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Abstract: The evaporation formalism of the compound-statistical theory of nuclear reactions is
presented in a form containing the explicit dependence of the emission probability on angular
momentum and suitable for computation of excitation functions by the Monte Carlo technique.
The dependence of the nuclear level density on angular momentum is discussed, and an im-
proved expression is offered. Monte Carlo calculations have led to the evaluation of excitation
functions in selected reactions and the results were compared with experiment. The effect of
competing de-excitation by gamma-ray emission is examined and its magnitude is estimated
from an analysis of excitation function data. Satisfactory agreement between calculated and
experimental excitation functions induced by “He ions of kinetic energy up to 40 MeV is ob-
tained using the Fermi gas model parameters for the level density expression.

1. Introduction

There are three types of nuclear reaction data, namely, excitation functions, particle
evaporation spectra and nuclear isomer yield ratios, which have been analysed on the
basis of the compound-statistical model ' 7). Such analyses of excitation function
data®'2) led to values for the level density parameter « appreciably smaller than pre-
dicted by the Fermi gas model. Analyses of experimental nuclear evaporation spec-
tra '3+ %), on the other hand, resulted in decreasing a-values with increasing projectile
energy even when angular momentum effects were approximately taken into account.
Finally data on isomer yield ratios *3: '®) were best reproduced with a-values appreci-
ably higher than those obtained from particle spectra. Attempts to include angular
momentum effects in an approximate way into calculations of excitation functions
where one or more particles are evaporated have been made recently by several
authors '7723),

In this paper a formalism of the compound-statistical model is presented which is
suitable for simultaneous calculation of excitation functions, particle evaporation
spectra and isomer yield ratios in reactions involving the evaporation of one or more
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particles. The formalism explicitly includes the dependence of the emission probability
on angular momentum. In this work the Monte Carlo technique has been adopted be-
cause it leads to a computationally simple formalism.

2. Formalism

The cross section for a nuclear reaction induced by a projectile b of energy ¢, on a
target T in the formalism of the compound-statistical model can be expressed as a
product of two factors, i.e. (i) the cross section for the formation of a compound
nucleus with excitation energy U and angular momentum and parity J .z, and (ii) the
probability that this compound nucleus will decay to a product nucleus with residual
energy E; and angular momentum and parity J;7;. Thus the total cross section for the
observed reaction can be written as the sum of the cross sections of the possible paths
as follows:

ryu,J.
o6, ) = 3, ong(U, 78) AT 1)
Jchc ZF‘(U, ‘]C)

where b stands for the parameters of the incoming channel, namely, J{ the spin and
parity of the target, ¢, the projectile energy and s, the projectile spin. The cross sec-
tion ogomp(U, J¢), usually called the capture cross section, when summed over J¥
gives the absorption cross section o(¢;,) of the optical model for the channel b. If the
spin-orbit interaction energy in the optical potential is neglected then the “channel-
spin’’ coupling scheme gives for the capture cross section

(2Jk+1) Jii+sp Jek+T

2, ®(DTe)]; (2)

Ooomp( U, J) = mi? :
(25, + 1)(2J14 1) 1=100-su] 1=175k-1

where [ is the so-called channel spin and 7 the de-Broglie wave length for the projec-
tile in the centre-of-mass system; 7(/) is zero for odd /, if there is no parity change
and for even / if there is parity change between the initial and the final state, T;(¢,) is
the transmission coefficient for the /th incident partial wave, ¢, the kinetic energy of
the incoming particle and the superscript of J, or J, the parity of the state.

If the spin-orbit interaction is included in the optical-model potential then the
J-j coupling scheme for s, equal to 4 gives (see appendix 1)

k
gl U, %) = w2 BTt )
2200 +1)
Jk+JIi+ 4 L JR+T =4 _ o
x [ 2 a)T™ () + > . (DT~ ")), (3)
Pl A T

where now T,/ ~'*#(g,) stands for the transmission coefficient of the /th partial wave
with the projectile spin parallcl or antiparallel to /. The signs in the lower summation
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limits are to be selected according to whether J, > J, or J, < J; as indicated. In ex-
pressions (2) and (3) parity selection rules would be ignored if one substitutes unity
for n(7).

As yet there is no definite experimental evidence in support of one of the above
coupling schemes, but the “channel-spin’’ scheme has been widely used. The difference
in (2) and (3) is more pronounced in reactions induced by medium- or low-energy
neutrons and protons on targets of low spin. At higher energies and/or in targets with
high spin values, the spin-orbit interaction effects on the transmission coefficients are
of minor importance and (2) and (3) give approximately the same result.

The optical-model absorption cross section or the total reaction cross section
oy(&,) is simply the sum of (2) or (3) over all J.x,, that is, from 0 or § to “infinity”.
Actually, the summation should be extended up to the maximum value J, which can
be populated. Carrying out this summation over J, up to “infinity’” one finds the fol-
lowing expressions from (2) or (3), respectively,

s o]
ou(ep) = n'/Tleo(Zl +1)T(es)s 4)
) = 2 3 L+ DT/~ 4e) 1777 4] (5)
Average transmission coefficients 7(e,) could be defined by
. l+] i=l+% l pj=l=4
T(e,) = — T/ &)+ —— T/ €p)s 6
l(b) 2[+1 l (b) 21+1 i (b) ()

so that when uscd in cxpression (4) the same absorption cross section would be ob-
tained. Such average T(&,) coefficients have been used !®) in conjunction with expres-
sion (2).

Now according to the compound-statistical model, a compound nucleus that has
been formed in a state of excitation energy U and angular momentum and parity J:
will de-excite by emitting one or more particles or photons, until all the energy U is
dissipated. At each stage of this evaporation cascade, the rate of emission of a particle
x with kinetic energy &, to give a product nucleus at excitation energy E; and spin
and parity J¥ is given by 2°)

_ (25,+1)

Rx(U: J::; Efa JiI'L)dEf - 2ﬁ #Bxainv(‘]?a Ef7 Sy s J::) Ty 1
T

o(E;, J;i) dE
’ w(U, J))

Lt‘s (7)

where s, is the spin of particle x, i the reduced mass and w(U, J!) and w(E;, J§) the
densities of states in the initial and final nuclei at the excitation energy, spin and parity
indicated. The quantity o,,,(Jf, &, 5,; Ji) is the cross section for the reaction inverse
to that of the emission. This cross section should be evaluated for the particle entering
through the state with E; and Jf. The inverse reaction cross sections have been cal-
culated using expressions (2) or (3) which refer to the target in the ground state. With
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this approximation expressions (2) or (3) give for the inverse-reaction cross section

o-inv(‘]t,f’ €x 5 Sx5 ch) = 7'C;2 — (2J +1)

(25, +1)(2J5+1) KUt 25 70), ®

where K(J§, ¢; J?) stands for either of the sums in brackets in expression (2) or (3)
with substitutions J{ for J{, and J} for J¥. Substitution of eq. (8) into eq. (7) yields

1 'Q(Efs k)
T h QU JY)

R(U, Ji; E;, J¥)de, K(Jf, & Jo)de,, )

where Q(E, J) is the density of levels related to the density of states by w(E, J) =
QJI+1DQE, J).

The emission function I',(U, J!) in expression (1) is the emission rate given by eq.
(9) integrated over ¢, and summed over J§, that is

Jmax Emax X
r(u,J.) = (U, )| ! Z Y Q(Ef,J’;)K(J;‘,ex;J;)dsx. (10)
k=i Je=0, ~2~

For cxcitation energies below the threshold for any two-particle evaporation, ex-
pression (1) gives the desired cross section. For higher energies where multiple par-
ticle emission is possible, the one-particle cross sections can be evaluated by a proper
change in the integration limits 2°).

For reactions with two outgoing particles the cross section a(b, xy) will be given by
expression (1) with the numerator of the form

y(Ef>'] ) (“)

ny(U’J::):Z [Rx(U:J Ef,J)ZF(Ef,Jk) Exs

JxmJe

with a proper choice of the integration limits. Thus it is seen that for multiple particle
evaporations, including gamma-ray competition, each additional particle corresponds
to increasing the order of the integral by two degrees. Thus for one particle it is equiv-
alent to a threc-fold integral, for two particles to a five-fold integral, etc. The emis-
sion rate R, has a rather sharp maximum for a certain choice of E;, J;. Therefore the
most important contribution to the integral comes from a small range of values Ey, J;
near this maximum. An attempt for a direct numerical integration is very impractical
because the region of maxima for R, is not known a priori. The Monte Carlo method
has two advantages; (i) it presents a simple formalism for the evaluation of cascades
involving many outgoing particles, and (ii) it gives a satisfactory approximation to the
integral because the sampling is properly weighted so that most of the cascades occur
with R, values near the maxima of the integrand.

In this work the gamma-ray competition in the evaporation cascade is considered
in some detail. The gamma-ray emission probability is evaluated using the single-
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particle amplitudes for electric or magnetic multiples of order /, thus

1 Q(Ef’ J’fc)

QU,JY) (12)

R,(U, Jes 8, J§) = ci(JlONTo) e

where ¢, is a constant depending only on the multipolarity of the emitted radiation,
(JI10]) J¢) the reduced matrix element for the electric or magnetic transition of multi-
polarity /, ¢, the energy of the emitted radiation and Q(U, J!) and Q(E;, J{) the den-
sities of levels at excitation U or E; with angular momentum J, or J;, respectively.
The total gamma-ray width is obtained from eq. (12) by adding the contributions from
the various multipoles as

Imax Je+l U

r(u,J, — 2T LQ(E,, JH)de,, 13
)’( ) .Q(U J)IZ ZJ"C—I sy=0y ( f f) Y ( )

where the reduced matrix element in eq. (12) has been assumed constant and ¢, has
been replaced by ¢, to include this. For electric dipole emission from high angular
momentum states, Sperber has approximated this reduced matrix element by %)

RZ
(T ONTe)? = 7 (2J .+ 1)(2J;+1),

where R is the nuclear radius. In this work the parameters ¢, are adjusted to reproduce
measured excitation functions for the (a, y) reactions. This method of determining
the magnitude of the gamma-ray competition is only approximate but it is believed
to be satisfactory for excitations of a few MeV above threshold for the last particle.
The assumption is further made that the parameter ¢, is the same for all the nuclei
involved in a cascade.

The transmission coefficients employed were calculated from the optical model of
the nuclear potential. To this end a computer program was written to calculate elastic
scattering and reaction cross sections from an optical-model nuclear potential. Some
of the numerical evaluation techniques of Auerbach 2%) and Melkanoff ez al. 2°) have
been borrowed. The nuclear form factors for the potential were taken to be of the
Woods-Saxon form for the real part of the nuclear potential, the Woods-Saxon deriv-
ative for volume absorption and/or Gaussian for surface absorption for the imaginary
part of the nuclear potential, the Woods-Saxon derivative form for both the real and
the imaginary parts of the spin-orbit interaction potential, and the form of a uniformly
charged sphere inside a Coulomb nuclear radius for the Coulomb interaction. The
Coulomb spin-orbit interaction term was neglected. The results of calculations of
transmission coefficients with this program are in good agreement with those available
in the literature, when the same set of parameters is used 27 28).

For the evaluation of the emission functions (10) or (13), an expression for the
density of levels as a function of the energy of excitation and angular momentum is
needed. Of the many models that can provide such expressions the Fermi gas model
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has been widely used and is also adopted in this work. The simplest version of this
model which assumes the one-fermion levels to be equally spaced 2°) predicts a den-
sity of levels having the following dependence on the excitation energy:

QU) = f5nta ¥ (U+1)~"* exp(2\/al), - (14)
where ¢ is the thermodynamic temperature and the parameter a is given by
a = 3n? [ga(1a) +9,(11p)];
with the equation of state

U= at*—t, (15)

where g,(u,) and g,(u,) are the single neutron and proton densities of levels at the
Fermi energy, respectively. These quantities can be evaluated by considering the
separate neutron and proton Fermi gases filling the entire nuclear volume. Thus, the
following dependence of a on the nuclear composition is obtained:

s mro y Z¥ 4 N?

a =2y AT (16)
or
% 3
0= gA_(Z@;N ) (Mev™1), (17)

where r, is the nuclear radius parameter in fm and Z and N the proton and neutron
number, respectively.

At high energies the exponential term in eq. (14) dominates and the previous
terms may be neglected. Many authors have however used such an approximation
at low energies as well.

The dependence of the density of levels on angular momentum has been discussed
by Ericson 3°). Two methods have been employed in deriving this dependence. First,
the distribution of the projection M of the total angular momentum on the z-axis is
obtained. If the number of nucleons involved is large, this distribution tends to be
Gaussian. From this Gaussian distribution, one then evaluates the density of levels as

QU,J) = QU, M =J)—QU, M = J+1), (18)

by expanding both Q(U, M = J) and Q(U, M = J+1)in Taylor seriesat M = J+1}.
The result is

v; a% (f; ) s+ e [Aa0)-

h2(J+13)°
25t ] (19)
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up to the first order in the expansion. For small number of fermions or for large M,
the Gaussian distribution in M does not hold. Secondly, if the nucleus has an angular
momentum J, an energy E, = h*J(J+1)/2.# may be taken as rotational energy not
available for intrinsic excitation *'). Consequently, the density of states is now

QU,J) = QUU-E,), (20)

where Q(U—E,) is given by eq. (14). If E,/U is small compared to unity, then binomial
expansion of the square root in eq. (19) up to the first order yields

Q'(U, J) = const - Q(U) exp [—— %} , (21)

where ¢ was taken approximately as (U/a)*. It should be emphasized that the Gaussian
distribution on M which the derivation of eq. (19) is based becomes incorrect (earlier
than the accuracy of the Taylor expansion) as M or J is increased. Similarly, the bi-
nomial expansion in the derivation of eq. (21) is a good approximation only for E,/U
small compared to unity, that is, for small values of J.

Following Grover *#) and Sperber *7), we define the maximum value of the angular
momentum for a given excitation U via E, = U, where

_ 2 J(J+1)
=——

E (22)

r

This means that for any given value of spin J, there is a minimum excitation energy
below which no levels exist with that or higher spin. Due to the approximations in-
volved in the derivation of egs. (19) and (21), the density of levels is not reduced sharply
enough for large values of J. To improve this situation, Lang *?) derived a new dis-
tribution of M of the form :

-1 252 4 prd
W(M) oc (2nfl) exp I:~ M h“M :I .

h? 251 (251)5got

A level density derived from this distribution by means of eq. (18) has an angular
momentum dependence of the form

h2(J + %) h(J +1)°
Q' (U,J) ocexp|{— ———22- [1+—L 2——2}} 23
(U.7) p{ 251 3 A (U+1) )

Eq. (20) has the explicit form
\/2 flz 3 1 =2 7 +
U, J) = E(} G(U+t—E) 22 +1) exp 2[a(U—E)E).  (24)

The binomial expansion of the square root in the exponent in expression (24) to the
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second order gives

12 14? 1
Q'(U, J) « exp { _ I+ [1+ LA +1) (1+ i)}} , (25)
2.4¢ 4 27U 2at

where use was made of eq. (15). This equation is very similar to eq. (23), where a
fourth-order correction to the distribution in M was included.

In the derivation of eq. (24) no simplifying approximation was made, and only a
rotational energy associated with a given value of the angular momentum was defined.
Thus expression (24) is a more accurate Fermi gas level density expression than that
of expression (19).

The effects of pairing of protons and of neutrons in the nucleus have usually been
taken into account by reduction of the excitation energy U by a condensation energy
0 in the following way:

Qodd‘mass(U) = Qeven(U+5)’ U > (5,

: (26)
Qdoubly odd( U) = chcn(U +20)> U > 2(5

The neutron or proton condensation energies ¢, or 6, can be treated separately, how-
ever, in an obvious manner. Furthermore, these condensation energies are equated
to the pairing energies, as calculated by various authors 33).

The pairing effects are more naturally introduced, however, via the superconductor
model for the nucleus as applied by Lang **) and Vonach et al. 33) for the derivation
of an expression for the density of levels in a nucleus.

3. Calculations and results

As was mentioned earlier, the Monte Carlo technique was employed in calculations
of excitation functions and particle-evaporation spectra. In this technique it is as-
sumed that the reaction proceeds via a cascade of evaporations.

First, for a specified bombarding energy, the formation of a compound nucleus is
considered with a fixed excitation energy U, but with angular momentum J,, given by
either expression (2) or (3) with a maximum value set by expression (22). The weighted
choice of J, is based on drawing two random numbers; the first selects J, and the
second determines if this value will be accepted (if afomp(U, J.) = &,) or rejected (if
O-SOmp(U? Jo) < &)

Secondly, the de-excitation of the compound nucleus with the given U and chosen
J,, involves the emission of a number of particles or gamma rays until a stable, final
nucleus is reached. The evaporation of each particle is treated separately, implying
equilibrium between evaporations. At each step of the cascade I' (U, J,) is evaluated
for a neutron, proton and *He particle via eq. (10) or for gamma rays via eq. (13).
The sum of these emission functions is normalized to unity, and the particle to be
emitted is selected by a random number between 0 and 1.
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Next, the parameters involved in the emission of the selected particle are deter-
mined by choice of three random numbers. The first random number selects the
parity change, the second determines the spin of the final statc J; which defines
E, = h?Ji(J;+1)/2.7 not available for intrinsic excitation. The third number deter-
mines whether an emission with kinetic energy &, = &; ¢, 1S to be accepted
(if 0 < &3 < 1—E/ey,,) or rejected (if & < 0 or &3 > 1—E,/e,..). Here ¢, is
equal to (U— B,), where B, is the separation energy of the particle x from the emitting
nucleus. The choice of (Jf, ¢,) has to be weighted according to eq. (9). The emission
rate R (U, J.; E, J¥) is evaluated and a fourth random number determines if the
above choice (J¢, g,) is to be accepted (if R, > &,) or rejected (if R, < &,). A success-
ful emission with (J§, ¢,) is followed by evaporation of a second particle from a com-
pound nucleus with U’ = U—B,—¢, and J. = J} in an identical manner. This is
repeated until no further emission is energetically possible at which point the cascade
ends to a specified product nucleus.

For each projectile energy a large number (usually 500-2 000) of cascades is com-
puted, and the results are summarized to provide the following information: the total
number of particles of each kind that were emitted, the energy spectra of these par-
ticles, the number of cascades that led to the various final product nuclei, the spin
distributions in the initial and final nucleus (after the emission of the last particle and
preceding the final gamma cascade) and the details of excitation energy and spin
distributions at intermediate stages of the evaporation cascade. The cross section for
the formation of a particular product nucleus is evaluated as the product of the total
reaction cross section for compound nucleus formation at that projectile energy and
the fraction of the cascades that led to the nucleus in question. A complete excitation
function is then obtained by repeating this entire process at a series of projectile ener-
gies.

The computer program “ROULETTE”, that was written for the Washington
University IBM 7072 computer, was limited by the core size to a maximum of three
consecutive emissions of neutrons or of protons. The calculation was limited to the
emission of neutrons, protons, “He particles and gamma rays, which is believed to be
satisfactory if the initial excitation does not exceed 40 MeV. Some further simplifying
approximations had to be made to make the computation practical.

The formalism as presented earlier included the dependence of the emission proba-
bility on parity changes. For high excitation energies the number of positive or nega-
tive parity states may be assumed to be the same so that parity effects enter only
through the capture or inverse reaction cross section as in expressions (2) or (3). Two
typical cases for capture of a *He particle need to be discussed; (i) for target nucleides
with Ji' = 07, the capture cross section evaluated via expression (2) gives Jo if J s
odd and J; if J, is even. In this case only one / contributes per J-value. This is illus-
trated in fig. 1 where the capture cross section of “He ions by °?Mo is given for two
projectile energies; (ii) for target nucleides with spin 4 or higher, two or more trans-
mission coefficients with different /-values contribute to each J.. It is easy to see that
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Fig. 1. Total reaction cross section for the formation of the compound nucleus %Ru by
92Mo+4He ions. The relative population of states with definite spin and parity is given for two
projectile energies.
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Fig. 2. Total reaction cross section for the formation of the compound nucleus Mo by

2Mo-+n . The relative population of states with definite parity change is shown as a function
5MeV
of their spin. Populations of the same parity are connected with dashed curves.
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the low J, part of the capture cross section contains an equal number of states of both
parities, while the high J, part will show some fluctuations with J.. For higher target
spins these fluctuations are appreciably smaller, and in all cases of interest averages
over a small range of J, values yield smooth and equal distribution of states of both
parities.

For neutron- or proton-induced reactions or in evaporation of such particles,
parity selection rules may be of importance. This arises from the inclusion of the
spin-orbit interaction term in the optical potential thus yielding transmission coeffi-
cients T{='**(¢) and T7/='"*(¢) which may differ appreciably in magnitude. As an
illustration of this, consider the cross section for the capture of 5 MeV neutrons
by a target nucleus with 4 = 100 and JT = 0" as calculated via expression (3) and
shown in fig. 2. It is seen that, for example, the most probable spins of states with
or without parity change differ by 24 units. Thus, an uneven population would be
expected for states of opposite parities for a given angular momentum in compound
nuclei formed from low-spin targets. This effect will influence the outcome of de-exci-
tation by proton or neutron emission. For high-spin targets, this effect averages out
because of the larger number of /~values contributing to each J, value.

In calculations on *He-induced reactions the parity selection rules have been neglected.

The second approximation involves the transmission coefficients used. A table of
transmission coefficients for each type of particle, each /-value needed and a set of
energies between zero and the maximum particle energy is stored in the memory. For
intermediate energies a logarithmic interpolation is employed. For an exact calcula-
tion a table, of T;(¢) values is needed for each emitting nucleide. Core memory size
limits the number of 7;(¢) values that can be stored. Since the transmission coefficients
change on the average rather slowly with nuclear composition (over a range of a few
mass numbers), averaging over the latter is considered a satisfactory approximation.
Thus for proton or neutron emission an average nucleus with (Z—1, A—2) was as-
sumed for the evaluation of the transmission coefficients, where (Z, 4) is the original
compound nucleus. For alpha-particle emission, however, the average nucleus was
(Z—-2, A—4). Under these assumptions the emission rates R,(U, J.; E;, J¢) and the
total emission functions I' (U, J,) were evaluated for different ““average” residual
nuclei with changes of +2 charge units and +4 mass units. Such a variation resulted
in a variation of a few percent in the neutron emission function I',(U, J.) and a maxi-
mum variation of 15 % for the proton-emission function I' (U, J;). The alpha-emis-
sion function I',(U, J) varies more strongly than this with Z or 4. Thus, a variation
of two charge units results in a change of about 50 % in I',(U, J.). However, these
variations in average composition are much larger than those occurring in the course
of a calculation where only a few particles are actually evaporated. Therefore, the
errors introduced into the calculated cross sections are probably small compared
with the errors in these quantities measured experimentally. In all the results that will
follow the level density parameter a was calculated according to eq. (17) with ry, =
1.22 fm, and the moment of inertia was taken as that of a rigid sphere.
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The importance of the angular momentum effects on the emission rates can be best
illustrated in a typical example, the system '°’Ag(a, x) for two alpha energies 10 and
20 MeV. Figs. 3a—d give a plot of R, as evaluated by eq. (9) in a contour form. Here
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Fig. 4. Emission rates Ry(U, J,; €, Jy) as in fig. 3 with U = 11.98 MeV and J, = 6.5 #% units.
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the compound nucleus is **'In at 21.98 MeV excitation energy and spin J, of 12.5%
units. The abscissa in each case is the kinetic energy of the evaporated particle or the
excitation energy of the residual nucleus (upper scale). The ordinate is the angular
momentum of the residual nucleus J;. The emission rate is given in isoprobability
contours with a decrease of a factor of two between contours going outwards. The
scale is arbitrary. Here the variables J; and E, are shown as continuous for clarity.
The end line to the right corresponds to the maximum available particle energy and
the shaded area to those combinations of energy and angular momentum for which

TOO‘“" T T T T T
= .
=
G 4
L.
~
-
- |
=)
T ¢
|-
*0f- _
U=20,8MeV
o) 5 p 6 8 O R
(1)

Fig. 5. The effect of uncertainties in the neutron separation energies on the total neutron emission

probability. This is indicated as the ratio of two values for I'n(U, J.) evaluated for two neutron sep-

aration energies of 11.31 and 12.01 MeV in the #Ge compound nucleus as a function of J, for two
excitation energies U of 14.8 and 20.8 MeV.

states cannot exist, as discussed earlier. In this region beyond the rotational-energy
cut-off, the level density was set to zero. It is seen from fig. 3 that on the average
there is a lowering in the spin of about 1% unit for the emission of one neutron or
proton and of about 2# units for the emission of an alpha particle.

Figs. 4a—d give the emission functions R, for the same compound nucleus at 11.85
MeV excitation and with J, of 6.5% units. The effect of the rotational-energy cut-off is
now clearly seen. The gamma-ray emission rate R,, however, is not influenced ap-
preciably by this effect. Thus the particle to gamma-ray emission rate I',/I, should
be decreasing with increasing J,. In fig. 4 it is seen that a change in the separation ener-
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gy for any of the outgoing particles affects the threshold for that reaction. The rota-
tional energy, however, is not affected by this, so that one expects uncertainties in the
separation energies to be strongly reflected on the calculated value for the emission
function I',(U, J.). This effect is more clearly illustrated in fig. 5, where the ratio of
the neutron emission function for two assumed values 11.31 and 12.01 MeV for the
neutron separation energy is plotted as a function of J.. The compound nucleus is
®8Ge produced by bombardment of °#Zn with “He ions; this reaction is analysed in
this work. It is seen that for low excitations there is a strong dependence on J,. Such

1o i 'E*EL“ 22 (Me\/) 3C 3 33

Fig. 6. Total reaction cross section for ®Zn--*He ions. The dashed curve represents the sum of
experimentally measured cross sections. The solid line gives the reaction cross section calculated via
the optical model. The dot-and-dash curve gives the experimental total reaction cross section cor-
rected for the missing fraction due to the non-measured (o, 2p), (2, 2”) and (o, «’p) reactions.

an artifact can introduce an erroneous dependence on J, whenever separation ener-
gies are used which differ from the true ones.

The effect of uncertainties in the pairing term J on the J, dependence of the neutron
emission function was also investigated. In this work the pairing energy correction to
the density of levels was introduced in such a way that for excitations (U— E,) higher
than 2 MeV above 9, eq. (24) is used for the density of levels. For the case 0 < (U—E,)
< (6+2) MeV the following approximation is made. The density of levels and its
logarithmic slope are evaluated at the arbitrary energy of (6+2) MeV and for each
J-value a logarithmic extrapolation is made down to the true energy which may be
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below the pairing energy. For the present purposes it is believed that this approxima-
tion is appropriate. When U is equal to the rotational energy, the density of levels is
set equal to zero. It was thus found that the pairing correction é did not affect the
J-dependence of the emission function but only its magnitude. Therefore, the pairing
energy terms 0 can be adjusted within the limits set by experimental uncertainties in
the nucleidic masses in order to improve the fit of the calculated cross sections with
experimental excitation functions.
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Fig. 7. Gamma-ray emission versus neutron and proton emission in the de-excitation of *®Ge and
$?Ge compound nuclei as a function of angular momentum. Curves a and b refer to the %Ge com-
pound nucleus and give the ratio I",(U, J.)/I'a(U, J;) for two excitation energies of U = 12.5 and
16.5 MeV, respectively. Curves ¢ and d refer to the ¢?Ge compound nucleus and give the ratio
I',(U, J)T'p(U, J;) for two excitation energies of U = 10.1 and 12.6 MeV, respectively.

The calculated total reaction cross section using optical-model transmission coeffi-
cients is shown in fig. 6 (solid line). The dashed line corresponds to the sum of the
measured cross sections from the data of Porile ¢). The dot-and-dash curve gives the
experimental total reaction cross section corrected for the fraction due to the radio-
chemically inaccessible (o, 2p), (o, «') and («, a'p) reactions, as estimated in the
present calculation.

The dependence on the angular momentum J, of the competition for de-excitation
by gamma-ray emission versus particle emission is best illustrated in a plot of the ratio
of the emission function I' (U, J.)/I'(U, J.) or I' (U, J.)/T ,(U, J.). In this work the
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magnitude of I' (U, J,) is determined by the value of the.assumed parameter ¢, in
eq. (13). For electric dipole emission the value 2 x 107> erg™*sec ™! for ¢, reproduces
the measured cross section for the ®4Zn(a, y) reaction.. With .this value for ¢,, the
ratios of the gamma to neutron and to proton emission functions for °3Ge and ¢’ Ge
compound nuclei are given for two excitation energies in each case as a function of the
angular momentum of the compound state (see fig. 7). It is clearly seen that gamma
competition becomes important with increasing J, and the effect is very pronounced

100} -

o]

G(mb)

11 -

i ©,8) TARGET zn™

8 12 1. Ecm (MeV) 24 22 32

Fig. 8. Excitation functions of recactions induced by ‘He ions on ®Zn. The solid lines represent the
best empirical curves drawn through the data points of ref. ¢). The dashed curves represent the cal-
culated excitation functions normalized to the dot-and-dash curve of fig. 6.

for excitation energies not exceeding a few MeV above the threshold for the emission
of that particle. The sharp rise in the gamma-ray emission relative to that for particle
emission is clearly understood in terms of the plots given in fig. 4. The neutron emis-
sion function I' (U, J,) decreases sharply with increasing J, because emissions carry-
ing small values of orbital angular momentum are contributing, so that the rotational-
energy cut-off reduces I' (U, J,) considerably. The gamma-emission function, how-
ever, Is insentitive to changes in J, (fig. 4d).

In fig. 8 the solid lines represent the best curves drawn through the excitation func-
tion data of Porile ®) for the reactions («, p), (z, n), («, 7), («, pn) and (a, 2n) on **Zn.
The dashed curves represent the calculated cross sections normalized to the corrected



562 D. G. SARANTITES AND B. D. PATE

experimental total reaction cross section. Bars have been drawn on some of the cal-
culated points indicating deviations due to the random number choice and correspond
to the square root of the number of events leading to that particular reaction. It is
believed that this is overestimating the standard deviation, because repeated calcula-
tions with different random numbers have yielded statistical deviations significantly
smaller than those indicated by the bars.

The values of the particle-separation energies used are those of Konig er al. 3°)
with some slight changes by at most one standard deviation. No attempt has been
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Fig. 9. Excitation functions for the («, «'n) and («, 2pn) reactions in $Zn targets. The solid lines
represent the experimental data and the dashed curves the calculated cross sections. These have been
presented in a different plot for purposes of clarity.

made to find the optimum set of adjustments on the scparation energies that will pro-
vide the best agreement with the experimental excitation functions. The pairing terms
0 of Cameron *2) were used but 5. for Z = 32 had to be reduced by ~ 0.4 MeV in
order to obtain a reasonable fit with the excitation function data. Again no attempt
to find the best adjusted J-values was made. The level-density parameter a was evalu-
ated according to eq. (17) with r, = 1.22 fm, and rigid-body moments of inertia were
employed throughout. The fit to the data may be considered satisfactory. It is note-
worthy, however, that the high-energy tail for the («, p) has the correct slope while
that for the («, n) has a higher slope than the experimental curve. The importance of
the gamma-ray compctition against proton and ncutron cmission is reflected in the
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ratio of the cross section for the (o, p)/(«, pn) which rises with increasing c,. The ratio
of the cross sections for («, n)/(2, 2n), however, is not influenced in this particular case
by the assumed gamma-ray emission strength. This is so because in the product of
the (2, n) reaction ®’Ge, the probability of emitting a proton from states of a few
MeV above the second neutron threshold is about 10-20 times larger than that of
emitting a neutron.

The calculated cross sections for the («, 2pn) and («, a'n) reactions (dashed lines)
are shown in fig. 9 together with the experimental curves (solid lines). Finally, fig. 10
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Fig. 10. Calculated excitation functions for the radio-chemically non-measurable reactions
84Zn(a, 2p)*Zn, Zn(a, «')%*Zn and $4Zn(x, «'p)®Cu.

gives the calculated cross sections for the radiochemically, non-measurable reaction
products (o, 2p), («, ') and (o, 2'p) on ®*Zn. From the last figure it is seen that the
reaction («, 2p) is the main competitor of the («, pn) with comparable cross sections.

In conclusion it must be said that in this reaction system satisfactory agreement of
theory and experiment is obtained if angular momentum is properly included in the
formalism. It sheuld be noted that this agreement was obtained using the level-density
parameter ¢ and the moment of inertia as predicted by the Fermi gas model for exci-
tation energy of at ieast a few MeV.

A systematic study of the dependence of the calculated excitation functions on the
model parameters for another reaction system is presented in the following paper.
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Appendix

CAPTURE CROSS SECTIONS IN THE j-j COUPLING SCHEME

In the following, the notation used in eq. (2) will be used and the derivation will
be limited to particles of spin s, = 4. Particles of unit spin are treated in an analogous
fashion. First, I and s, are coupled to obtain j* = /+%. Then, the states |j*m)> are
coupled with the states |Jm; ) to obtain the states | J.M;_ ). In the language of partial
wave expansion of the ingoing particle, the cross section for this reaction can be
written as

ooy mjs Jo My) = 722 [(1+ )TV (e)
< [T gt mym T MO+ T (@)K, T mymy- |, I MO, (AL

where T/ (¢) arc the transmission coefficients for the /th partial wave of the incoming
particle with intrinsic spin parallel or anti-parallel to the orbital angular momentum
transferred into the system and {J,jm; m;|J, jJ.M; > the Clebsch-Gordan coefficient
connecting the corresponding angular momenta. Averaging over the initial states
m;,, m; and summing over the final states M;_ gives

o(Jejsd) = 7 [T )+ T ()]

(25, +1)(2J +1)
x Y > Y K jmmlJ, JI MO (A2)

Aljc mj m;,

Use of the properties of the Clebsch-Gordan coefficients in eq. (A.2) yields

G(J:aj;Jc)=ﬂ72 (2JC+1)

)4 D) [TV &)+ T (e))- (A.3)

Finally, summing over all the values of / that satisfy the triangular condition
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Ji—j = J. £ Ji+jforj = I+% and for j = /-1 yields

(24, +1)(2s,+1)
JetJetd . ) Jet+Ji—% Y
ST e YT el )
I=|Jo—Jt %] l=|Jc_Jt¢%l{§3;jc:§§

which is identical to eq. (3).
For particles of spin s, = 1 the corresponding equation is

Je+J—1
O'(Jt, Sy s JC) = 71'){2 __@.i_ll‘_ Z E"=Z+1(8)
(2J,+1)(2s,+1) 1=17.-FF 11 %0
Je+Je Jo+Ji+1 _
+ 2 T+ Y 777 (A5)
e 1= e=se {2
#0
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