of time dependence of the detection
probabilities and shall only consider simultaneous
events. We introduce here the counting variables
(1,....ty) for observing the pulse heights (ky,....Ax)
and the counting variables (sy,...,sy) for enumerating
the number of y-rays striking a given detector. The
generating function for the outcome due to a single

incident y-ray of energy E., is

N .
GOt tys Sty s) = 1 — 20 229500
=1 k
- E‘Dm)(h 1)
ij=1 kA
i#j
N Ey
+20 20 Q) s,
i=1 kK
N
+ 27 20 T () dixeinss; (2)
ij=1 KA
i#j

where Q§(h,) is the probability (efficiency) that for
a y-ray of energy E, only the ith detector records a
pulse height 4, and T(7 (h,h,) is the probability that
only the detectors i and j record pulse heights #,, and
h,, respectively. Inclusion of triple and higher order
scattering terms, e.g., Tj(h, hyh,) for detectors ik
to record pulse heights h,, &), h,, respectively, is
straight forward. The latter become of importance
when pair production becomes significant and single
and double escape peaks are observed. The first three
terms in eq. (2) correspond to no response, the fourth
corresponds to the response of only one detector, and
the last term to the response of any pair of detectors.

Ignoring the y-ray angular correlation effects and
considering a cascade {E;}=y,.. My of M, statistic-
ally independent y-rays we can wrlte the generatmg
function for M, y-rays as

GMy(tl,..., EN; 815 SN F l_z Gsi)(tl,..., ENG S1seees SN)
=

=2, P

hN;nl,..., I’IN)

hy,...
ny,.. ’nN
X i, st i (3)

where P(hi,...,hn; Ny,....y) is the probability for
detector i to record A; from n; vy-rays that interacted
with it, i=1,...N. P(hy,...,hip; By,....nN), the coeffi-
cient of H1eh2 MNsTIsH2 SN in Gy (g, otNs
$1,---,SN), Tepresents the max1ma1 description of the
response to

{Ei}i=1,...,M7_) {hiti=1,...x

2.3.2. Projections
More limited but very useful information can be
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extracted more conveniently from the measurement
{Eiti=1,...,m, > {hili=1,...x in the following way. In
the context of section 2.2 it may be possible to
associate with the decay (E, J) = (0, Jy) an “‘average”
or representative cascade {Ej};=;,. . . corresponding
to (E, M.). In this case the input to ﬁle apparatus is
(£, My) with {Ej}j=1,....m, such that

and the instrument will respond with a total pulse
height

H= hi

k
=1

1

where the sum is over the k£ out of & detectors that
recorded pulse heights 4; > h;p. The probability dis-
tribution Py(E, M,,) for this outcome must now be
derived. Ignoring for the moment “s,,...,sy” in the
generating function we find that the probability Pyy
is

— H
PNH_ E Ph],...,hN5h1+...+hN’ (4)
L ZVN )Y

where Py, . n, is the probability for a response

hy,...,hn. Then

N

2 Pyut= 25 Pp,.. ot 1Tt
H=0 PYR T

h
= E Phl,“_,hN[lill fNN
Ry,

t1=1=. S tNT T

= GMy(t, e t), 5)
$0 Py is the coefficient of #7 in GMy{t,...,t). Restor-
ing s1...8y, eq. (5) becomes

G(sy... sy, t...1)

.Y D P st SN (6)

ny..ny H=0

Here Ppp(n;..ny) represents the probability that
detector i responds to n; y-rays, i = 1...Nwhen the
spectrometer gives a total pulse height H. The proba-
bility that precisely k detectors fire with h; > hyy, is

= N-k
PranlE, M) = nlanPNH(n"" N850 iyt sy

[where the sub-subscripts #n(1) and n(N) denote

the sub-subscripts n; and ny respectively] so that the
generator for Pyz(E, M) is

F(t: S)= E PNHktHSk
H, k=0

=221 20 Pugln... ny) sN-5h—-—85%m) .
H=0 -whN

M @)
The latter relation reduces to (see Appendix A)
N
F(t, ) =20 V(1 — )V
n=0
X 2 Gm, (s B i1sens IN) (3)
0<iy,...iyst ¥
iyt Hipy=n

where the constrained sum can be averaged over all
detector labellings of n detector responses to give

R, 5)= 228" (1 — sV ™ (N> G(t, n) . ©)
n=0 n

We note that F(¢, s) is also the generator of the pro-
duct moments for the bivariate distribution Py (E,
M.,) of the variables H and k. Interestingly, by setting
t=1 we are suppressing all pulse height information
and F(1, s5) is the generator for Pyx(E, M,,). Setting
¢t =1in eq. (9) gives for the coefficient of s*
N\ & k
P, )= )2 v ). o)
k / n=0 n
as found earlier [3].

The generating function F(1, s) can be obtained
either from the constrained sum of eq. (8) using (2)
and (3) or from egs. (2) and (3) in the following
symmetrized model. If we wish to describe the
response of the instrument only in terms of a few
efficiency parameters we can average out the twofold
and threefold correlations, recognizing that in so doing
we alter somewhat the effect of the response correla-
tions and therefore to some extent the result Pyy(E,
M,). However, the symmetrized model should be a
reasonable approximation if the response of the
instrument is to be given in terms of the total effi-
ciencies for only single triggering ' and double
triggering 2"’ as defined by

N
Q=229 =N22QM0m,)

i=1 Kk K

=NQ,(1 —F)=Ql —F,), (11)
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Q" =D T Ty)dn) =NV = D2 TP )

ij KA
=N — 1D =NQ,E, = QrFy, (12)

with

= Q" =_Q_”zN(N—l)m
TTQ+ Q" Qr NG, ’

where, for an incident y-ray of energy E,, 9(7)(hK)
gives the probability of recording a pulse height A, in
any one of the N equivalent detectors in the spec-
trometer when no other detector responds, the sum-
mations over x and X are over pulse height from Ay,
to E,, Q, gives the probability per detector element
for triggering above threshold irrespective of whether
the other elements respond or not, Q- gives the total
probability (for ‘N detectors) for triggering above
threshold, T\ (hh,) gives the probability for a
double response with pulse height A, and i, , <T? gives
the average triggering probability for double response
above the discriminator and F, is the fraction for
double triggers.

Experimentally Q' is determined from -the rate of
1-fold events per detector element in the spectrom-
eter by multiplying it by the number of detectors
present. Similarly F., is determined from the rate of
(N — 1) 2-fold events coincident with a given detector
element by dividing it by the singles rate (1-fold plus
2-fold events) in that given detector, using mono-
energetic standard sources. In the following we
assume that Q', Q" and F, are independent of the
number of detector elements N. In contrast, the
singles efficiency ., varies as 1/NV, since £, = Q/N.
These considerations are important when different
instruments of this type are to be compared. In the
symmetrized model

(13)

My

Gt ny= 11 (1 N2 QD"

v=1
NV = D2 TOhhy) +n 20 QR £
KA K
+1(n — 1) 2T (hhy) 6 A) , (14)
KA
where TX(h,hy) is the average probability for a
pair of detectors to record pulse heights &, and Ay .

In terms of Q" and Q" or in terms of ., and F,, we
obtain

My
G(1,n)= 7[]1 K,(n)

with

K =t-e(i-1)-a(i- 7R D)

=1- NG, {1 _]"7[1 _F7(1 _%m (16)

In the symmetrized model the effect of detecting
other particles such as neutrons is easily incorporated.
For x incident neutrons with an efficiency of detec-
tion 2, and scattering F,, we obtain

-1
- J,zf ~ 1)}] un
and G(1, n) becomes

G(1,n) = Gy(1,7) G,(1,m) (17a)

K,(n)=1—NQ, {1 —%[1 _F, (1

where

M’Y X

G,(1,m = [k ) and G,(1,n) = [1 K, (m) .
=1 v=1

A further approximation leads to simpler expressions.
If all M, y-rays and x neutrons are assumed to have
the same average efficiencies {2, and €2, then we can
write

G(la n):]?’y(n)M’yKv(n)x > (17b)
where K.(n) and K, (n) are evaluated with ., and Q,,.

This approximation is useful in evaluating the
expected performance of the instrument but it should

Q=094 Qr=0.94
0.3k Fy =025+ NQ,= 0.3+
My =10 k=1l
< o2 20 + s
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- 40 50 1
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00L /1

00 20 30 40 560 10 2|o' 3lol 40 5|o 60

Fold k My
Fig. 2. In part (a) the distributions in fold & are given for 72
detectors, a total y-ray detection efficiency Q1 = 0.94, a
scattering fraction F, = 0.25 and a total neutron detection
efficiency N2, = 0.13. Distributions for M, =10, 20, 30,40
and 50 are shown for compairsons. In part (b) the muliplicity
distributions PNk(M,y) are shown for fixed k =11, 20, 28, 35
and 41 which correspond to My = 10, 20, 30, 40 and 50,
respectively.
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be avoided in analyzing experimental data.

Equations (17a) and (17b) are of fundamental
importance in that in conjunction with eq. (10) they
completely determine the response of the spectrom-
eter to cascades of given multiplicity.

As an example of the properties of Pyy(E, M.,) ob-
tained from egs. (10) and (17b) we show in fig. 2 a
set of distributions evaluated for N =72, Q1 =0.94,
Fp, =0.25 and N, =0.13. In fig. 2a the response dis-
tributions Pyx(E, M.,) are given as a function of & for
M, =10, 20, 30, 40 and 50. In fig. 2b the response
distributions Pyi(E, M,) are given as a function of
M, for constant k =11, 20, 28, 35 and 41. For the
fold distributions (fig. 2a)

Zk>PNk(E'y;M'y) =1 s
but for the multiplicity distributions (fig. 2b)

20 PyE, M) # 1.

My

It is seen that the fold distributions can be approxim-
ated well by Gaussian curves.

The bivariate distribution Pungp(E, M,) can in
general be obtained as the coefficient of Ak in
F(z, 5) of eq. (9), where k is the number of detectors
responding with {%,,..., Ay} and it is given by

PyuiE, M) = (L)zf%ﬁ%ﬂt 5). (18)

2mi

In the symmetrized model the integration over s can
be carried out giving

k

PyeilE, M) = (41)"(:) E (—1)”(:) H(H, n)(18a)
where
H(H, n)= (Elﬂ—) f—t}‘,% G(t, n). (18b)

The complex structure of eq. (14) makes the analytic
evaluation of eq. (18b) impractical. Considerable
insight into the structure of Py(E, M,) can be ob-
tained by introducing a very simple model. Consider
M, incident vy-rays each with an average detection
efficiency Qg for the entire spectrometer. Ignoring
the division into N detectors, we require that each of
k' y-rays produce a given pulse height 4 = E., with
efficiency 957 and nothing otherwise. Then

F(t,5)= (1 - Qg + Qg stV (19)
for which eq. (18) is non-zero only for H =k'h and

T T T T T T T T T T
| My:|o (a) QEy=O.85 )
30r— 20 <
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o 4070 (b) Q=090
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Fig. 3. Approximate total pulse height distributions Py '(E,
M.,) evaluated for an average detection efficiency 27 =0.85
and 0.90 for the entire spectrometer for different values of
M7 = 10, 20, 30, 40 and 50. The distributions are plotted
versus k' which gives the total pulse-height in units of £’ - the
incident energy.

Py (E, M,) is given by the binomial distribution
function,

M -
P, )= (17) (1~ 05 MKk o)

where the total pulse height is H = k'h = k'E,, and it s
given by k' in units of E.,. Clearly, & differs from k,
which is the number of detectors that fire when V are
present in the spectrometer. For realistic values of
2, ~0.60-0.90 eq. (20) gives distributions in H
which could adequately be described in terms of their
first few moments. Some of the binomial distribu-
tions of eq. (20) are plotted in fig. 3 for 957 =0.85
and 0.90 as a function of k' for M., =10, 20, 30, 40
and 50. It is seen that these curves have a small tail
toward the low k' side, corresponding to a small
negative skewness.

2.3.3. Moment expansions for Py (E, M.,)
The various moments of Pyp(E, M,) with respect
to k and H can be easily derived from eq. (9), since

F1,1H=1,

0
&F(f, S) = (k) ,

t=s5=1
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a2

— F(t,9) =k — 1), etc.,
os t=s5=1

and

—a—F(t 5) =H

ot | =s=1 ’

az

— F(t,3) ={H(H — 1)), etc.
ot r=s=1

In general,

o™ o°
5};,; WF(L S)

=Gk —1)..(k—p +1)

t=s=1
XHH—1) .. (H—m+1). 1)

More specifically, these product moments k,, are given
by

k=& =N[1 -G(,N-1)], (222)
ky =&k — 1)=NW — D[1 —2G(1,N — 1)
+G(1,N —2)] ,etc., (22b)
and
— _ N!' <S\(n
kn=U(k—1)...(k—n+1)= (N_n)!,?o(z)

X (-1YG(1,N=-1). (22¢)
Using eqgs. (17a) or (17b) we derive, respectively:
ped N-1
ca,N-n= 11 [1—19 (1+F J—-)}
( ) y=1 7 TN-1
X
x 1 [1 _lsz,,(l +F,,N—_—l):}
v=1 N-1
or

G(,N-1)= [1 —m,(1 +F711VV: i)]M“’

N-1

X [1 — 15, (1 +Fyﬁﬂx. (22¢)

The first few moments about the origin p,, = &™)
can be obtained from the product moments k,, via

po=ko=1, (23)
p1=& =k, , (23a)
p2 =k =k, + Ky, (23b)
p3=(,3)=ksy+3k, + k&, (23¢)

pa=Kk*Y=ky+ 6ks+ Thky+ky . (23d)

The central moments defined as the moments
about the mean are related to those about the origin
via

n

o= 2( "1y oot (24)
j=0\]

with

Mo=po=1,1;=0, (24a)

M2 = 0=py— pi=kytky — K}, (24b)

M3 =p3 — 30201 + 207
= k3 — 3k2(k1 — 1) + kl(kl — 1)(2k1 - 1) , etc.
(24¢)

The skewness s; and excess e are defined by
_ M3 — 2
Sk=lz?/—2 and (5% =([.14/[12)—— 3. (24d)
2

Using average efficiencies we find for <k) that

®=N{1 - [1 - 8,1 +F)M[1 -0 +F)*},
(25)

which can be solved for M., to give

In(1 —&)/N)—xIn[1 —Q (1 +F,)]
[l - Q,(1+F,))] ’
More elaborate, but explicit expressions for the
higher moments oy, s; and e; can be obtained using
eqs. (24b) through (244).
We derive next the first few moments of Py i(E,
M, ) with respect to H, the total pulse height. Eq. (21)
gives

M, =

(25a)

oF(t, 5)

Hy =)=
‘<H>at

s,t=1

d d
- '(GG'y(t: N) +EG1}(L ]V) (26)

t=1

Let us define the spectral function w}"‘) fori>=1as

wf® = N2IQ@(n) B + NV - 1)
K

X ?T‘“’ NRLNETS 27)

where « is a label for y-rays or neutrons etc. Using
eq. (14) in expression (26) we obtain

M’Y X
H= 27 P+ 25 wf) = H) +H,) | (28)
v=1 v=1

For the second moment with respect to H we find
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fromeq. (21)

d? d
Hy =WHEH - 1= G (t, N)+ 2 —G. (z, N)

dr dr
d G + ¢’ G ‘ 29
I A2, N) i »(t, N) L (29)
Noting that 6% = (H?) — (H)® = H, + H; — H? we find
o= o'},y + 03, (30)
where

, d d 2
OHOZ = F Ga(ty N) + d_tGa(tr N) - H;Ga(tx N)

1=1
(31)

Using eq. (14) after some algebra we find

My

2

Har, = 0, = 20 () — wf?) (32)

v=1
and

2

Hap, = 0%, = X(w§) — w7, (32a)

where the neutrons were treated with average
efficiencies for given neutron multiplicity x.

From the third product momentin H; =<H(H — 1)
(H — 2)) we find for the third central moment that

M3p=Hs — 3H,(H, — 1)+ Hy(H, — 1)(2H; — 1).
(33)

Using eq. (21) we can show that

M3l = M3, ¥ M3m,, » (33a)

where

d3 d? d
3ty = 33 Gult, N) — 3&72 Gult, N) I Gy(t, N) - 1

¥ %Ga(t, N)(%Ga(t, N) - 1) (2 ad; Galt, N) - 1)

After considerable algebra we obtain
My
3
Mam, = 22 (@f” — 300l +20M%),  (330)
=1

with a similar expression for p3g,,.
It is possible to generalize the moments and write
forn=23, u,py = HnH., t MnH, where

My
Kk, = 2 (Z (’?)('l)n_jwf( a)“’ga)n—j) (342)

y=1\j=0\]

or

n
Mnp, = MV(ZE)(;.1)(—1)"_jw](°‘)w§°‘)n_]) , (34b)
=
where for the applicability of this formula we must
set w§® = 1. This is to be contrasted with the value
of wi® = QY from egs. (27), (11) and (12).

Finally, we derive an expression for the correlation
coefficient pgy = (HK)/(H)k) between the variables
Hand k.

From eq. (21) we obtain

d
HK) = NHY — N—G(t, N — 1) (35)
dr =1
with
iG(zN 1I -6,0.N- 16
dt ’ - )_1_ V(9 - )dt ’y(t:N_l)
d
+G7(1,N—1)E;G,,(t,N~l)l . (35a)

In the approximation of average multiplicities M., and
x with average efficiencies ., and Q, for vy-rays and
neutrons the above functions can be simplified as
follows:

G/(1,N—1)=[1 - Q1 + )M, (36)
G,(1,N—1)=[1 - 9, +F)*, (36a)

d
—G.(t —
& &, N—1)

ST

t=1
X T 1D )i + )
X [1 -8, +F)Mr? (36b)

d (N1
Gt N~ 1)’t=1 = (»—N )((H,,) —xN

X ZA) T () (e +h9)

X [1—8Q,1+F)* 1. (36¢)

Since the term
MyNEAT(V)(hKh D + 1) .
K

is small compared with (H,) in eq. (36b) (~1/N) and
similarily in eq. (36¢), a good lower limit for pgy is
obtained by ignoring the sums compared to (H,) and
(H,). This gives
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>[1 N—l( (H7>/<H)
PHK ~ | 75— =
U N 1—Q7(1+F7)

o )

where U= [1 - Q.(1 + F.,.)]M”r[l - Q,(0 +F)]*~

It should be mentioned here that pgy, is important
in the determination of the response of the instru-
ment. For a given multiplicity M, it is clear that
increasing the fold k results in an increase in H, so
that H and k are positively correlated with pg; near
unity. However, response to neutrons as indicated in
eq. (36d) produces also a positive but different corre-
lation between H and k.

3. Performance characteristics

3.1. Multiplicity resolution

As it was discussed in section 2.3.1 there are four
factors that affect the performance of the spectrom-
eter. These are: (1) incomplete detection; (2) crystal-
to-crystal scattering; (3) coincidence summing; and
(4) indistinguishable pulses, e.g., neutrons.

3.1.1. Incomplete detection and crystal-to-crystal
scattering

It is possible to isolate the various effects
described above in order to demonstrate their
influence on the response to various cascades of
known y-multiplicity. For this purpose, in the limit
N — oo, the coicidence summing is reduced to zero.
In this case, eq. (10), that gives the response of the
spectrometer, becomes difficult to evaluate numeric-
ally for large N. An expression for

lim Pyu(E, M)
N—oo

can be obtained from eq. (9) written as

B (-

+n— 1\1M
X (sz Q" U—l)] Y (37a)
N -1
The result (see Appendix B) is:
k/2 +n—k
. (1 -
lim Py (E, M) =M !i)-——
N—oo Nk( ’Y) v n=0 (M7+ n— k)'
Q' Q’ k—2n
X (——) &) : (37b)

n! (k- 2n)!

T ——— T
O8f (o) N= o ] {b) N=00
o7  My=30 . Fy=04
L 7=o 4
__ 06 099 A
£ o5l 4 0201 J
ol
>04t .
&2803' 0I5
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olb 1 oos
(¢ A ] o)
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Fig. 4. In part (a) are shown plots of the N — <« limit of the
fold distributions evaluated for four values of the total detec-
tion efficiency Q1 =0.7,0.8,0.9 and 0.99 for fixed M., = 30
and no scattering (F’Y =0). In part (b) the multiplicity dis-
tributions are shown for the N — o limit for the indicated
pairs of k and Q- values that give (M) = 30. A fixed scatter-
ing fraction F,y =0.4 is used.

This equation in the limit "' - 0 and Q1 — 1 gives a
§-function response versus k about k =M.,,.

In order to display the effect of incomplete detec-
tion on the resolution, we show in fig. 4a plots of

lim Py (E, M,,) versus k
N—oo

for four values of 2 =0.99, 0.90, 0.80 and 0.70 for
fixed value of M, =30 with no crystal-to-crystal
scattering (F, =0). The rapid loss of fold resolu-
tion Ak/&kX%) defined as the % full width at half
maximum is clearly seen. Furthermore, it is seen that
k) decreases with decreasing 0, and it can be shown
to be given by &) =M, Q(1 + F.,). In fig. 4b we show
the effect of Q2 to the response function by plotting

A}lm PNk(E» M.y)

for pairs of values of k¥ and Q- of 42 and 0.99 (solid
curve), 38 and 0.90 (dashed curve) and 34 and 0.80
(dash—dot curve). These were evaluated for F,=04
and correspond to (M,) =30. It is seen that the
multiplicity resolution AM, /(M) (%) decreases with
decreasing 2.

Realistic upper limits of the crystal-to-crystal
scattering can be obtained from the peak-to-total
ratios for Nal detectors of different sizes. An upper
limit for F., is given by (1 — f,) where f, is the peak-
to-peak total ratio. Fig. 5 shows calculated values
[13] of 1 — f, for cylindrical Nal detectors with
dimensions (diameter X length) of 7.6 cm X 7.6 cm
(dashed curve), 12.7 cm X 10.2 cm (dash—dot curve),
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Fig. 5. Calculated values of the Compton-to-total ratio
(1-peak/total) for cylindrical Nal detectors with dimensions
diameter X length of 7.6 X 7.6 cm (dashed line), 12.7 X 10.2
cm (dash—dot line), and 12.7 cm X 17.8 cm (solid line) as a
function of the incident y-energy in MeV.

and 12.7 cm X 17.8 c¢m (solid curve). It is expected
that a realistic spectrometer with large detector ele-
ments will have F,, ~0.2—0.4 for typical energies of
~1 MeV.

In the limit of N —> oo the effect of incomplete
detection on the resolution AM,/(M,) is shown in
fig. 6a as a function of Qt for M = 30 and for F =0,
0.1, 0.2 and 0.4. Again the rapid loss in resolution
with decreasing Q- is clearly seen.

The effect of crystal-to-crystal scattering on the
multiplicity resolution is shown in fig. 6b, where the
percent AM, /(M) is plotted versus F., for N — oo,

| L L LIS B B S e B S S |
a0l (@) N=o || (b) N -0
M,= 30 M, =30
2 30/ 1L S
770 T 0.8 |
= - Fy= A /’ E
< Y
220 . ://— 09 _
04
< T 02 7 10
|0 ol 4 E
r 001 .
Ol 1 v 1 P T B B B |
06 08 10 0 0.2 04
Qr Fy

Fig. 6. Part (a) shows the dependence of the limiting (V —
) percent multiplicity resolution (%AM,Y/(M,Q, AM =
fwhm) on the total detection efficiency Qt evaluated for
four values of the scattering fraction F’Y =0. 0.1, 0.2 and
0.4 for fixed incident multiplicity M. = 30. Part (b) shows
the dependence of the limiting (V — ) multiplicity resolu-
tion on the scattering fraction F., for three values of Q =
0.8, 0.9 and 1.0 evaluated for fixed y-multiplicity M.y =30.

VT T T T T T T T
I k=12 N -0

Fig. 7. Limiting response functions (N — =) versus M7 fork =

- 12, 24, 36, 48 and 59 corresponding to QT =0.95 and a

scattering fraction £, =0.25. The percent AM,Y/(M7> is given
under each distribution.

M, =30 and Qr=1.0, 0.9, and 0.80. It is seen that
AM. (M.} increases at first rapidly with increasing
F, and that it levels off for F, > 0.15.

In fig. 7 we show some response functions by
plotting

lim Pp(E, M,)
N—oo

versus M, for k=12, 24, 36, 48 and 59 calculated
with Q1 =0.95, and F,=0.25. This choice of folds
gives responses with (M,) =10, 20, 30, 40, and 50.
The values of AM, /(M) are also given in % under
each curve.

It is important to note that

N
kZ_)OPNk(E, M)=1  for M,= const., (38)
whereas
MZEOPNk(E’ M)#1 for k = const. (38a)

=

3.1.2. Coincidence summing

The effect of coincidence summing is manifested
because of the finite solid angle when a finite number
of detectors is present. In this case egs. (10) and
(17b) can be used to evaluate the response functions.
In order to demonstrate the main properties of the
response functions it is sufficient to give <k) and
AM., [(M.). The values of (k) can very conveniently
be calculated via eq. (25). The multiplicity resolution
can be obtained via egs. (23) and (25a). Since the
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Fig. 8. Dependence of the average fold <) on M for
spectrometers with N = 50, 72, 162 and « evaluated for con-
stant Q1 = 0.95, Fy = 0.25 and @, = 0. As the number of
detectors decreases ¢k) tends to level off at high (My).

fold distributions are nearly Gaussian in shape we ob-
tain for the fwhm Ak = 2.350,. Next we find (f,) +
$AM,, from eq. (25a) using &) * Ak and thus obtain
AM,, by difference. The AM, /(M) values are larger
than Ak/(k) for the same (M), because the succes-
sive (k) values move closer as (M) is increased. This
is clearly demonstrated plotting (k) versus M, for
various values of N. Such a plot is shown in fig. 8 for
Qr=0.95,F,=0.25and Q7= 0. Asmentioned earlier
for N->e and M,>1 a linear dependence is
obtained with a slope of Q¢(1 + F). For finite NV it is

seen that (k) decreases progressively more with
increasing M., as the number of detector elements V is
decreased from 162 to 50.

The effect of finite N on the multiplicity resolu-
tion is demonstrated in fig. 9. The multiplicity reso-
lution is plotted in fig. 9a as a function of Q2 for dif-
ferent values of N keeping M, =30 and F, =0.25.
The case V- oo is also included for comparison. The
loss of resolution with decreasing St is relatively
more pronounced for systems with larger N. The
effect of scattering is shown in fig. 9b for several
values of N keeping M, = 30 and Q1 =0.96. It is seen
that for 0.15<F,<04 the resolution does not
change significantly with F,. In order to illustrate the
effect of the finite number of detectors on the multi-
plicity resolution as a function of M, we plot in fig.
10a the percent AM./(M.) versus N for fixed M., =
10, 20, 30, 40 and 50 keeping Q1 =0.95 and F,, =
0.25. It is seen that the resolution improves consider-
anly with increasing N for the high M, values. The
horizontal arrows indicate the limiting resolution of
each M, value in the N — oo limit. In fig. 10b the
percent AM, /(M) is plotted versus M., for N = oo,
162, 92, 72 and 50. It is seen that for N =50 AM, /
(M.} levels off and then increases for M, 2 35.

3.1.3. Detection of neutrons

Since the 7y-detector elements may respond to
neutrons, identification of neutron pulses by time-of-
flight techniques is considered necessary. Due to
flight path limitations complete characterization of
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Fig. 9. Part (a) shows the dependence of the percent multi-
plicity resolution on total detection efficiency Qp for
spectrometers with N = 50, 72, 92, 162 and «, evaluated for
constant M7 =30 and F,Y = (.25. Part (b) shows the depen-
dence of the percent multplicity resolution on the scattering
fraction F7 for spectrometers with NV =50, 72, 162 and
evaluated for fixed M, = 30 and QT = 0.96.

Fig. 10. Part (a) shows the dependence of the percent multi-
plicity resolution on the number of detector elements NV for
the indicated values of the multiplicity M.,, evaluated with
constant QT = 0.95, Fy = 0.25 and Q,, = 0. The horizontal
arrows indicated the limiting resolutions for NV — . Part (b)
shows the variation of the multiplicity resolution with M’Y for
spectrometers with N = 50, 72, 92, 162 and <, evaluated
with constant Q1 = 0.95, Fy=0.25and Q, =0.
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all the pulses may not be possible. Under these con-
ditions some undersirable neutron events may be
recorded indistinguishably from y-rays. Egs. (22—-25)
may be used to evaluate the effect of neutron detec-
tion on (), oy and AM,/{M,). An approximate value
of 0.5 Qr, =NQ,, the total neutron detection effi-
ciency, is estimated on the basis of an inelastic
scattering cross-section in iodine of 2 barns and a
total scattering cross section for iodine of ~5 barns
resulting in an average pulse height of ~0.5 MeV. A
reasonable estimate of ~0.2 for F, the neutron
scattering will be used. As an example of the effect of
neutron detection on the multiplicity resolution we
show in fig. 11 a plot of AM, /M. ) versus M, for two
values of V=72 and 162. In that calculation we
assumed Qr=095, E,=025, F,=02 and a
neutron multiplicity x = 5. The results for N2, =0
and NQ,, = 0.5 are shown versus M,, for N = 72 and
162. The loss of resolution is very pronounced at low
values of M,. For heavy-ion induced reactions at
incident energies of ~10 MeV amu™' neutron multi-
plicities as high as 10 have been observed. For those
cases the loss of multiplicity resolution would be
approximately twice that shown in fig. 11,
indicating very poor performance for M, < 20. These
results indicate that identification of the neutron
pulses is essential for the performance of the spectro-
meter for y-ray multiplicity determinations.
Examples of the response functions for a spectro-

LA L S S A B D B B
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Fig. 11. Effect of neutron detection on the y-multiplicity
resolution for two spectrometers with ¥ = 72 and 162.
Results are shown for N2, =0 and 0.5, calculated for fixed
QT1=095, F,=0.25, F,=0.2 assuming a neutron multi-
plicity x = §.

meter with N=72, Q1 =0.94, F,=0.25,and NQ, =
0.13 (~72% neutron rejection) were shown in fig. 2.

3.2. Total pulse-height resolution

The response of the spectrometer for total pulse
height is governed by the first few moments of
Py (E, M) with respect to H as given by egs. (28),
(32) and (33). In turn, these moments of H are deter-
mined by the spectral functions wf® of eq. (27).
It is interesting to evaluate (H), oy and sy in some
simple cases in order to illustrate the performance of
the spectrometer in terms of the detection efficiency.

First we point out that from eq. (27)

W = N 23 Q@) + NV — 1) 2 Ty + ..
K KA

=Q'+Q"+..=0, (39)
which is the total triggering efficiency above some
discriminator level. The first spectral function w{®
determines the response for total pulse height via egs.
(28) and (27). It is possible to define Q,(f)(Ey) and
QEA,K to include the scattering to all orders as follows:

N

wo =_El 27 99E,)=Qr, (40)
= K
N

w1=20 2 QPE)H =21 Q% He,  (40a)
i=1 k K

and
N

wp = Z% 20 Q) Hy= 23 QL (40b)
i= K K

where Q,((")(En,) and QE7K can be measured with

monoenergetic sources. The former corresponds to
the efficiency of the i*" detector to record h, when
the entire spectrometer records pulse height H, with
efficiency Qg_, from a monoenergetic source of
energy E,. In contrast QM () in eq. (27) is the effi-
ciency for one detector element in the spectrometer
to record h, when no other detector records any-
thing. For a given incident energy E., it is possible to
define average total efficiencies s_zg-’i such that

w =20 Qp (Hi =0, (a1)
K

and

sszE7<s—zg;<...<Qgg<Qg’;=nT, (41a)

where fE,y is the peak-to-total ratio for E., measured
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with the complete spectrometer and

lim s'zgg =fg, St (41b)

1= oo

For values of nyﬂT ~ 0.8—-0.9 a good approximation
18

=0M ~0R@)~ ) =
Q= Qff) =0f)~0f) =1z Q1. (42)

Assuming further M, incident vy-rays with £, we find
from eqs. (28) and (34a)

Hy) = M\ E (43)

o= Ey[My Qe (1 - Qp )] 12 (43a)
1—Qg \1/?

o ((Hy = (__Ez)
M, (43b)
1-2Q,

SH (43c¢)

(M, (1 ~ Q)12

which are precisely the moments of the binomial
distribution given by eq. (20). If the exact values of
w; are used somewhat narrower distributions (smaller
than AH/(H)) are obtained compared with those of
the binomial distribution, but the values of the skew-
ness sy are essentially unchanged.

To demonstrate the dependence of the total pulse-
height resolution on QE’Y and M, we plot in fig. 12
the % resolution AH/(H) versus M., for Qg = 0.80,
0.85 and 0.95. These values were calculated ignoring
the effect of neutron detection. It is seen from fig.
12 that the total pulse-height resolution is consider-
ably better than the AM/(M.), at least for values of
Qg >0.8.

iyt is possible to estimate the effect of neutron
detection on the resolution AH/(H )by using egs. (30),
(32) and (32a). For .QE7 = 0.85 and an assumed
neutron multiplicity of x =5 we show in fig. 13 a
comparison of the resolutions for total neutron
energy detection efficiency §2g, = 0 and 0.5 as a
function of M,. As expected considerable loss of
resolution occurs at low M., values.

3.3. Convenient evaluation of the response functions

In many reaction studies it is desirable to deter-
mine the population distributions Q(E, J) or Q(E,
M.,) and their projections

qM,) = ZE‘/ O(E, M)
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Fig. 12. Dependence of the percent toal pulse-height resolu-
tion AH/(H) on M7 for three values of the total energy
absorption efficiency Qg = 0.8, 0.85 and 0.90. Neutron
detection was ignored in this case (2, = 0).

and

a(E)= 2. Q(E, M,).
My

For this purpose the populations R(H, k) for total-
pulse-height H for each fold ¥ must be measured and
O(E, J) must be evaluated from

Q(E, M,) = }QR(H, k) PypidE, M) . (44)

Similar expressions for g(M,) and g(E) may be written
as

q(M,) = ? r(k) Pyi(E, M) ,

L. =0.85
OHo, Ey
(H)), x=5
40 =
30 n
20 B
10 7]
oL 1 v 1 41 vty
O 10 20 30 40 50 60
My

Fig. 13. Effect of neutron detection on the percent total
pulse-height resolution as a function of M, evaluated for
QEV = 0 and 0.5 assuming constant Ey = (.85 and neutron
multiplicity x = 5.
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and

q(E) = z; r(H) Pri(E, M),

where r(k) and r(H) are the experimental populations
for k and H, respectively.

The precise evaluation of the response Pygi(E,
M.,) depends on the input spectrum {E;} =y,
M. y-rays. In the present discussion it will be assumed
that the structure of the de-excitation spectrum will
be given. This can be the spectrum for an average
decay, over the many possible paths for connecting
a state at (E, J) with the ground state. A rotational
type spectrum with an average moment of inertia and
3-4 additional statistical +y-rays may also be a
suitable input. Another less realistic approximation
for the decay path may assume M., 7y-rays of equal,
but unknown average y-ray energy E,. It is desirable
to give a simple procedure for evaluating Pnpx(E,
M.,) without making use of the computationally com-
plex expressions (10) and (18a). For this purpose we
can use modified gaussian distributions that include
properly the first three moments of the exact distri-
bution Pyy(E, M,) with respect to k, H as well as
first order correlation (kH).

This procedure for evaluating Pygpl(E, M,) is a
generalization of a similar method for evaluating the
projections of Pypx(E, M,) on k or H to give the
useful response functions Pyy(E, M,) and Pyu(E,
M.,). The procedures for evaluating the latter two
response functions will be described next.

3.3.1. A rapid evaluation of Pni(E, M.,)

We note first that the distributions in fold %
evaluated via egs. (10) and (17) for given M, and
illustrated in fig. 2a can be approximated quite well
with gaussian curves with <k) and o values obtained
via egs. (22—25). As an example we note that in the
average (1, approximation (E=M,E,) with Q,=
0.95/72, F F,=0.25, Q, =0.13/72 and M, =30 we
find &) = 28 2825, 05 =2.5945 and sk—00427
For such small values of the skewness an excellent
approximation to the Pyg(E, M,) distribution is

given by
Py(k;E, M) = %ﬂa—("l ; (45)

where k = (k — my)/o,, and the third Hermite poly-
nomial H3(k) = 8k> — 12«. The area and the param-
eters my, o, and ¢, for the most probable value, the
width and the skewness, are related to the central

moments y, i of Pyy(E, M) via the expressions

Mox=area=1,u; =0, (46)
kY=my + 20,0, (46¢)
Mo,k = 0% = 0x(1 — 4c}) , (46b)
M3k = 8a3c, (1 +2c). (46¢)
and

2
S = ,272 = 8o f‘é;; 5=8c,(1+8c2).  (46d)

Thus, to construct Py(k; E, M.)) we obtain &), oy
and s, from egs. (22a), (23) and (23b). The param-
eters ¢, 0, and my are then calculated from egs.
(46d), (46b) and (46a), respectively. The complete
matrix Py(k; E, M.,) is then evaluated using eq. (45).

3.3.2. A rapid evaluation of Pyi(E, M)

It was mentioned earlier that the true distribution
in H has almost the same skewness as that of the
binomial distribution [eq. (43c)] but its width is
somewhat smaller. Again an expression of the form
of eq. (45) is a good representation of the Pyp(E,
M.,) distribution. Thus,

L+ (ey3) Ho() iz

PH;E, M 47
WHSE, M) = — = i @7)
where n = (H — my)/ 0, and my, 0, and ¢, are given by
#O,H:- 1»“1,H=0 » (48)
H =my+ 204y, (48a)
pa,p = 0F = 07(1 — 4cd), (48b)
M3 g™ 80%cn(1 +2c2), (48c)
and
_H3.H 1+ 2cn
s =8¢ =~8c (1 +8c2). (484d)
H= OH Cn (1— 2)3/2 n n

The same procedure as in section 3.3.1 is employed
to evaluate the matrix Py(/; E, M.,). The central mo-
ments with respect to H are evaluated via egs. (28),
(32) and (33). The parameters my, 0, and ¢, are
then evaluated from egs. (48a), (48b) and (48d).

3.3.3. The bivariate distribution Py (E, M.,)

It should be recognized that for given (E, M,) the
distribution in (H, k) is a bivariate distribution of the
closely correlated variables H and k. This distribu-
tion, however, deviates slightly from a normal
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bivariate distribution since the third and higher mo-
ments, although small, are non-zero. Again we shall
approximate the deviation from the normal distribu-
tion by incorporating the knowledge of the third mo-
ment. We can write for the skewed bivariate distribu-
tion function:

[1+(e/31) H(k)] [1 + (cq/3Y) H3($)]

Py(HE; E, M.) = 2m0,0,(1 — p2)/?

X e=E 12712 49)

_ 1+ (eaf3) Hy@) 1 + (/31 Hs())
2n0,0,(1 — p?)!/?

X e=8"12g—%12 (49a)
where ’
k= (k - mk)/ax P n= (H'— mH)/an s (50)

_ M—pK _ K—pq

Ao (500)
p = HIO[EK) , (50b)
&Y=my +20,c, , (50¢)

= 0%(1 — 4c?), (50d)
Sk =8¢, (1 +8¢c2), (50e)
H) =my + 20,0, (50f)

=03(1 - 4c}), (50g)
si=8cn(1 +8c2) (50h)
and
[ PaHIE, M) b =
0

_ l_i(in/g’!) Hy(x)

en’e, ¢ Gy
i . 1+ (cy/3") Hs(n)

Of PAR E, M) dle =~ 0

Xe M2 (51a)
[ [ Pk E M) dH k=1 . (51b)

00

It is clear from eq. (49) that the most probable
value occurs for n = k =0, but the ridge of most pro-
bable values is determined by 1 = px and its ampli-
tude is modulated by

[1+ (ce/3") H3(0)] e—K212

For problems of interest here eq. (38) gives 0.96 < p
< 1. However, values of p = 0.99 would be common
if the effect of the interfering neutrons is reduced to
~1/10. This indicates a strong correlation between H
and k. Thus, for fixed x (given fold k) the width of
the distribution in n (distribution in H) is reduced to
oy(1 — p»)Y2. Similarly, for fixed n (given H) the

width of the distribution in k is reduced to ox(1 —
pH2,

We wish to thank M.L. Halbert, J.H. Barker and H.
Jdiskeldinen for valuable discussions.

Appendix A

The probabilities Pyy(ny,..., ny) are generated [eq.
(5)] by G(¢,..., t; $4,..., 5,,) and hence F(z, 5) [eq N
can be expressed in terms of G(¢,..., t; 51,..., §,,). In
fact

N+1 dSl
Pnp(ny ...ny)= (27”) 9§tH+1§6 ny+1

dsy 3
G(t,..., t;81,...,
fﬁ‘s]\fvﬂ (z 150 SN)
with all contours encircling the origin. G(5,..., 7,

§1,..., Spy) itself has no singularities for finite argu-
ments. Thus

F(t, s) = > Z) N8R -85 )

H=0 n; ”N
dsy
'_¢‘an+1
N

N+1 ds
(27.”) f 56‘ nlil i

XG(t,.., T;81,0, SN) -

If the contours maintain [#]> |¢| and |s;| > |s|, the
sums may be performed first to give

1 \N+1 p» d7 1—5 s
F(t, s)={— ~—¢d +
(@ s) (2m'> $7— Sl(s1 sl—l)
1—s s
VI P
56 N PR G(1,.., £;51,..., SN) .

The contours include the singularities at 7=¢, 5, =0
and s; =1 so

F(t,s5)= 2 (1 —s)t—f1ghr 2 (1

i1=0,1 inN=0,1

— s)l _iNsiN
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XG(t,..., t;i1,0, i)
= E (1 __S)N—il...~—iNsi1+...+iN
0<iy..[y<1
X G(t,..., t;il,...,iN)
=2 1 —sN " 2 G(t,.., t5015eees i)
n=0 0<iy...iN<1
i1+...+in=n

which is eq. (8).

Appendix B

All of the N-dependence in eq. (37a) is explicit.
The following transformation makes it possible to
perform the sum over n. After this the N - oo limit is
straightforward. The bracketed expression in eq.
(37a) is a second order polynomial in #» and may be
factored

1_N—n [Q,+Q,,N+n—z}
N-—i
I—Q' Q”
= Nox, (n — Nx{)(n — Nx,) .

The zeros le, N, are functions of Q', Q" and N. In
terms of an expansion in 1/N, x;=x{ +0(1/N),
=1, 2, with

x?}_#ﬂ'i [Q?-4Q"01 -Q - Q")]l/2

x3 20"
Consider
1-Q - Q"\My &, N
(S=( ) Es”l—sN‘"(
FM1M2 ) X1%2 =0 ( ) n

n Mi/y M,
() (F)

When M, = M, = M,,, this reduces to F(s) of eq. (37a).
Now

> My M
My g2

1 . Qr _ QH)M
Ml,M2=0 MI'M2‘

FM1M2(S)= ( XX,

N
X2 s'(1 —sVn
n=0

1| AT

_ o' _o"wMm
=(1_f_2__9_) Y —hyx1 -z
X1X2

X(1—s+ seM1 +M2)/N)N .

Each factor in this expression has a limit as N > oo,
Thus

3 IJz
—_— hm F, s
MM20M1'M' M1M2()
" M
<______l -0 -Q ) 7 -‘Mlx?—ﬂzxg eS(H1tH2)
xlx2
and

1 —Q' —Q"\My

) T xty

lim FMle(s)z (
N—oo

oy

= M,, recovers

1x2
X(s—x
M] =M2

'

1 Q
1li F(s)=)—— 2 4 +4 " ! " i
im F(s) [4 - (s Ss+4Q"'01-Q'—Q )):l

Expanding in s gives eq. (37b).
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