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Expressions for interpreting y-ray multiplicity measurements with a Ge(Li) and N Nal detectors are derived. A scattering
chamber designed to allow measurements of multiple coincidences between a Ge(Li) detector and/or particle detectors and
up to 12 Nal detectors is described. A special multiplicity recording unit has been constructed. It employs the strobed
overlap coincidence technique and it is suitable for routing a multichannel analyzer or for interfacing to a computer. De-
tails of the analysis procedure are discussed. The application of a computer code to multiplicity calculations is described.

1. Introduction

There are several classes of nuclear reactions in which knowledge of the number of emitted y-rays
is of importance. In heavy-ion induced reactions, for example, knowledge of the number of y-rays from
the emitted heavy-ion transfer products as well as their energy spectrum is important in understanding
the de-excitation processes involved. In heavy-ion induced fusion reactions in the regions of deformed
nuclei, knowledge of the first few moments of the distribution in the number of y-rays can be used
to infer the angular momentum distributions in the product nuclei or even in the compound system.
Finally in light-ion induced fusion reactions describable by the compound statistical or by the hybrid
model for nuclear reactions, measurements of the multiplicity of the y-rays can help in understanding
the mechanisms involved.

The simple fact that the coincidence rate in y—y coincidence experiments depends upon the number
of y-rays in cascade has only recently been used to deduce the cascade lengths. Multiplicity experiments
that employed Ge(Li) and Nal detectors were reported by Tjem et al.!) and Der Mateosian et al.2). The
former was a two detector experiment that involved a Ge(Li) detector for gating and a single Nal de-
tector as a coincidence counter. Hagemann et al.’) later employed a Ge(Li) and four Nal detectors. That
arrangement allowed them to deduce not only the average multiplicity but also higher moments of the
distribution as well.

In this paper we present in some detail the theory, instrumentation and method of analysis of ex-
periments*®) employing as a strobing device a Ge(Li), a Ge(Li) coincident with several Si or time-of-
flight neutron detectors, or a heavy-ion A4F x E detector telescope and a set of eight or nine Nal de-
tectors. The theoretical expressions used to analyze the multiplicity measurements are derived. Two
versatile multi-detector scattering chambers and their associated instrumentation are described. Finally,
the computational procedure used in the analysis and the necessary corrections to the data are dis-
cussed.

2. Theory

In the following, the expressions necessary for the analysis of a multiplicity experiment employing
a gating Ge(Li) detector and N Nal counters will be derived.

* Work supported by the U.S. Energy Research and Development Administration.
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2.1. EXPERIMENTALLY OBSERVED QUANTITIES

For simplicity we shall discuss first the case of a cascade of M{) y-rays entering the highest ith
state of the ground state band of a typical nucleus (see fig. 1a). More complex situations for levels with
side feeding and incoming branched decays (fig. 1b) can also be analyzed and they will be discussed
later. Let us label a the y-ray from the ith to the jth level. This is detected in the Ge(Li) detector [ig-
noring for the time being summing effects in the Ge(Li)] with a singles rate Q@ given by

P = 0,06, (1

where ¢; is the cross section leading to the ith state and Q& is the efficiency of the Ge(Li) detector,
including solid angle, for the full energy peak. The detection of this y-ray provides the ‘“gate event”
and coincidences out of the N idential Nal detectors are examined. The counting rate for a p-fold coin-
cidence from all possible combinations of p detectors that fire is

(
oy = Q8P 2)

where P is the overall probability that out of N detectors p of them fire. The quantity B® of
course must account for the probability that any Nal detector recorded one or more photons and for
the fact that for each cascade there is a definite angular correlation function. Ignoring, for the moment,
the angular correlation effects we note that the probabilities P{) can be obtained from experiments as

09/0® or as the ratios

N
Py=y Ry Tem, g

w p=0 o
where C2), are the peak areas corresponding to a particular set of detectors, w, that registered p-fold
coincidences.

2.2. STATISTICAL CONSIDERATIONS

It now remains to relate the experimentally observed quantities P to the desired moments of the
multiplicity distribution.

It will be assumed that there is no spatial correlation among the outgoing y-rays. Thus the probability
that each detector records a particular p-ray is the same for each detector. It will further be assumed
that the known sequence below the triggering y-ray will have known detection efficiencies, €,
(B=1,2,...) which are the same for each of the N detectors. Of course the unknown sequence of
M) y-rays will be characterized less precisely. It will be assumed that each y-ray will be detected with

an average detection probability Q.
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A straightforward description of a single event would be to report the numbers n,,..., ny, where n;
is the number of y-rays triggering the jth detector. Let the probability of this outcome be P, ., . ux
which in fact is not an experimental quantity. A generating function G (t,,t,,..., ty) of the counting var-
iables t,,..., ty for the P, ,, may be defined by

..... nN

G(tys s ty) = Y Pupan i 13 (4)
ny...nn

The numbers P, . ,, may be deduced from a knowledge of G (1, 1,..., th)-

If the y-rays are divided into two statistically independent groups, labelled { and & with probabilities
P® | and P then counting both groups with non-distinguishing detectors leads to

e, mN?

©) &) n n
Pnl,m,nN = Z Pln,.--.lN Pm1,~~~,mN 111+m1v lg'f'm:v’ (5)
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That is, the generating function is just the product of the generating functions for the two statistically
independent subcollections which are being summed.

Since each y-ray is statistically independent of the remaining y-rays G(¢,,..., ty) is just a product of
factors, one from each y-ray. The fSth y-ray triggers some detector with probability £, and no detector
with probability 1—N€,. This leads to a factor 1 —-NQu+(t;+6,+ ... +1y) 2, Thus

Gy, .., ty) =1 —(N—t;—t, — ... — ty) Q]M*(: 1;[ [1—(N=t; — ... — ty) Q]. (8)
Therefore, the statistics are completely characterized by the function

FO = 1= (V=0 @ [T 11 - (V=0 9], ©)
through

G(ty, ..., ty) = Flt, +t, 4+ ... ty]. (10)

The fact that p of N detectors each recorded one or more y-rays is identical with the fact that the
number of detectors which recorded no y-ray is precisely N—p.
Thus
5§Jga£...+.s,.
is 1 when this occurs and zero otherwise. Averaging this over all sets of #,...ny, i.e. all outcomes, then
gives Py,, the experimentally measured quantity:

Pyp= % Puny O % kog, (11)
ni...nN
If F() = Y. a,t", then
n=0

i n (n; + ...+ ny)! ., -
Glty, s t) = Y, @ty + 1+t = Y Gy T N, (12)
k.

n=0 ny..nn
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sothat P, ,v = Gu 4. 4ay (... + nN)!’ (13)
1
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In the appendix the sum over n,...ny is evaluated as

1 N P < p _ 1) L
”_!(P>(_]) k;0<k>( Ve

whence
_ v NY - (P N L (1P N\ ¢ k[P >
e 5D 8 ()i () () 5 o
— (1) N) & (P k 5
(=D (P);(Zo( 1) (k)F( ). (15)

This gives a relatively simple prediction for Py, as a sum over the basic structure factor F (k) involving
k:O, 1, 2,...,p.

If additional particles — neutrons, for example — are counted by the detectors without discrimination
(i.e., they are treated just as y-rays) then the effect of those additional particles is trivially included by
incorporating 1 —(N— k)R, factors in F(k) for each such particle. In what follows for integral k the func-
tion F(k) will be written as F,.

Since the Ge(Li) detector actually identifies the triggering y-ray it is possible to collect data on many

different cascades simultaneously. If « labels the triggering y-ray between levels i and j, then several
collections of data are obtained as sets P with p=0,..., N for each a. Each cascade has its own struc-

a)

ture factor F{® and

a N L a
P§v3=(-1)”(p>k20(—1)k (i)Fi), (16)
where
F@ = [1 — (N—k) Q1" K@, KV, (16a)
with

. -1
K@, =Y b,[1 —(N—k) Q] Ky, (16b)

q=0

to be evaluated from the jth state down to the ground state (numbered as 0) using the known Nal
y-ray efficiencies €,, where j and g label the initial and final states. The decay branching ratios by,
for de-excitation of the state j to states g below satisfy

In the recurrence relation (16b) the ground state is numbered 0 and K ,=1, Ki ,=1—-(N—k) Q,,
etc. In eq. (16a) K¥* =[1—-(N—k) Q... and it represents the neutron response of the Nal detectors
each having an average efficiency £,., for neutron detection when the number of emitted neutrons
is x. The average efficiency 2 refers to the «cascade of M\ y-rays entering the state i. The probabil-
ities evaluated via eq. (16) correctly account for losses due to coincidence summing in the Nal counters.

In order to extract the moments of the multiplicity distribution one can follow two methods. In the
first one, the P-method, the frist term in Fi@ of eq. (16a) is expanded in powers of Q to give via eq.
(16)
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(l)

Z pw X9 = P}j‘} (1+p”’) a7
where

P = (1;’)% kz (=7 (Z) (N =Ky KL KNS, (172)
and

X0 = (MO MO=1) .. (MP—r+1)y (@YY (17b)

For a sufficiently high value p,.,, of the highest fold observed, eqgs. (17) can be solved to give a good
approximation of XV, with r=1,2, ..., pn.x Dy setting M) =p_

In the second method, the R-method, one can add the experimental P values to obtain the ex-
perimental R@W= P ¥ values via

R@ — L % (k> P, (18
P \<N>k=p p Nk )
p

The quantity R{* represents the probability for observing a p-fold coincidence event if only p Nal de-
tectors were present. It is easy to show that

R — kio (— 1) (i) (1— k@M KY) Ko, (19)
where

Ky = Z b,,(1—kQ;,) Ki? with K¥ =1, (192)
and

K = (1= kQpeu)™ (19b)

Expanding eq. (19) in powers of 2 one obtains

(i)

T APXD = RO — (1+A9), (20)
r=1
where
. p .
I —i. Py —1)“'@ KKK, (202)

with X7 given by eq. (17b).

Agam setting M) = p_. permits one to solve egs. (20) for XV, with r=1,2,..., prnsy-

One advantage of the R-method is that it allows one to observe the magmtude of the corrections
for coincidence summing effects in each Nal detector from all higher folds (p+1,p+2,..., Pms) to €ach
X, valued).

From the X values the moments of the multiplicity distribution can be obtained provided the de-
tection efficiencies £ are known. In general

Q=0,(+ap) ' (1-Q)7 ", (21)

where Q.is the integral efficiency (full energy and Compton distribution) of one of the N identical Nal
counters, a; is the total conversion coefficient and £, is the overall efficiency of the Ge(Li). The last
factor in eq. (21) as far as the multiplicity is concerned corrects®) for coincidence summing effects in
the Ge(Li) detector.
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If angular correlation corrections are to be included, a reasonable approximation can be obtained by
ignoring coincidence summing effects in the Nal detector which in our experiments were found to vary
between 5% and 12%. In this case it is sufficient to divide the experimental peak areas [ Z @1 of

eq. (3) for p>1 by W given by

_(a)

< >Z (GGea 01! tees 0p)$ (22)
p

where WA are the p-fold correlation functions corresponding to a given set w of the p detectors that
fired.
From the X\ values the mean values

(MDS, (MDD, L (MD =

can be determined from eq. (17b) and these in turn can be used to calculate the higher moments:
py = M) = KM

of the distribution of M}, around the average (M,).

2.3. MULTIPLICITIES OF SIDE FEEDING

When unresolved cascades populate observed levels (side feeding) in the reaction products then the
moments of the multiplicity distribution for the side feeding into the ith level can be determined from
measurement of the P probabilities for a given gating y-ray de-exciting the ith level and populating
the jth level below. In what follows the jth level may decay by branching to several levels below and
the ith level may be populated by several incoming transitions (see fig. 1b).

In this case egs. (20) can be modified to read

Z Z(J)X(') 1(i) [R;“)—A;“)] (1 +l(1)) (23)

where A accounts for the coincidence probability via known (earlier measured) cascades connecting
from above and below to the gating transition and f§ is the side-feeding fraction entering the ith
state.

The detailed evaluation of A® now depends on the particular decay scheme in each case. For a gating
transition « it is given by

A(a) z ( 1) ( > (l)K(J)K(neut) (24)
where
1
)= Y full—kQ,) [LP + £ (1-kQP) MPT, (24a)
m=i+1

and K¥ and K@ are given by eqgs. (19a) and (19b), respectively. In egs. (24a) / is the highest discrete
state resolved. The feeding fractions f,; from the states m above into the state / and the side-feeding
fraction satisfy

(l) + Z fmi = ]
m=i+1
In eq. (24a) MY and g are the average multiplicity and average y-ray efficiency for the side-feeding

entering the state m. In order to determine the moments of the distribution of M the observed
levels must be analyzed downward starting from the top level /. It is clear that as one proceeds downw-
ard the uncertainties increase progressively since [ decrease and the errors from the highest levels
propagate downward.
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Fig. 2. Lead shield **URCHIN™ is seen in the front support-
ing the Nal detectors. The anti-Compton spectrometer is visible
on the other side of the scattering chamber.

Fig. 3. Cross sectional view of the ““URCHIN” and the anti-
Compton spectrometer.
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3. Instrumentation

3.1. APPARATUS

Two scattering chambers were designed and constructed to allow considerable flexibility for a variety
of experiments involving y-ray multiplicity measurements with 9-12 Nal detectors. Each experimehtal
arrangement employs one of the 30.5c¢cm or 49.5 cm i.d. cylindrical chambers, and a lead shield for se-
ven Nal detectors (URCHIN). The scattering chambers have eight and twelve ports, respectively, on
the cylindrical part for inserting detectors, target holder, viewing plate, and beam-line connections.

In all configurations one hemisphere is essentially occupied by the URCHIN lead shield, which sup-
ports seven Nal detectors, 5.1 cm diameter by 7.6 cm long with 0.5 mm Cd and 0.1 mm Cu absorbers,
at a target to detector distance of 10 cm. Six of the detectors are placed hexagonally at an angle of 45°
and the seventh detector is in the middle at 90° to the beam (fig. 2). Up to three additional Nal detectors
with separate small lead shields may be placed in either chamber through ports at angles of 90°, 145°
or —125° from the beam direction. The positioning of additional different detectors, i.e. a Ge(Li) de-
tector, particle-detector telescopes, neutron detectors, or heavy-ion telescopes will be discussed separately
below.

3.1.1. VERTICAL CHAMBER WITH AN ANTI-COMPTON Ge(Li) SPECTROMETER

This arrangement has the scattering chamber mounted in the vertical plane. This allows the anti-
Compton spectrometer (19 cm diameter by 14 cm long annular, Nal-crystal) and its shield to be placed
at 90° opposite to the URCHIN. In fig. 3 the lead shield surrounding the anti-Compton annulus can
be seen opposite to the URCHIN. A typical target to Ge(Li) detector distance is 14 cm. The annulus
is shielded from the target by 7.5 cm of lead. In fig. 2 the Ge(Li) and anti-Compton shield are seen
on the far side of the 30.5 cm chamber. In this arrangement up to three additional Nal detectors can
be placed in the chamber plane through side ports.

The anti-Compton configuration is mainly used in experiments involving only y-ray detection, since
the small solid angle of the Ge(Li) detector makes the coincidence rate with particles very low.

3.1.2. VERTICAL CHAMBER WITH A CLOSE Ge(Li) DETECTOR

Here an additional special lead-shield is used in the place of the anti-Compton assembly. This shield sup-
ports a Ge(Li) detector at 90° and two Nal detectors, at 50° and 140° respectively. The target-to-detector
distance of the Ge(Li) is 5cm. Now up to nine Nal detectors are allowed outside the chamber and up
to three through the ports making a total of twelve detectors. Two charged particle detectors may also
be mounted inside the chamber.

3.1.3. Horizontal 30.5 cm chamber
In this configuration the URCHIN can be mounted above or below the chamber. The Ge(Li) detector
is inserted through a 90° port. It can be placed at a distance of 7 cm from the target. The lid opposite

Fig. 4. Photograph of the interior of the scattering chamber.
(1) is the beam entrance, (2) shows the Al can housing the
Ge(Li) detector, (3) are two Pb shields covering the Al cans of
two Nal detectors in the reaction plane, (4) surface barrier de-
tectors below the reaction plane, (5) two additional particle de-
tectors in the plane and (6) the target holder.
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to the URCHIN may be opened from below to provide access to the chamber. The lid supports four
mounts for particle detectors in the £55° and +125° directions relative to the beam axis outisde the
reaction plane opposite to the URCHIN. The detectors mounted inside the chamber can be seen in fig.
4. One can also see two Nal detectors and two Si particle detectors in the reaction plane. In this setup
one or two heavy-ion gas-telescopes can be mounted in the chamber plane in the forward quadrants,
instead of the light particle detectors®). Several neutron detectors can be placed in the reaction plane
at distances >50 cm for neutron time-of-flight measurements.

3.1.4. Horizontal 49.5 cm chamber

In this arrangement the URCHIN is mounted underneath the cylindrical chamber. The top lid is se-
mispherical to provide room for detectors mounted out of the reaction plane. Two heavy-ion gas-pro-
portional counter AE x E telescopes can be mounted in the horizontal plane and their angle changed
independently while under vacuum. One of the heavy-ion telescopes can also be positioned out of the
horizontal plane if so desired. Up to three additional Nal detectors can be inserted through ports. A
Ge(Li) detector with a housing of 15 cm of longer can also be inserted via one of the ports (usually
at 90°).

3.2. ELECTRONICS

The number of Nal detectors that are in coincidence with a given Ge(Li) event is established in a
multiplicity routing-box to be described below. Fast discriminators with adjustable pulse width are used
as inputs to the routing-box. These derive their inputs from the Nal anode and Ge(Li) constant fraction
discriminator signals. The lower level threshold of the discriminators from the Nal detectors is usually
set at ~90 keV to avoid triggering on Pb X-rays.

The basic configuration of the multiplicity system is shown in fig. 5. As can be seen, all inputs are
on the left side of the diagram and all outputs are on the right. Fig. 6 shows a schematic diagram of
the basic electronic circuit of a coincidence latch employed in the multiplicity system.

EXTERNAL RESET (COMPUTER) § .
2 >
o wn 2
STROBE 1| , & INTERNAL g « 3
— " = 5 RESET R 4
BUSY +5V | S w 8 z . COMPUTER
——= = Z CIRCUITRY cc :
VALID EVENT GATE /1] 5 " > J S OUTPUTS
- - _—
o TEST o =
T 5 & MODE —1S 2 14
=" 0% & |NORMAL 3 & —15
MODE S v o2 3
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INPUTS 1 3
I —* FasT '
22— NIm — 2
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Fig. 5. Functional diagram of the multiplicity routing box.
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Fig. 6. Schematic diagram of the electronic circuit of the basic coincidence latch used in the multiplicity unit.

The system was constructed to allow up to 16 Nal detectors to be used. A master detector, usually
a Ge(Li) or a heavy-ion telescope provides the strobe signal used to establish a coincidence with any
number of Nal detectors. Any number of the 16 inputs may be used in a particular application in any
combination.

Each of the input signals (normally 0 to —1 V) undergoes a rapid conversion to TTL levels. This
allows the major portion of the electronics to be constructed using convenient, inexpensive TTL cir-
cuitry.

The outputs of the coincidence gates are then fed into data storage latches to allow sufficient time
for the individual detector events to be interrogated and the information sent to a computer. The in-
dividual coincidence latches are also loaded into a 16-bit shift register. The register is then shifted 16
times to load the total number of detector coincidences into a four bit counter. This information is also
available for computer interrogation.

The two basic modes of operation of the system are the Test mode and the Normal mode. In the
Test mode, the multiplicity system is running free and it is reset approximately 2 us after the strobe
event.

In the Normal mode, the computer system controls the collection of data. Initially, the multiplicity
system sets the bit latches that hold the information until the computer is ready to accept it. Once the
information has been accepted the computer resets the multiplicity system and enables it to collect a
new set of data.

If the Ge(Li) detector is to operate in the anti-Compton mode or in coincidence with particles then
an external reset is required for all nonvalid events, (e.g., Compton rejected events). The Ge(Li) signals
and valid event gates are fed into the anti-coincidence reset circuit which provides the external reset.
There is also an ADC busy input to prevent false resets while the computer is processing an event.

4. Analysis

In order to apply the formalism of section 2, one must provide the average y-ray energy and then
apply several corrections to the data.

4.1. AVERAGE y-RAY ENERGY
Since there is some energy dependence of the Nal integral efficiency, @, of eq. (21), the average y-ray
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energy must be known for extracting multiplicities. Depending on the experiment there are several ways
to arrive at Ey. If in simple reactions such as (a, p) one detects the outgoing proton, then kinematical
considerations fix the excitation energy E* in the product nucleus and hence implicitly define E, as
equal to E*/{M). A simple iterative procedure allows one to simultaneously solve for (M) and satisfy
this constraint.

If one records as well the energy in the Nal detectors then knowledge of the response functions
of the Nal detector enables one to unfold the Nal spectrum and thus determine the average y-ray en-
ergy. For heavy-ion induced reactions it is possible to use an empirically derived formula due to Alex-
ander and Natowitz’) in the same manner as ref. 4 to calculate the average available energy E* for y
decay and thus solve for (M,,).

4.2. ANGULAR CORRELATION EFFECTS .

The angular correlation corrections W, in eq. (22) can be estimated by considering the simplest case
of W, for a highly aligned high-spin cascade of stretched E2 transitions using the formalism of Krane
et al.?). One of the y-rays is asssumed to be observed in the Ge(Li) detector and another in one of
the Nal detectors. One then averages over all Nal detectors and obtains an average correction factor.
The result is rather insensitive to the degree of assumed nuclear spin alignment. By careful choice of
detector placement this correction can be kept small. For example in the geometry employed in ref. 4
W, is 0.975. The corrections of p>2 are expected to be somewhat larger due to possible increase in
alignment when several members of the cascade are detected. In order to examine*) the effects of these
corrections, the first three moments were compared under the following assumptions (a)

Wi=W,=...W,

and (b)

W,=W [1-(p-D3i(1-W)l

We found that in case (b) (M), g, and s, changed on the average by +1.3%, +1.6% and —2.0%

relative to the values obtained in case (a). Corrections for angular correlation effects are made according
to the approximation (b) above.

4.3. COINCIDENCE EFFICIENCY

In writing eq. (3) it was assumed that the experimental coincidence efficiency, &, is unity. In this work
the coincidence condition was established by overlap of the discriminator signals with a fixed resolving
time given by the sum of the discriminator timing signals. In such a case due to poor timing char-
acteristics of the Ge(Li) detector for a large dynamic range, one sometimes obtains a coincidence ef-
ficiency lower than Unity, particularly at low energies. Corrections for this can be applied in the fol-
lowing manner:

CE = C§ PYYIPYY s (25)
with
PY = (1=NQ, )M " (1 =NQ,..)", (25a)
and
Pye = (1=NQg )M ' (1=NQ,...8)", (25b)

where Ci" are the uncorrected observed counts in the 0-fold (no coincidence) events; Q,, and M,,, refer
to total multiplicity, i.e., incoming as well as outgoing. Corrections for the p-fold coincidence counts
are obtained as Cp’ = C@'[1—B21/[1—PRg'). The values to be used for @, and M, are found by an iter-
ative process. They are first obtained by using the uncorrected counts and by utilizing a zero order ap-
proximation to the general program. One solves iteratively eq. (25b) for 2, and M,,,. Those values are
then used to calculate the correction factor in eq. (25). The corrected counts are then used in the general
program. The results of the complete calculation can then be used to recalculate the correction factor
and the process is iterated. In general one or two complete iterations have been sufficient to obtain a
self-consistent solution.
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Fig. 7. Spectra recorded with a Ge(Li) y-ray detector operated in the anti-Compton arrangement in multiple coincidence with
7 Nal detectors from a 30 MeV a-bombardment of %Mo. The 0-fold refers to no coincidence and the (3-7)-fold to the sum of
3- through 7-fold coincidences. Only the prominant y-rays from the («, 2n) reaction are labelled.
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The coincidence efficiency, ¢, is computed from analysis of multiplicity as a function of energy over
the Compton distribution from a source with known simple multiplicity, e.g. %Co.

4.4, CORRECTIONS FOR RANDOM COINCIDENCES

In order to estimate the correction due to random coincidences a pulser triggered by the digital output
of the current integrator is connected to the Ge(Li) preamplifier. One then obtains the random correction
by a comparison of the counts due to the pulser in the 0-fold, C§’, to the pulser counts in the higher
folds, CY’. The correction is applied to the experimentally derived probabilities according to

P =P + 1 — f§P, (26)
and

PG = Py — £, (27)
TABLE 1

Input data for program GETM.

Required data See section

y-calibrations
Calibration energy points
Nal integral efficiencies
M1 and E2 conversion coefficients

Coincidence efficiencies 43
Ge(Li) integral efficiencies 4.5
Ge(Li) absolute photo-peak efficiencies

Pulser counts for randoms correction 44

Level scheme
Number of levels in scheme
Level energies
Branching ratios for all levels
Fraction of each discrete state transition that is
Ml

Cross section 4.5
Target mass
Effective charge of projectile
Target thickness
Isotopic abundance 5
Integrator counts and calibration constant
Angular distribution correction factor
Angular correlation correction for summing in
Ge(Li)

Multiplicity
Highest fold utilized in the calculation
Number of Nal detectors

Neutron multiplicity 5
Average neutron efficiency in the Nal S
Energy available for y-decay, or average energy
per y-ray 4.1
Angular correlation correction for Ge(Li)— Nal
coincidences 4.2

Fraction of continuum decay that is M1

Side feeding fractions

Discrete-state feeding fractions

Coincidence counts for each fold and their er-
rors
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where
(p)
k

P = gt — (272)

Nmax

E: Cﬂp)

i=0
B and R{" are the uncorrected 0-fold and k-fold probabilities, respectively.

4.5. EXAMPLE OF ANALYSIS

A computer code called GETM was written in Fortran IV to perform the algebra indicated in section
2. In particular, it employs the R-method for the calculation of multiplicities and higher moments. In
addition, the code utilizes the already available information on y-ray yields and detector efficiencies to
calculate cross sections for the population of the various levels. The code also includes the corrections
discussed in sections 4.1-4.4.

The input for GETM consists of four basic types of data; (a) calibrations, (b) levels scheme, (c) cross
section and (d) multiplicity. The data required are indicated in table 1. Side-feeding fractions can be read
in, if known, for each level.

The spectra of fig. 7 are from a 4.3 h run with the anti-Compton geometry at the Washington Uni-
versity cyclotron. %Mo was bombarded with 30 MeV alpha particles. Spectra corresponding to 0-, 1-, 2-
and 3-fold coincidences were recorded. Coincidences of higher order were added to the 3-fold events.
The peak areas of the 652 keV 2+ — 0+ transition in *®Ru were determined for all folds and were used
as input to the multiplicity code GETM. A copy of the output from the program is shown in fig. 8.
In the code the ground state is numbered 1. The columns labelled PN and EPN are the experimental
Py, values of eq. (3) and their errors without any corrections. In the next line the interpolated coin-
cidence efficiency, ¢, and M,,, of eq. (25b) are given together with the approximate average energy used

96MO(ALPHA,2N)9BRU E(ALP4AI= 30 MEV
INITIAL LEVEL ND.= 2, FINAL LEVEL NO.= 1» LEVEL ENERGY= 652.41» TRANSITION ENERGY= 652,41

INPUT DATA
FOLD COUNTS ERROR

0 167407.0 1881.0

1 62603, 0 €32.0

2 10066.0 384,90

3 1004.0 39.9
SUM 2641080.0 2092.7
FOLD PN EPN

0 0.6944043 0.0082375

1 0.2596772 0,00403235

2 0.0417538 0.0016322

3 0.0041646 0.0001658
COINC. EFF.= 1.,0000, CALCULATEDC MTQTals= 7.260 AND AVER, EN., = 1469.7

FOLC L(P»0O) L(P, 1) L (P»2) L(P»3)

1 =0.99760L51 0.99760151 -0.49880075 0.166206592

2 =0.,99999725 0.00479221 0.99280977 -0.99440718

3 -1.0000000) 0.00000858 0.00717354 0.,98563635

CORRECTEC DATA
FOLD COUNTS SIG C PN SIS PN R SIG R X SIGX

0 168554, 1944, 0.699162 0.008065

1 60932, 1005. 04252747 0.004171 2.0505085 0,0007982 J.0495180l 0.00079953
2 10477, 442, 0.043460 0,001835 375327311 D.0000919 0.00262387 0.000091:9
3 1116, 4E. C.204631 0,0001098 J.0001323 0.0000057 0.00211466 .00000574
SIDE FEEDING FRACYION=1, ©®2SULTS OBTAINED A[TH COMPLETE DECAY SCHEMZ BELOW

MOIN)= o341 ¢~ 0.123 MIOUTI= 1.000 MEroraL )= 7.341

IGMA= 3.054 ¢~ 0.327 E(AVG)= 1347.98

KEW = =1.905 +- lo164 CMEG(AVG) = 0. 007794

CROSS SECTION = 1072.46 ¢/~ 9.31 MILLIBARNS

Fig. 8. Sample output of the computer code GETM for the 652keV 2+ 0% transition of %Ru.
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to compute M,,. The quantities labelled L(P,I) are the A,, matrix elements of eq. (20a). The 4, , values
differ slightly from unity and the elements below the diagonal differ from zero because of the exact
treatment for the transitions below the gating transition and because of the correction for neutron re-
sponse of the Nal detectors [(K{” and K"V terms in eq. (20a)l. Under the heading *‘corrected data”
the counts, the Py,, R, and X, values from egs. (3), (18) and (17b) and their errors are given corrected
for angular correlation effects, coincidence efficiency and random coincidences. The values for M,,, M,
and M, =M, +M,, are given together with the width o), (labelled SIGMA), the skewness s, (la-
belled SKEW), the average y-ray energy for the incoming cascade [labelled E(AVG)] and the average
Nal efficiency for the incoming cascade [labelled OMEG(AVG)]. Finally, the cross section was computed
with the formula:

4 — _ 0.0022803 dAZ . C,(1 +%1)
abtQQg. (1 —Qu W)M"1 W (90)

[mb]. (28)

d is the current-integrator calibration constant, 4 is the target mass [amu], Z.; is the effective charge,
C, is the sum of all folds, a; is the total conversion coefficient, a is the fractional isotopic abundance,
b is the branching ratio, ¢ is the target thickness [mg/cm?, Q is the collected charge [10° Cl, Q. is
the absolute photo-peak efficiency, £, is the integral Ge(Li) efficiency, W, is the angular correlation cor-
rection for detecting any two of the y-rays in the cascade in the Ge(Li) detector, M,,, is total multiplicity
in the cascade, and W(90) is the angular distribution of the gating transition. The term (1 — Q, W) Mtor-1
in the denominator of eq. (28) corrects for losses due to coincidence summing in the Ge(Li) detector
itself. The integral efficiency £, in eq. (28) should include all true counts recorded down to zero energy,
taken, for example, with an analyzer in singles live-time mode.

5. Concluding remarks

The integral efficiency for one Nal detector in the apparatus is typically 0.0106, 0.0100, 0.0090, 0.0084,
0.0081 and 0.0080 at 200, 400, 600, 1000, 1250 and 2754 keV, respectively. The flattening of the ef-
ficiency curve at high energies is due to the increasing pair production and scattering from the lead
shield into the detectors.

The efficiency of the Nal detectors for neutrons was measured by recording the time-of-flight to a
Nal detector placed at 1 m. A coincidence requirement with one Nal detector placed close to the target
helps in reducing the background in the time-of-flight spectrum. A beam of 14 MeV a-particles was
used in the *Mo(a, ny)*®Ru reaction?). The neutron efficiency of the Nal was found to be (14+4)%
of the y-ray efficiency for an average y-ray energy of 700 keV.

The apparatus described here has been found very flexible in allowing several types of experiments
to be performed with only minor changes in configuration. The anti-Compton geometry permits mea-
surement of multiplicity for low-cross-section reaction channels.

It is interesting to note that for heavy-ion induced reactions with high multiplicities (20-30) the 0-fold
spectrum contains only a small fraction of the total peak intensity. It also has all the background events.

Finally, it should be noted that the use of targets of highest possible chemical abundance is impor-
tant, since impurities of neighboring isotopes may give rise to the same final nucleus via a different
reaction and thus result in an erroneous multiplicity.

We are very grateful to the staff of the Washington University cyclotron and the machine shop for
their excellent work in construction of the apparatus. One of us, J. H. Barker, would like to thank the
Research Corporation for support during this work.
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It only remains to re-expand in u and v to determine the S,, as follows:

S = 3, (ZY) rerr = § () £ (D)
N z -k pn
Lo ()L 0
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