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A B S T R A C T

We study misallocation and sectoral productivity in a heterogeneous firms model with generalized produc-
tion. Different from neo-classical models of production, our model endogenizes production-techniques and
introduces firm-specific technique-distortions alongside factor- and scale-dependent distortions. Applying this
micro-founded framework to firm-level data (US, China and India), we quantify that, for a broad range of
manufacturing industry clusters, technique distortions generate more severe misallocation and sectoral TFP
losses than capital and output distortions, accounting for about three quarters of the detrimental productivity
effects. We thus uncover a quantitatively important channel for productivity growth and economic development
resulting from within-firm organization of production.
“Why Are Total Factor Productivities Different? My candidate for
the factor is the strength of the resistance to the adoption of new
technologies and to the efficient use of currently operating tech-
nologies, and this resistance depends upon the policy arrangement
a society employs. What is needed is a theory of how arrangement
affects total factor productivity.” [Prescott (1998, p. 549)]

1. Introduction

There has been a growing interest in the macro-development lit-
erature over the past decade toward uncovering the sources and the
aggregate total factor productivity (TFP) consequences of misallocation
across firms.3 While making important contributions to the literature,
all of these studies are rooted on a standard neo-classical production
framework, where sources of inefficiency overall relate either to firms’
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factor input decisions (captured by capital or labor wedge) or to their
scale of production (measured by output wedge). In this paper, we pro-
pose a novel approach to studying the link between misallocation and
productivity. For this purpose, we construct a generalized production
framework, in which firms not only decide on production factors and
the scale of their output, but also on the techniques of production —
capturing important features of within-firm organizational practices.
This framework allows for the incorporation of a new source of firm-
specific distortion, namely, a technique-wedge to the organization of
optimal production, whose sectoral TFP consequences we quantify for
the US, China and India.

Studying firm-level organization of production techniques can be
traced back to Stigler (1939) who advocates organizational flexibil-
ity as a competitive advantage. As emphasized by Bresnahan et al.
(2002), “firms do not simply plug in computers or telecommunications
equipment and achieve service quality or efficiency gains. Instead
they go through a process of organizational redesign” (pp. 340–341).
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Thus, operational efficiency requires the ability to design (and re-
design) the production processes with interactive activities of various
production factors, which we are after to formalize and quantify in
this paper. To evaluate the role of production design as a source
of inefficiency, we incorporate technique-choice imperfections into a
multi-layer production framework. To do so, we adopt the general-
ized production framework pioneered by Houthakker (1955–1956) and
revived by Jones (2005).4 Specifically, firms in our model economy
iffer in technology frontiers, in factor and output distortions, and
mportantly also in technique-choice efficiency.

The concept of technique wedges is new, so we prefer to offer
general “accounting framework” inclusive of such new wedges re-

ardless of the underlying model structure. To an interested reader, a
icrofoundation is provided in the Appendix of the paper, in which we
erive firm-specific technique wedges based on limited information and
imits to learning by firm managers. In this respect, we find it valuable
o motivate this key feature of the model using the management science
iterature. In that literature it was noted for instance that “available
ools for considering cost/benefit tradeoffs for investments in flexible
utomation often contradict the intuition of their managers” (Fine
nd Freund, 1990, p. 449); also, “in complex systems, firms’ decision
akers may not always have a precise understanding of the exact

trength of the interaction between activities” (Siggelkow, 2002, p.
00).

To examine whether the proposed new source of inefficiency is
uantitatively important for explaining productivity gains, we utilize
irm-level balance sheet data for publicly traded firms from Compustat
orth-America and Global databases, in conjunction with industry-

evel production parameters, to separately back out manufacturing
irms’ capital, output and technique wedges. The use of Compustat
ata can be motivated based on several important points. Compustat
rovides detailed balance sheet information to identify each source of
irm-level inefficiency and to compare the quantitative implications of
ur framework with the quantitative findings by the recent research
n misallocation and sectoral productivity. Cross-country comparisons
lso become possible through the use of Compustat data. Finally,
echniques-choice and organizational design are likely to be more
elevant for larger scale establishments. Therefore, in order to under-
tand the development consequences of technique-choice distortions we
refer to conduct our quantitative analysis with publicly traded (larger)
irms — covered in Compustat.

Utilizing our structural framework first we measure firms’ phys-
cal and revenue productivities (TFPQ and TFPR, respectively). By
ggregating over a heterogeneous firms distribution, we then construct
ndustry-level TFP estimates. Because we measure TFP directly without
elying on a particular assumption on the joint distribution of TFPQ and
FPR, we also eliminate the associated measurement issues pointed out
y Bils et al. (2021).

Our quantitative experiments yield several important insights. First,
nd most importantly, for both the US as well as for two large develop-
ng countries, China and India, across a variety of manufacturing indus-
ry clusters technique wedges and output distortions account for almost
ll the efficiency losses at the level of industry TFPs, with an impact of
echnique wedges in generating efficiency losses in the aggregate that
s generally larger than that of output distortions. By counterfactual-
ased decomposition analysis, technique wedges are found to account
or about three quarters of all the detrimental effects of all distortions
nder considerations on TFP, whereas output wedges account for about
quarter of such TFP losses. On the contrary, capital distortions are

egligible for industry-level TFPs throughout — matching the findings
f past research using publicly-traded firm data (from Compustat).

4 A primary focus of this line of research, very different from ours, has
een on qualifying the shape of the aggregate production function based on
he distribution of production techniques or on the adoption or assimilation
f a global frontier technology by local firms.
2

m

Second, the inefficiency impact of technique wedges get mitigated
by the industry-wide flexibility of production, i.e. sectoral TFP gains
from removing technique wedges are substantially smaller in industries
where factors are highly substitutable. Our counterfactual-based de-
composition analysis indicates that, across the board, technique wedges
account for about three quarters of TFP losses from all three sources of
distortions that we analyze. Third, the key quantitative findings – that
technique wedges are significantly more important than capital finance
distortions and largely more important than output distortions for in-
dustry TFPs – are robust to the measurement of firm-level productivity,
parameter specifications, trimming outliers and the mis-measurement
of capital-stock and cost of capital variables.

The technique wedge is responsible for the lion’s share of misallo-
cation, so industrial or sector-biased development policy ignoring this
important wedge may lead to industrial production inefficiencies and
sectoral misallocation, thus hindering economic development. There-
fore, our results echo the Lawrence Klein Lecture delivered by Prescott
(1998): TFP differences depend crucially on the strength of the resistance
to the efficient use of currently operating technologies. The underlying
policy arrangement causing such resistance is captured in our frame-
work by the technique wedges, which are shown to be essential for the
aggregate industry productivity and argue for development policies to
improve within-firm organization of production practices.

Related Literature: The paper is related to two strands of literature.
ne strand is on understanding the sources of misallocation and its con-

equences for aggregate productivity and macroeconomic development.
nother strand is on the introduction of factor-specific production

echniques to qualify the shape of the aggregate production function
nd to investigate the adoption or assimilation of a global frontier
echnology by local firms. We delineate our contribution to both strands
f research as follows with a discussion on positioning our paper in the
iterature.

The first strand of literature goes back to Banerjee and Duflo (2005)
ho identify the large dispersion in the marginal product of capital
mong firms in India as an important source for underperformance in
acroeconomic output. Restuccia and Rogerson (2008) show that when

actor and output distortions hit physically productive firms, this has
uantitatively important consequences for the total factor productivity
f the macroeconomy. Hsieh and Klenow (2009) find that when the
ispersion in production distortions are alleviated in India and China
o the extent of the US, the TFP gap between the US economy and these
wo countries could shrink up to 40%. Jones (2013) further elaborates
hat misallocation at the micro level leads to lower TFP at the macro
evel, thereby helping explain cross-country TFP gaps.5

Similar to this strand of literature, our paper also fits in an envi-
onment of resource misallocation, where firms face factor and output
istortions particularly in line with Hsieh and Klenow (2009). Yet,
e go beyond by incorporating a structure to study distortions to
roduction techniques as well and quantify the substantial impact of
echnique wedges on industrial TFPs. Moreover, in our framework, we
eneralize the Cobb–Douglas production function commonly used in
he literature by allowing different non-unity elasticities of substitution
or firms in different industries. Importantly, we also confirm the
indings of Gilchrist et al. (2013) by showing that for publicly traded

5 There is a related macro-development literature on the sources of mis-
llocation. For example, Banerjee and Moll (2010), Midrigan and Xu (2013),
uera and Shin (2013) and Moll (2014) construct dynamic general equilibrium
odels of misallocation with capital market imperfections, whereas Jovanovic

2014) studies misallocation using an assignment framework with heteroge-
eous firms and workers. Using a measured TFP approach and secondary bond
rice data for publicly traded firms from the US, Gilchrist et al. (2013) provide
vidence for that removing the dispersion in borrowing costs observed in the
ond-price data for US manufacturing firms would improve the TFP of the

anufacturing industry only by 1–2 percentage points.
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firms removing capital distortions would have negligible effects for
industry-level TFPs.

The second strand of literature owes to the seminal work by
Houthakker (1955–1956), where firms produce using different Leontief
technologies (local production) with production techniques following a
Pareto distribution. The aggregate (global) production across produc-
tion units then exhibits the Cobb–Douglas form. Kortum (1997) shows
that if researchers sample production techniques from Pareto distribu-
tions, then productivity growth is proportional to the growth of the
research stock and accounts for the empirical regularities concerning
productivity growth and researcher employment observed over the past
50 years. Jones (2005) generalizes Houthakker’s result and shows that
as long as the techniques arrive to firms following a Pareto distribution,
firms’ global production would be Cobb–Douglas.6 ,7

As in this second strand of literature, we also explore an alterna-
tive production framework incorporating the concept of production
techniques at the firm level. However, we differ by modeling tech-
niques choice under a generalized CES framework with a distribution of
firms heterogeneous in their technology frontiers as well as in capital,
output and technique wedges. Thus, we are able to highlight the
role of inefficient technique decision making for sectoral productivity
and differentiate the implications of technique wedges from those of
conventional sources of factor and output distortions.

2. A generalized production function with techniques choice

The benchmark economy features a representative firm, manufac-
turing a product with two factor inputs, capital and labor. Different
from the neoclassical production framework, we augment raw measures
of factor inputs with a combination of production techniques that
serves to organize the factor inputs in an effective manner in order
to enhance the performance of the production process. Importantly,
the production-techniques combination is a firm-level control variable,
which is to be chosen from a firm-specific technology menu. For the
time being, we assume that there are no distortions associated with
production factor inputs or the choice of production techniques. Also, in
this section we focus solely on firm’s production structure — by leaving
the details to the end of demand structure and production distortions
to Section 3.

2.1. The basic environment

Let us denote capital with 𝐾 and labor with 𝐿. The combination
of production techniques is captured by a pair

(

𝑎𝐾 , 𝑎𝐿
)

which augment
the two factor inputs (𝐾,𝐿) to govern their usage and coordinate
their match. The concept of production techniques is in line with the
literature on the property of the firm and the aggregate production
function developed by Houthakker (1955–1956) and Jones (2005). It
also captures factor-augmenting technology improvement modeled by
Caselli (1999), Acemoglu (2003), and Caselli and Coleman (2006).
In this respect, one may also rename 𝑎𝐾 and 𝑎𝐿, respectively, as
capital-augmenting and labor-augmenting techniques.

Our framework follows the above mentioned Houthakker–Jones lit-
erature – on the shape of aggregate production function – by assuming
that the availability of techniques is subject to a technology constraint

𝐻(𝑎𝐾 , 𝑎𝐿) = 𝑧, (1)

6 Along this line, Wang et al. (2018) develop a technology assimilation
ramework using the global technology approach and show that the lack of
ssimilation of the frontier technology can be instrumental for differentiating
etween trapped and growth miracle economies.

7 Also related to our paper, but to a lesser degree, is the framework
f Caselli (1999), Acemoglu (2003). In Caselli (1999), firms decide both
n production factors and techniques, whereas in Acemoglu (2003) firms
3

ndertake both labor- and capital-augmenting technological improvements.
𝑎𝐾 ≥ 𝑎𝐾 > 0, (2)

𝑎𝐿 ≥ 𝑎𝐿 > 0, (3)

where 𝑧 is the firm-specific technology frontier. The firm is said to be more
efficient in the process of production if it has a higher level of 𝑧. To-
gether with the chosen techniques combination, the technology-frontier
specifies firm’s physical total factor productivity.8 The parameters 𝑎𝐾
and 𝑎𝐿 are industry-specific limit production-techniques, which allow
the unit cost-function to be well-behaved at the boundaries.

Throughout the paper, we will assume that 𝐻(𝑎𝐾 , 𝑎𝐿) = 𝑎𝛼𝐾𝑎
1−𝛼
𝐿 .

his technology constraint specifies the full menu of production tech-
iques — describing the extent of trade-off across different combina-
ions of (𝑎𝐾 , 𝑎𝐿) under a given technology frontier 𝑧. The trade-off
ssociated with techniques is qualitatively similar to the concept of
so-quant, which can be referred as the iso-tech.

We then depart from Houthakker–Jones where a Cobb–Douglas
global” production function can be derived as an envelope of the Leon-
ief “local” production function with techniques drawn from an inde-
endent Pareto distribution. We instead assume that the representative
irm’s production function takes the Constant Elasticity Substitution
CES) form:

= [𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌]
1
𝜌 .

The parameter 𝜌 ∈ (−∞, 1] is industry-specific and it captures the flex-
ibility of the production technology in allowing the firm to substitute
between the technique-augmented factor inputs, 𝑎𝐾𝐾 and 𝑎𝐿𝐿, with
1∕(1−𝜌) measuring the elasticity of substitution between effective units
of capital and labor inputs. The parameter 𝜆 is thus the effective capital
share of production.

2.2. Firm’s optimization

The representative firm optimizes by choosing a combination of
production techniques and production factors. In this respect, the pro-
duction is a two-staged process: (i) in Step 1, the firm chooses a suitable
combination of production techniques from the technology menu to
ensure the full efficiency of the production process; and (ii) in Step
2, the firm decides on the quantities of capital and labor to achieve a
given level of output. While Step 2 is the standard optimization under
the neoclassical production framework, Step 1 is the techniques choice
problem. We solve for the optimal techniques-combination and optimal
factor demands backward: at first we solve for the optimal 𝐾 and 𝐿 of
the firm by taking factor prices and production techniques

(

𝑎𝐾 , 𝑎𝐿
)

as
given; we then determine the optimal (𝑎𝐾 , 𝑎𝐿) combination.

Specifically, the firm in Step 2 solves the following cost minimiza-
tion problem

min
𝐾,𝐿

𝑟𝐾 +𝑤𝐿 (4)

𝑠.𝑡. [𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌]
1
𝜌 = 𝑌 .

The solution to the neoclassical cost minimization yields a unit cost
function conditional on a particular pair of production techniques,
𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤).

In Step 1, the firm pins down techniques choice to achieve the
owest unit cost of production under a given techniques menu

min
𝐾 ,𝑎𝐿

𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤) (5)

𝑠.𝑡. 𝐻(𝑎𝐾 , 𝑎𝐿) = 𝑧.

or the rest of the paper we will refer to Step 1 program as techniques
hoice and Step 2 program as neoclassical cost minimization.

8 With (𝑎𝐾 , 𝑎𝐿) and the associated knowledge level 𝑧, there is no need to
add another scaling parameter to the production function.
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2.2.1. Neoclassical cost minimization
We start by solving the neoclassical cost-minimization problem.

Throughout the paper, we shall relegate all detailed mathematical
derivations and proofs to the Appendix. The first-order conditions from
the neoclassical cost minimization yields

𝐾
𝐿

=
(𝑤
𝑟

)
1

1−𝜌
( 𝜆
1 − 𝜆

)

1
1−𝜌

(

𝑎𝐾
𝑎𝐿

)
𝜌

1−𝜌
. (6)

hus, the capital-labor ratio is inversely related to the factor price
atio, which is standard. How the capital-labor ratio responds to the
echniques ratio depends crucially on the industry-level production
lexibility. When the two technique-augmented factor inputs are Pareto
omplements (𝜌 < 0), the capital-labor ratio is negatively related to the
echniques ratio. This is quite intuitive: under Pareto complementarity,
t is profitable to balance between the two technique-augmented factor
nputs. In this case, if the organization of factor inputs is biased towards
ne particular factor, then it is expected that the firm would employ
ore of another factor to ensure balanced factor usage. When the two

echnique-augmented factor inputs are Pareto substitutes (0 < 𝜌 < 1 ),
he opposite is true: the firm employs more of the input associated with
better technique.

The unit cost function resulting from the neoclassical cost minimiza-
ion is a function of production techniques

(

𝑎𝐾 , 𝑎𝐿
)

:

𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤) =

[

(

𝑟
𝑎𝐾

)
𝜌

𝜌−1
𝜆

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
𝜌

𝜌−1
(1 − 𝜆)

1
1−𝜌

]

𝜌−1
𝜌

. (7)

This equation indicates that the unit cost of production is a CES
aggregator of the technique-deflated factor costs. The endogenous ad-
justments in production techniques are the key to differentiate this unit
cost function from the standard neoclassical one, to which we shall
turn.

2.2.2. Techniques choice
When solving for the optimal techniques combination we need to

keep in mind that both interior and corner solutions are possible. We
define an interior solution as follows.

Definition 1 (Interior Techniques Choice). Denoting the optimal tech-
niques combination that minimizes the unit cost of production with
(𝑎∗𝐾 , 𝑎

∗
𝐿), (𝑎

∗
𝐾 , 𝑎

∗
𝐿) is an interior solution to the techniques choice prob-

em if and only if 𝑎∗𝐾 ≠ 𝑎𝐾 and 𝑎∗𝐿 ≠ 𝑎𝐿.

At first we characterize the interior solution to techniques choice
rogram. After deriving the unit cost of production we will also char-
cterize the parameter constellations of the model that induce the
nterior solution to be optimal. The interior solution to techniques
hoice problem gives

𝑎∗𝐾
𝑎∗𝐿

= 𝑟
𝑤

( 1 − 𝜆
𝜆

)

1
𝜌
( 1 − 𝛼

𝛼

)

𝜌−1
𝜌 , (8)

hich depends positively on the factor price ratio. Intuitively, when
factor input becomes pricier (e.g. an increase in cost of capital),

t becomes profitable to devote more effort toward enhancing the
echnique associated with that particular factor in order to minimize
he neoclassical unit cost.

Plugging (8) in (6) solves for the capital-labor ratio of
𝐾
𝐿

= 𝑤
𝑟

𝛼
1 − 𝛼

. (9)

hile the optimized capital-labor ratio induced by the interior
echniques-combination continues to be inversely related to the factor
rice ratio, the factor cost share 𝑟𝐾

𝑤𝐿 turns out to be a constant.
urthermore, the 𝐾∕𝐿 ratio depends only on the relative shares in the
echnology menu, 𝛼

1−𝛼 , and not on the relative share of efficient units
of capital and labor in the production function, 𝜆 .
4

1−𝜆
In order to determine the levels of production techniques dictated
by the interior solution, we combine (8) with (1) to derive:

𝑎∗𝐾 = 𝑧
(𝑤
𝑟

)−(1−𝛼) ( 𝛼
1 − 𝛼

)(1−𝛼)
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)(1−𝛼)
(

1
𝜌

)

> 𝑎𝐾 , (10)

𝑎∗𝐿 = 𝑧
(𝑤
𝑟

)𝛼 ( 𝛼
1 − 𝛼

)−𝛼
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)−𝛼
(

1
𝜌

)

> 𝑎𝐿. (11)

Intuitively, both techniques are linear in the level of technology-
frontier. Moreover, they depend on the factor price ratio rather than the
individual factor prices: a higher wage-rental ratio induces techniques
combination to be more biased towards labor. Importantly, industry-
level production flexibility affects the choice of techniques through the
share of factor incomes and the share of techniques in the technology
menu. Next we turn to analyzing the properties of the unit cost of
production and derive the parameter conditions of the model that
promote the interior (𝑎∗𝐾 , 𝑎

∗
𝐿)-solution to be optimal.

2.3. Unit cost of production

By combining the optimal techniques choice with the neoclassical
cost expression that we derived at (7), we can solve for the unit cost of
production implied by our framework:

𝑐(𝑤, 𝑟) = 1
𝑧

(

(𝛼
𝜆

)
1
𝜌 𝑟
𝛼

)𝛼 (
( 1 − 𝛼
1 − 𝜆

)

1
𝜌 𝑤
1 − 𝛼

)1−𝛼

. (12)

This final form of unit cost allows us to obtain the following important
result.

Proposition 2.1 (Optimality of the Interior Techniques Choice). For 𝜌 ∈
(−∞, 0), the interior-solution for the techniques-choice, (𝑎∗𝐾 , 𝑎

∗
𝐿), minimizes

the unit cost of production. For the case of 𝜌 ∈ (0, 1], the optimal
techniques-choice is a corner.

Proof . All proofs are relegated to the Appendix.

Fig. 1 in Appendix C illustrates the interior solution as an optimal
choice of production techniques. As we will delineate in Section 6, for
all manufacturing industries that we focus on in this study, empirical
estimates from the literature show that the condition 𝜌 < 0 holds.

herefore, in the remainder of the theoretical as well as quantitative
nalysis we solely concentrate on the case of 𝜌 < 0 when deriving and
valuating the properties of our framework.

Having derived the parameter condition that supports the interior
olution to be optimal, we move on and analyze further properties of
he unit cost of production, that we derived at (12). We first note a
tandard property of the unit cost function: A rise in technology frontier
higher 𝑧) reduces the unit cost of production.

Interestingly, while the conditional unit cost function (that we
erived at (7)) is a CES aggregator of factor prices, the final form of
he unit cost function, after taking into account the optimal techniques
hoice, becomes a Cobb–Douglas aggregator of factor prices weighted
y technique usage rather than factor income shares. Moreover, this
obb–Douglas aggregator depends on the ratios of technique usage
o factor income shares, 𝛼

𝜆 and 1−𝛼
1−𝜆 , and industry-wide production

flexibility 𝜌.
Finally, we turn to studying the implications of (industry-level)

production flexibility for the unit cost of production. To begin, using
(12) we establish the following limit properties. In the limit case of
perfect complementarity, when 𝜌 → −∞ the unit cost converges to

𝑐(𝑤, 𝑟) = 1
𝑧

( 𝑟
𝛼

)𝛼 ( 𝑤
1 − 𝛼

)1−𝛼
,

whereas, with perfect substitutes, when 𝜌 → 1 the unit cost converges
to

𝑐(𝑤, 𝑟) = 1 ( 𝑟 )𝛼 ( 𝑤 )1−𝛼
.

𝑧 𝜆 1 − 𝜆
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Thus, while the factor prices are always weighted by technique usage
shares, how much they affect the unit cost depends crucially on produc-
tion flexibility. When industry flexibility is shut down (𝜌 → −∞), or in
ther words efficient factors are perfect complements, the production
echnology (the CES aggregator) precludes technique-augmented factor
nputs from substituting each other. As a result, factor prices are
eflated only by their technique usage shares. With a greater technique
sage share, a factor price would not raise the unit cost of production
s much. When flexibility is perfect, on the contrary, factor prices
re deflated only by their income shares. In this case, an increase in
he price of a factor with a greater income share would become less
amaging to the unit cost of production.

With the extreme cases addressed, in the next proposition we
resent what happens with intermediate levels of flexibility.

roposition 2.2 (Production Flexibility and Unit Cost). Industry’s produc-
ion flexibility (𝜌) monotonically reduces the unit cost of production for any
iven pair of factor prices.

Proposition 3.2 indicates a positive effect of industry-level produc-
ion flexibility on firm performance. This result echoes an extensive
ist of findings highlighted in the management science literature, such
s Roller and Tombak (1993), Gerwin (1993) and Adler et al. (1999),
ll of whom argue that overall production flexibility is an important
eterminant of efficiency.

. Capital, output and technique distortionary wedges

Distortions to firms’ factor inputs and output and their aggregate
mplications for misallocation have been extensively analyzed in the
iterature. In this section we introduce a novel form of distortion
merging from firms’ technique decisions and formalize a foundation to
onduct aggregation exercises jointly with factor and output distortions
nd technique wedges. For this purpose, we extend the specification
f Section 2 to incorporate a demand structure to the benchmark
odel and importantly to also allow for distortions in firms’ production
ecision margins.

Each firm takes its specific productivity term, 𝑧, and solves the fol-
owing optimization program subject to capital, output and technique
istortions — denoted with 𝜂𝐾 , 𝜂𝑦 and 𝜙 and to be delineated below:

tep 1 min
𝑎𝐾 ,𝑎𝐿

𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤, 𝜂𝐾 , 𝜂𝑌 )

=

[

(

𝑟
𝑎𝐾

)
𝜌

𝜌−1
𝜆

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
𝜌

𝜌−1
(1 − 𝜆)

1
1−𝜌

]

𝜌−1
𝜌

(13)

𝑠.𝑡. 𝑎𝛼𝐾𝑎
1−𝛼
𝐿 = 𝑧,

𝑎𝐾 ≥ 𝑎𝐾 > 0,

𝑎𝐿 ≥ 𝑎𝐿 > 0,
𝑎𝐾
𝑎𝐿

= (1 + 𝜙)
𝑎∗𝐾
𝑎∗𝐿

,

𝑎∗𝐾 = arg min𝑎𝐾 𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤, 𝜂𝐾 , 𝜂𝑌 ),

𝑎∗𝐿 = arg min𝑎𝐿 𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤, 𝜂𝐾 , 𝜂𝑌 )

Step 2 min
𝐾,𝐿

𝑟(1 + 𝜂𝐾 )𝐾 +𝑤𝐿 (14)

𝑠.𝑡. 𝑌 = [𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌]
1
𝜌 ,

Step 3 max
𝑝

(1 − 𝜂𝑌 )𝑝𝑌 𝑑 (𝑝) − 𝑐(𝑟, 𝑤;𝜙, 𝜂𝐾 )𝑌 𝑑 (𝑝) (15)

𝑠.𝑡. 𝑌 𝑑 (𝑝) =
( 𝑝
𝑃

)−𝜎
𝑌𝐽 .

tep 1 captures firm-level techniques choice with distortions: It simply
mplies that the firm’s techniques-choice ratio, 𝑎𝐾∕𝑎𝐿, deviates from its

(first-best) efficient benchmark by a wedge 𝜙. Step 2 is the factor choice
with distortions, where we introduce the firm-specific factor distortion,
5

𝜂𝐾 , without loss of generality from the side of capital. Step 3 captures p
the choice for the output price, 𝑝, by taking the demand structure,
aggregate industry price-level (𝑃 ), industry-level output (𝑌𝐽 ) and the
output distortion, 𝜂𝑌 . Throughout the theoretical analysis we maintain
the following structural assumption.

Assumption 1. 𝜌 ∈ (−∞, 0).

3.1. Demand and output distortion

We again solve recursively by starting from the output pricing
decision. We assume that firms are monopolistic competitors a la Dixit–
Stiglitz with a demand structure as specified at (15). Given the output
distortion 𝜂𝑌 and the demand specification, the unit price of output is
expressed as

𝑝 = 𝜎
𝜎 − 1

𝑐(𝑤, 𝑟; 𝜂𝐾 , 𝜙)
1 − 𝜂𝑌

, (16)

ith a prevailing firm-level profit of

=
( 𝜎
𝜎 − 1

)𝜎
(𝜎 − 1)−1𝑐(𝑟, 𝑤; 𝜂𝐾 , 𝜙)1−𝜎 [(1 − 𝜂𝑌 )𝑃 ]𝜎𝑌𝐽 . (17)

.2. Factor choice and capital distortions

The capital cost friction can prevail from capital market imperfec-
ions as well as capital taxes, as widely discussed in the misallocation
iterature and conveniently expressed as 𝑟(1 + 𝜂𝐾 ), where 𝜂𝐾 can take
ositive as well as negative values. Positive values of 𝜂𝐾 imply the “tax-
tion of capital”, whereas negative values of 𝜂𝐾 mean “subsidization”
in a broader sense). In our quantitative analysis using firm-level data
e will back out the distribution of “taxes” and “subsidies” across firms.

Taking firm-specific capital distortion into account, neoclassical cost
inimization yields

𝐾
𝐿

=
(

𝑤
𝑟(1 + 𝜂𝐾 )

)
1

1−𝜌 ( 𝜆
1 − 𝜆

)

1
1−𝜌

(

𝑎𝐾
𝑎𝐿

)
𝜌

1−𝜌
, (18)

and the conditional unit cost of production becomes

𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤) =

[

(

𝑟(1 + 𝜂𝐾 )
𝑎𝐾

)
𝜌

𝜌−1
𝜆

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
𝜌

𝜌−1
(1 − 𝜆)

1
1−𝜌

]

𝜌−1
𝜌

.

(19)

pplying comparative statics at (19) shows that for a given pair of
echniques (𝑎𝐾 , 𝑎𝐿), the unit cost of production rises as the capital
istortion (𝜂𝐾 ) increases. Not surprisingly, capital distortions result in
higher capital user cost, which in turn increases the unit cost of

roduction.

.3. Techniques choice with distortions

Techniques choice is subject to distortions, which prevent the firm
o operate at its efficient techniques combination. The technique wedge

described in step-1 of the optimization program implies that the
perational capital-technique will turn out to be �̂�𝐾 = 𝑎∗𝐾 (1+𝜙)

1−𝛼 , with
∈ (−1, �̄�] and �̄� > 0, instead of 𝑎∗𝐾 .9 Despite the fact that techniques

ombination of the firm gets distorted from an optimal benchmark,
he firm will continue to operate on the same technology frontier,
etermined by 𝑧, as we depict in Figs. 2 and 3 in Appendix C.

In our framework, the notion of imperfect technique choice is
roadly defined in order to capture a spectrum of different sources of
istortions to techniques decision-making at the firm-level. As we delin-
ate in Appendix A, imperfect technique-choice can be microfounded

9 The upper bound �̄� is needed when proving Proposition 4.1(iii-b)
articularly for the case of 𝜌 < 0 and 𝜙 > 0.
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using a learning model.10 For instance, when establishing the blue-print
f a firm, the manager might need to work with limited information
bout how factors of production will interact with each other when the
oundation of the unique business-plan is in place. This can generate
mple room for ‘‘costly learning’’ associated with techniques decision-
aking and distort technique-outcomes from an optimal benchmark as
iscussed by Siggelkow (2002) in a related context. Costly learning can
esult in deviation from the optimal 𝑎𝐾∕𝑎𝐿 ratio.

The structural assumptions that govern the technique-wedge yield
hen an effective (�̂�𝐾 , �̂�𝐿) combination for the firm denoted as

�̂�𝐾 = (1 + 𝜙)1−𝛼𝑎∗𝐾 , (20)

�̂�𝐿 = (1 + 𝜙)−𝛼𝑎∗𝐿, (21)

here

∗
𝐾 = 𝑧

(

𝑤
𝑟(1 + 𝜂𝐾 )

)−(1−𝛼)
( 𝛼
1 − 𝛼

)(1−𝛼)
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)(1−𝛼)
(

1
𝜌

)

,

𝑎∗𝐿 = 𝑧
(

𝑤
𝑟(1 + 𝜂𝐾 )

)𝛼
( 𝛼
1 − 𝛼

)−𝛼
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)−𝛼
(

1
𝜌

)

,

and hence

�̂�𝐾
�̂�𝐿

=
𝑟(1 + 𝜂𝐾 )

𝑤

(1 − 𝜆
𝜆

)

1
𝜌
( 1 − 𝛼

𝛼

)

𝜌−1
𝜌 (1 + 𝜙). (22)

Firm’s operational techniques-ratio reveals that lowering 𝜂𝐾 and 𝜙
induce techniques combination to be biased toward labor-augmenting
regardless of the elasticity of substitution between technique-augmented
factor inputs. Plugging the distorted techniques-combination (�̂�𝐾 , �̂�𝐿) in
(18) provides

𝐾
𝐿

= 𝑤
𝑟

𝛼
1 − 𝛼

(1 + 𝜙)
𝜌

1−𝜌

1 + 𝜂𝐾
, (23)

with

𝐾 = 𝑐(𝑟, 𝑤;𝜙, 𝜂𝐾 )
1

1−𝜌
[

𝑟(1 + 𝜂𝐾 )
]− 1

𝜌 𝜆
1

1−𝜌 �̂�
𝜌

1−𝜌
𝐾 𝑌 𝑑 (𝑝), (24)

𝐿 = 𝑐(𝑟, 𝑤;𝜙, 𝜂𝐾 )
1

1−𝜌 𝑤
−1
1−𝜌 (1 − 𝜆)

1
1−𝜌 �̂�

𝜌
1−𝜌
𝐿 𝑌 𝑑 (𝑝). (25)

he expression we obtained for the 𝐾∕𝐿 ratio at (23) implies that for
< 0 and 𝜙 > 0, an increase in 𝜙 lowers the 𝐾∕𝐿 ratio of the firm, as

uch the wedge distorts the decision on capital-techniques.

.4. Unit cost with distortions

The unit cost of production with both capital distortion and tech-
ique wedge is expressed as follows

(𝑟, 𝑤;𝜙, 𝜂𝐾 ) =
(1+𝜙)𝛼

𝑧

[

(𝛼
𝜆

)
1
𝜌 𝑟(1+𝜂𝐾 )

𝛼

]𝛼 [
( 1-𝛼
1-𝜆

)

1
𝜌 𝑤
1-𝛼

]1−𝛼

×
[

1 + 𝛼
(

(1+𝜙)
𝜌

1−𝜌 − 1
)]

𝜌−1
𝜌 , (26)

whose full derivation can be found in Appendix B. An increase in
capital distortion (𝜂𝐾 ) raises the unit cost of production. Evaluating
the effect of 𝜙 on the unit cost function shows that at 𝜙∗ = 0 the unit
cost of production reaches a global minimum, which is true as long
as Assumption 1 holds. Hence both positive and negative distortionary
deviations from optimal techniques are undesirable. The intuition for
technique-distortions to raise unit cost is that an inefficient combina-
tion of techniques induces the firm to operate along a higher iso-cost
curve as we illustrate in Fig. 3 in Appendix C.

10 In the micro-founded framework, firm managers have limited ability in
roduction process design as argued by Bresnahan et al. (2002) or costly
earning from the set of available techniques as elaborated by Fine and Freund
1990) and Siggelkow (2002).
6

Industry-level production flexibility gives rise to the extent to choose
efficient factors flexibly. The next question to be addressed becomes
then whether the distortionary effects of the capital and technique
frictions on the unit cost of production are influenced by the industry-
level production flexibility, 𝜌. We also inquire whether capital and
technique distortionary wedges reinforce each other when determining
the unit cost of production. We are basically interested in signing 𝜕2𝑐

𝜕𝜙𝜕𝜌

nd 𝜕2𝑐
𝜕𝜙𝜕𝜂𝐾

. The following proposition provides the key properties of the
unit cost of production to this end — with details of the comparative
statics to be found in Appendix B.

Proposition 3.1 (Production Flexibility, Distortions and Unit Cost of
Production).

(i) Increasing the capital cost distortion or deviating with the technique
wedge from 𝜙∗ = 0 raises the unit cost of production.

(ii) (Industry-wide) production flexibility does not mitigate the detrimental
effects of capital distortions on the unit cost of production.

(iii) a. if 1
𝛼

𝜌
𝜌−1 > 1, (industry-wide) production flexibility mitigates

the distortionary effects of |𝜙| on unit cost;
b. if 1

𝛼
𝜌

𝜌−1 < 1, (industry-wide) production flexibility mitigates
the distortionary effects of |𝜙| on unit cost if

1 + 𝜙 < �̄� ≡ 1
(

1 − 1
𝛼

𝜌
𝜌−1

)
𝜌−1
𝜌

. (27)

(iv) The detrimental effects of capital and technique distortionary wedges
on the unit cost of production reinforce each other.

We would like to note that the quantitative properties of the frame-
work that we analyze in Section 6 will satisfy the sufficient condi-
tion (27) — promoting industry-level production flexibility as a mit-
igating factor of technique wedges. The intuition for this property is
the following: when 𝜌 is low, then the technique-augmented factors
turn out to be complements and dismissing this strong interaction
between factors (and sub-optimally biasing one factor) becomes costly.
When 𝜌 is high, the technique-augmented factors are substitutes and
do not exhibit a strong interaction with each other, under which case
dismissing this weak interaction (and biasing one factor) does not cause
large efficiency losses. This result and the underlying intuition echoes
Siggelkow (2002), who argues that in organizational decision making
process of a business, imperfect interactions between complements
would be much more distortionary for the performance of the business
than misperceiving the interactions between substitutes.

4. Suggestive evidence for the theoretical structure

Is there an empirically testable prediction that one can derive based
on the structure of our model to confront the model with data? In order
to address this question we make the following observations regarding
the structural implications of 𝜂𝐾 , 𝜂𝑌 and 𝜙 distortions. First, we observe
that

𝐾
𝐿

= 𝑤
𝑟

𝛼
1 − 𝛼

⋅
(1 + 𝜙)

𝜌
1−𝜌

1 + 𝜂𝐾
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≡ 1
1+𝜏𝐾

, (28)

hich means that capital-labor ratio is a function of an endogenous
structural) wedge, denoted with 𝜏𝐾 , which in turn is a function of 𝜂𝐾

and 𝜙. Second, defining 𝛴(𝜙) ≡
[

1 + 𝛼
(

(1 + 𝜙)
𝜌

1−𝜌 − 1
)]

𝜌−1
𝜌 , the ratio

between the total cost of labor and the total revenues of a firm can be
expressed as

𝑤𝐿 =
𝑐(𝑟, 𝑤;𝜙, 𝜂𝐾 )

1
1−𝜌 𝑤

−1
1−𝜌 𝑤(1 − 𝜆)

1
1−𝜌 (�̂�𝐿)

𝜌
1−𝜌 𝑌

𝜎
𝑝𝑌
𝜎−1 𝑐(𝑟, 𝑤;𝜙, 𝜂𝐾 )𝑌
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(𝜎 − 1

𝜎

)

(1 − 𝛼) ⋅
(

1
𝛴(𝜙)

)
𝜌

𝜌−1
(1 − 𝜂𝑌 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1−𝜏𝑌

. (29)

ence, the ratio between the total cost of labor and revenues yields
nother structural wedge as a function of 𝜂𝑌 and 𝜙, which we denote
ith 𝜏𝑌 . Applying comparative statics at 𝜏𝐾 and 𝜏𝑌 – as defined in
qs. (28) and (29) – shows that
𝜕𝜏𝐾
𝜕𝜙

> 0,
𝜕𝜏𝑌
𝜕𝜙

< 0.

his means 𝜏𝐾 and 𝜏𝑌 would be negatively correlated among a cross-
section of firms, if firms choose production techniques – imperfectly
– and in this process they face heterogeneous distortions to optimal
production techniques. This is a testable prediction of our model.

In order to confront this key prediction of the model with data, we
conduct an empirical analysis using Compustat North America — the
database, which we will also utilize in benchmark quantitative analysis
in Section 6. In our empirical analysis we focus on the manufacturing
industry clusters that we list in Table 1. We back out 𝜏𝐾 and 𝜏𝑌 using
firm-level values on capital, total labor expenditures and revenues,
and aggregate estimates on 𝛼 and 𝜎. We estimate 𝛼 at the level of
each industry using US NBER Productivity Database and present the
estimates of 𝛼 in Table 2. We set 𝜎 = 3 as in Hsieh and Klenow (2009).

hen, using estimates of 𝛼 and 𝜎 = 3 in (28) and (29) we recover 𝜏𝐾
and 𝜏𝑌 , whose distributional properties we present in Tables 3a and 3b.

We estimate the following regression model

𝜏𝑌 ,𝑖𝑡 = 𝛽0 + 𝛽1𝜏𝐾,𝑖𝑡 + 𝛾𝑿𝒊𝒕 + 𝜇𝑗 + 𝜃𝑡, (30)

where 𝑿𝒊𝒕 is a vector of firm-level control variables (containing R&D
expenditures, Total Assets, Intangible Assets, Earnings Retention, Long-
term Debt and Profits — all scaled by the number of employees) and
𝜇𝑗 and 𝜃𝑡 are, respectively, 4-digit-industry- and time-fixed effects. The
time-span of our analysis is 1995–2014. Firm-level control variables
and industry- and time-fixed effects are included to capture other
factors and unobserved heterogeneities that are not addressed in our
framework. In the regression analysis we drop outliers that satisfy 𝜏𝑌 >
1 and 𝜏𝐾 > 50.

We present estimation results for the regression specification (30)
n Table 4 in addition to coefficient estimate from a regression where
e include only industry- and time-fixed effects on the right-hand-side

without any firm-level controls). Results from both regressions show
hat the correlation between 𝜏𝐾 and 𝜏𝑌 is negative and it is statistically
ignificant at 1% level — providing an indirect suggestive empirical
asis for the validity of our theoretical structure.

. Identification, firm-level productivity and aggregation

In this section we present the identification of firm-specific distor-
ions (𝜂𝐾 , 𝜂𝑌 , 𝜙) and the technology-frontier (𝑧) using firm-level data
nd the measurement of firm-level physical and revenue productivities
TFPQ and TFPR), aggregating which we will then also develop an
ndustry-level measure of total factor productivity (TFP).

.1. Identification

The steps that allow the identification of firm-specific distortions are
s follows:

1. Estimates for industry-level production flexibility, 𝜌, are based
on Oberfield and Raval (2021), who measure production flexi-
bility parameters using a Generalized CES production function.
We utilize Oberfield and Raval (2021) estimates for the US
benchmark and provide the distribution of the sector-level 𝜌
parameter across the US manufacturing industries in Table 2.
As we present in Table 2, among manufacturing industries,
7

estimates of 𝜌 are found to take negative values, inducing the i
interior techniques choice that we derived in Section 2 as the
unique optimal solution for all firms that we will cover in our
data.

2. As described in the previous section, we estimate 𝛼 at the level
of each industry using NBER Productivity Database (Table 2) —
for the US benchmark.

3. We apply the identification steps also utilized by Hsieh and
Klenow (2009) and

a. assume 𝜎 = 3 and 𝑟 = 0.1,
b. and normalize 𝜅𝐽 ≡ (𝑃 𝜎𝑌𝐽 )

− 1
𝜎−1 = 1.

Then using firm-level observables on total cost of capital (TCK),
total labor expenditures (wL), total revenues (TR), capital ( K) and the
industry-level structural parameters we uniquely identify 𝜂𝐾 , 𝜂𝑌 and 𝜙.
Specifically, the sum of total cost of capital and the total cost of labor
gives us a total cost (𝑇𝐶) figure. Using, 𝑇𝐶 and 𝑇𝑅 in (16) provides
the output distortion as

𝑇𝑅 = 𝑝𝑌 = 𝜎
𝜎 − 1

𝑐(𝑟, 𝑤;𝜙, 𝜂𝐾 )𝑌
(

1 − 𝜂𝑌
) = 𝜎

𝜎 − 1
𝑇𝐶

(

1 − 𝜂𝑌
) ,

r, after simplification,

− 𝜂𝑌 = 𝜎
𝜎 − 1

𝑇𝐶
𝑝𝑌

≡ 𝜎
𝜎 − 1

𝑇𝐶
𝑇𝑅

. (31)

We then recall from (29) that

(1 + 𝜙) =
{

1 − 𝛼
𝛼

[

(𝜎 − 1
𝜎

)

(

1 − 𝜂𝑌
) 𝑝𝑌
𝑤𝐿

− 1
]}

1−𝜌
𝜌

. (32)

Using (31), 𝑤𝐿, and 𝑇𝐶 in (32) identifies the technique wedge:

(1 + 𝜙) =
{1 − 𝛼

𝛼

[𝑇𝐶
𝑤𝐿

− 1
]}

1−𝜌
𝜌 . (33)

Finally, using (33), 𝑇𝐶, 𝑤𝐿 and 𝐾 in (23), we back out the capital
istortion:

+ 𝜂𝐾 = 1
𝑟𝐾

(𝑇𝐶 −𝑤𝐿). (34)

herefore, three independent structural relations – by using informa-
ion on Total Cost

Total Revenues , Total Cost
Total Cost of Labor , and Total Cost of Capital

Capital Stock – sepa-
rately and uniquely identify each of 𝜂𝐾 , 𝜂𝑌 , and 𝜙. Finally, using 𝜅𝐽 = 1
in the demand equation as in Hsieh and Klenow (2009) we identify an
augmented measure of �̂� as:

̂ ≡ 𝑧
[

𝜆𝛼(1 − 𝜆)1−𝛼
]

1
𝜌 =

(𝑝𝑌 𝑑 )
𝜎

𝜎−1

[(𝛾𝐾 (𝜂𝐾 , 𝜙)𝐾)𝜌 + (𝛾𝐿(𝜂𝐾 , 𝜙)𝐿)𝜌]
1
𝜌

, (35)

where

𝛾𝐾 ≡
(

𝑤
𝑟(1 + 𝜂𝐾 )

)−(1−𝛼)
( 𝛼
1 − 𝛼

)(1−𝛼)
(

1−𝜌
𝜌

)

(1 + 𝜙)1−𝛼 ,

𝛾𝐿 ≡
(

𝑤
𝑟(1 + 𝜂𝐾 )

)𝛼
( 𝛼
1 − 𝛼

)−𝛼
(

1−𝜌
𝜌

)

(1 + 𝜙)−𝛼 .

As an important conclusion of these identification steps, we stress
that we do not need to assign a value for 𝜆 to recover firm-specific
distortions and the technology-frontier of the firm, since 𝜆 does not
enter the identifying equations for firm-specific distortions.

5.2. Firm-level total factor productivity

We are now ready to use 𝜂𝐾 , 𝜂𝑌 , 𝜙 and �̂� to develop measures of
irm-level productivity. To establish an industry-level measure of TFP,
t first we need to define firm-level physical and revenue productivities
TFPQ and TFPR). We work with two alternative measures of TFPQ,
ased on which we then also measure TFPR under two alternatives.
he reason why we work with two alternative measures is that in one
lternative technique distortions affect Total Factor Productivity of the
ndustry through its influence on firm-level TFPQs while in the other
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the effects of technique distortions are channeled through firm-level
TFPRs.

In our first TFPQ measure (which we will refer as TFPQ1), we
suppose that the firm – instead of being exposed to the staged-decision
making process that we analyzed so far – starts out with a TFPQ such
that when it solves the neoclassical cost minimization problem it ends
up with the unit cost function that we expressed at (26). Specifically,
we solve for TFPQ1 recursively using

min
𝐾,𝐿

𝑟(1 + 𝜂𝐾 ) +𝑤𝐿 (36)

𝑠.𝑡. 𝐺 = 𝑇𝐹𝑃𝑄1 ⋅ 𝑓 (𝐾,𝐿), (37)

nd recovering the 𝑇𝐹𝑃𝑄1 which would yield the unit cost function
haracterized at (26) as

=
(1 + 𝜙)𝛼

𝑧

(

(𝛼
𝜆

)
1
𝜌 𝑟(1 + 𝜂𝐾 )

𝛼

)𝛼 (
( 1 − 𝛼
1 − 𝜆

)

1
𝜌 𝑤
1 − 𝛼

)1−𝛼

×
(

1 + 𝛼
(

(1 + 𝜙)
𝜌

1−𝜌 − 1
))

𝜌−1
𝜌 .

The production function in the form of 𝑇𝐹𝑃𝑄1 ⋅ 𝑓 (𝐾,𝐿) that yields
(26) is uniquely expressed as

𝐺 = 𝑧
[

𝜆𝛼(1 − 𝜆)1−𝛼

𝛼𝛼(1 − 𝛼)1−𝛼

]

1
𝜌
(1 + 𝜙)−𝛼

(

1 + 𝛼((1 + 𝜙)
𝜌

1−𝜌 − 1)
)

1−𝜌
𝜌

⋅𝐾𝛼𝐿1−𝛼
⏟⏞⏟⏞⏟
=𝑓 (𝐾,𝐿)

,

with

𝑇𝐹𝑃𝑄1 = �̂�
[

𝛼𝛼(1 − 𝛼)1−𝛼
]

−1
𝜌 (1 + 𝜙)−𝛼

(

1 + 𝛼((1 + 𝜙)
𝜌

1−𝜌 − 1)
)

1−𝜌
𝜌 , (38)

here 𝑇𝐹𝑃𝑄1 is maximized at 𝜙∗ = 0.
Having specified 𝑇𝐹𝑃𝑄1, next we measure TFPR1, where 𝑇𝐹𝑃𝑅1 =

⋅ 𝑇𝐹𝑃𝑄1 as standard in the literature. Using the pricing Eq. (16) and
he expression for 𝑇𝐹𝑃𝑄1 at (38) we get

𝐹𝑃𝑅1 = 𝜎
𝜎 − 1

( 𝑟
𝛼

)𝛼 ( 𝑤
1 − 𝛼

)1−𝛼 (1 + 𝜂𝐾 )𝛼

1 − 𝜂𝑌
, (39)

which is identical to the TFPR measure of Hsieh and Klenow (2009).
As our second TFPQ measure, which we call 𝑇𝐹𝑃𝑄2, we set

𝑇𝐹𝑃𝑄2 = �̂� ≡ 𝑧
[

𝜆𝛼(1 − 𝜆)1−𝛼
]

1
𝜌 , (40)

nd then from 𝑇𝐹𝑃𝑅2 = 𝑝 ⋅ 𝑇𝐹𝑃𝑄2, we obtain

𝐹𝑃𝑅2 = 𝜎
𝜎 − 1

( 𝑟
𝛼

)𝛼 ( 𝑤
1 − 𝛼

)1−𝛼 (1 + 𝜂𝐾 )𝛼

1 − 𝜂𝑌
(1 +𝜙)𝛼

(

1 + 𝛼((1 + 𝜙)
𝜌

1−𝜌 − 1)
)

𝜌−1
𝜌 .

(41)

While the second measure is elegant due to its simplicity, the first
one is more profound due to its theoretical foundation. We can notice
three important features of the two alternative physical productivity
specifications, namely 𝑇𝐹𝑃𝑄1 and 𝑇𝐹𝑃𝑄2:

1. Factor and output distortions (𝜂𝐾 , 𝜂𝑌 ) only affect 𝑇𝐹𝑃𝑅 in both
specifications.

2. technique wedges (𝜙) only affect 𝑇𝐹𝑃𝑄1 in the first specifica-
tion.

3. technique wedges (𝜙) only affect 𝑇𝐹𝑃𝑅2 in the second specifi-
cation.

4. Therefore, while TFPQ1 measure accounts all gains from miti-
gating technique wedges to the physical productivity, the TFPQ2
measure accounts all gains from eliminating technique wedges to
the revenue productivity.

As we will show in the next section these two alternative TFPQ
measures (and implied TFPRs) provide quantitatively similar insights
when measuring the aggregate industry TFP and estimating the TFP
effects of firm-specific distortions. This property is essential because
it will ensure that our quantitative findings are not sensitive to any
special-case measurements of firm-level productivity.
8

Table 1
Classification of manufacturing industries.

Industry cluster 4-digit SIC classification

Food-Tobacco 2000–2199
Paper-Printing 2600–2799
Chemical-Petrol-Rubber/Plastic 2800–3099
Primary/Fabricated Metal 3300–3499
Machinery (Industrial+Commercial+Computer) 3500–3599
Electrical Equipment 3600–3699
Transportation Equipment 3700–3799

5.3. Aggregation: Industry-level total factor productivity

In order to measure industry-level TFP let us first observe that the
aggregate price index for an industry – composed of 𝑀 firms – is given
by

𝑃 =

( 𝑀
∑

𝑖=1
𝑝𝜎−1

)

1
𝜎−1

.

sing 𝑇𝐹𝑃𝑅 = 𝑝 ⋅ 𝑇𝐹𝑃𝑄, we can re-write the aggregate price index as

𝑃 =

( 𝑀
∑

𝑖=1

(

𝑇𝐹𝑃𝑅
𝑇𝐹𝑃𝑄

)𝜎−1
)

1
𝜎−1

. (42)

Denoting the industry-level aggregate revenue productivity with 𝑇𝐹𝑃𝑅,
we obtain that

𝑃 = 𝑇𝐹𝑃𝑅
𝑇𝐹𝑃

,

using which together with (42) we express a closed-form measure of
industry-wide TFP.

𝑇𝐹𝑃 =

( 𝑀
∑

𝑖=1

(

𝑇𝐹𝑃𝑄𝑇𝐹𝑃𝑅
𝑇𝐹𝑃𝑅

)𝜎−1)
1

𝜎−1

. (43)

Finally, we note that the industry-wide aggregate 𝑇𝐹𝑃𝑅 can be recov-
ered as

𝑇𝐹𝑃𝑅 = 𝜎
𝜎 − 1

( 𝑟
𝛼

)𝛼 ( 𝑤
1 − 𝛼

)1−𝛼 (1 + 𝜂𝐾 )𝛼

1 − 𝜂𝑌
(1 + 𝜙)𝛼

×
(

1 + 𝛼((1 + 𝜙)
𝜌

1−𝜌 − 1)
)

𝜌−1
𝜌 , (44)

where 1 + 𝜂𝐾 , 1 − 𝜂𝑌 , and 1 + 𝜙 are industry-wide averages across firms.
Finally, we note from (43) that – as in standard models of misallocation
and TFP – when firm-level TFPR across all firms are equalized in an
industry, such that 𝑇𝐹𝑃𝑅 = 𝑇𝐹𝑃𝑅 for every firm, industry-wide TFP
becomes a function of the aggregation of firm-level TFPQs.

6. Quantitative analysis

We have established several important properties of a generalized
production framework with endogenous techniques choice and dis-
tortions. We are now prepared to utilize firm-level data and conduct
quantitative exercises to uncover the effects of capital, output and
technique distortions on industry-level TFP.

6.1. Firm-level data

To conduct our quantitative analysis, we use firm-level balance
sheet data from Compustat North America and Compustat Global. The
choice of organizational production techniques is likely to be a relevant
concept for larger scale establishments, which are covered by the
publicly listed firm databases in Compustat. Moreover, Compustat also
provides the possibility for meaningful cross-country comparisons.
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Table 2
Structural parameters.

Industry cluster 𝛼 𝜌

Food-Tobacco 0.22 −0.15
Paper-Printing 0.25 −1.5
Chemical-Petrol-Rubber/Plastic 0.39 −1.08
Primary/Fabricated Metal 0.42 −2.92
Machinery 0.12 −0.92
Electrical Equipment 0.14 −0.96
Transportation Equipment 0.23 −0.3

Table Notes. Share of capital in technology menu, 𝛼, is from NBER Productivity
atabase. Industry-level production flexibility, 𝜌, is from Oberfield and Raval (2021),
ho estimate flexibility of production parameters for a variety of manufacturing

ndustries using Census data from the time period 1987–2007.

Table 3a
Distributional properties of 𝜏𝐾 .

Industry Cluster Mean Std. Dev. Min Max # Obs.

Food-Tobacco −0.89 0.37 −0.99 4.04 434
Paper-Printing −0.87 0.35 −0.99 8.07 815
Chemical-Petrol-Rubber/Plastic −0.70 2.16 −1 49.59 2,077
Primary/Fabricated Metal −0.80 0.55 −0.99 3.29 452
Machinery −0.71 0.49 −0.99 5.33 425
Electrical Equipment −0.12 3.63 −0.99 45.63 672
Transportation Equipment −0.83 0.30 −0.99 2.14 593

Table Notes. 𝜏𝐾 is identified using the structural equation (28). # Obs is the short-cut
for ‘‘total number of observations’’.

Table 3b
Distributional properties of 𝜏𝑌 .

Industry cluster Mean Std. Dev. Min Max # Obs.

Food-Tobacco 0.20 5.16 −85.37 0.99 434
Paper-Printing 0.22 6.56 −181.49 0.99 815
Chemical-Petrol-Rubber/Plastic −7.34 156.68 −6683.07 0.99 2,077
Primary/Fabricated Metal 0.49 0.32 −1.59 0.97 452
Machinery −1.67 28.12 −557.86 0.99 425
Electrical Equipment −2.85 34.28 −784.81 0.99 672
Transportation Equipment 0.29 4.39 −103.67 0.97 593

Table Notes. 𝜏𝑌 is identified using the structural equation (29).

Table 4
Regressions with 𝜏𝑌 and 𝜏𝐾 : Dependent variable 𝜏𝑌 .
𝜏𝐾 −2.99∗∗∗ −3.71∗∗∗

(1.08) (1.44)

R&D per Employee −0.071
(0.12)

Assets per Employee −0.0028
(0.0026)

Intangible Assets per Emp 0.015
(0.013)

Earnings Ret. per Emp −0.00054
(0.0010)

Long-Term Debt per Emp −0.011
(0.014)

Profits per Emp 0.055∗∗∗

(0.014)

Industry FE Yes
Year FE Yes

Observations 3,321 2,334

R-sq 0.0165 0.0246

We use several waves of cross-sectional manufacturing sector data
etween the years of 1995 and 2014. For our aggregation analysis,
e concentrate on the 4-digit SIC manufacturing industry clusters that
e list in Table 1, which are ‘‘Food & Tobacco’’, ‘‘Paper & Printing’’,

‘Chemicals and Petrol-Rubber-Plastic’’, ‘‘Primary & Fabricated Metal’’,
9

Table 5
Distributional properties of firm-variables.

Variable name Mean Std. Dev. Min Max # Obs.

ln(Labor) 6.47 2.41 0 13.52 50 805
ln(Capital) 17.29 3.01 6.90 26.54 56 077
ln(Total Labor Cost) 18.02 3.40 9.10 25.59 5116
ln(Total Capital Cost) 17.32 3.09 6.90 26.65 55 955
ln(Total Revenue) 18.62 2.96 6.90 26.88 54 476

Table Notes. Firm-level averages are from Compustat North America Fundamentals
Annual for the years between 1995–2014 — from firms operational in manufacturing
industry-clusters presented in Table 1. Labor is in units of employees whereas the other
firm-level variables are in dollar values.

‘‘Machinery Manufacturing’’, ‘‘Electrical Equipment Manufacturing’’,
and ‘‘Transportation Equipment Manufacturing’’.

The key firm-level variables that are required for our identification
and aggregation purposes are annual figures for labor, capital, total cost
f labor, total cost of capital and total revenues from sales. We construct

the variables of interest as follows.

1. Labor (𝐿) is captured by the total number of employees data item
in Compustat (the name of the variable in the database is emp).

2. Capital (𝐾) is generated by applying the inventory accumula-
tion method using property, plant and equipment gross and net
totals data items in Compustat (data-names ppegt and ppent re-
spectively). We apply the inventory accumulation as follows. We
set the value of the initial capital stock equal to the first available
entry of ppegt. After having set the value of the initial capital
stock we let the capital accumulate using 𝐾𝑖𝑡 = (1 − 𝛿)𝐾𝑖𝑡−1 + 𝐼𝑖𝑡,
where we compute the net investment as 𝐼𝑖𝑡 − 𝛿𝐾𝑖𝑡 = 𝑝𝑝𝑒𝑛𝑡𝑖𝑡+1 −
𝑝𝑝𝑒𝑛𝑡𝑖𝑡.

3. Total labor cost (𝑤𝐿) is captured by the total staff expense data
item in Compustat (data name xlr).

4. Total capital cost (𝑟(1 + 𝜂𝐾 )𝐾) is generated by summing up
the capital expenditures data item in Compustat for the current
period with 𝑟(1 − 𝛿)𝐾 from the previous period, where 𝑟 = 0.1
and 𝛿 = 0.05 as in Hsieh and Klenow (2009). (data name for
capital expenditures is capx).

5. Total revenue (𝑇𝑅) is captured by the total revenue data item
in Compustat (data name revt).

In Table 5 we provide descriptive statistics with respect to the
istribution of these five firm-level variables across establishments for
he years between 1995–2014 in manufacturing industry clusters that
e focus on in the quantitative analysis.

The industry-level parameters for the US benchmark are extracted
rom NBER productivity database and existing research. To summarize
gain, (i) capital’s share in technology menu (𝛼) is computed using the
BER productivity database and (ii) industry-level production flexibil-

ty parameter estimates (𝜌) are from Oberfield and Raval (2021). To the
nd of the latter, the authors utilize US manufacturing data between
987–2007 in order to estimate factor substitutability parameters for
generalized CES production function. Both 𝛼 and 𝜌 vary across
anufacturing industry-clusters as we document in Table 2.

Finally we set 𝜎 = 3 as a benchmark value so that our quantitative
trategy and findings can be comparable to the existing literature. In
ection 6.4.2 we will check the sensitivity of our results with respect
o variations in 𝑟 and 𝜎.

.2. US benchmark

Based on the data items listed above we proxy firm level measures of
FPQ and TFPR (using the two alternative methods, (𝑇𝐹𝑃𝑄𝑖, 𝑇𝐹𝑃𝑅𝑖),
= 1, 2) and quantify sectoral benchmark TFPs for the US economy by
sing the aggregation rule (43) for each industry-cluster over the time-
eriod 1995–2015 — as we described in Section 5. As an important
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Table 6
Industry-level relative TFPs.

Industry 1995 2005 2014

TFPQ1 TFPQ2 TFPQ1 TFPQ2 TFPQ1 TFPQ2

Food-To. 34.79 37.08 36.85 57.04 1 1
Paper 10.89 17.56 14.00 18.96 10.29 14.15
Chem 52.34 67.07 64.87 63.82 7.61 7.75
Metal 3.08 5.08 2.85 8.04 4.01 4.37
Mach. 1 1 9.45 9.20 9.86 11.12
Elect 3.13 3.15 1 1 2.79 2.83
Trans.Eq 54.12 53.56 11.65 14.90 36.96 36.96

Table Notes. TFP is computed using Eq.(43). In every year the industry with the
lowest TFP is chosen as the base-industry and assigned with a value of 𝑇𝐹𝑃 = 1. For
he remaining industries we report industry TFPs relative to this base industry.

Table 7a
Distribution of lnTFPQ1.

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. 23.84 1.86 23 24.44 1.51 15 23.70 2.00 36
Paper 20.28 1.23 32 21.03 1.07 18 20.89 1.01 29
Chem 20.53 2.22 64 20.82 2.49 64 19.73 3.44 103
Metal 19.27 0.864 14 19.19 1.71 13 19.65 1.59 23
Mach. 19.40 3.21 10 19.47 2.23 22 20.68 1.55 25
Elect 18.77 2.17 24 18.52 2.97 22 19.09 1.56 34
Trans.Eq 22.90 2.15 13 21.21 3.24 20 22.05 2.10 25

Table Notes. Physical-productivity measure TFPQ1 is computed using Eq. (38). Industry
Mean and Standard Deviations (S. Dev) are cross-sectional statistics for every industry
in a given year.

Table 7b
Distribution of lnTFPR1.

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. 12.83 0.787 23 12.68 0.686 15 12.81 1.05 36
Paper 9.98 0.561 32 10.51 0.606 18 10.47 0.548 29
Chem 10.24 0.652 64 10.48 1.20 64 10.34 1.59 103
Metal 8.59 0.431 14 8.43 0.856 13 8.86 0.897 23
Mach. 9.99 1.37 10 10.33 0.768 22 10.92 0.710 25
Elect 9.10 0.758 24 8.93 1.46 22 9.23 0.769 34
Trans.Eq 11.45 0.565 13 10.89 1.25 20 11.26 0.791 25

Table Notes. Revenue-productivity measure TFPR1 is computed using Eq. (39).

Table 7c
Distribution of lnTFPR2.

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. 13.30 0.772 23 13.15 0.686 15 13.26 1.03 36
Paper 11.33 0.528 32 11.55 0.645 18 11.48 0.628 29
Chem 11.77 0.966 64 11.96 1.23 64 11.50 1.83 103
Metal 9.41 0.313 14 9.86 0.675 13 10.03 0.551 23
Mach. 10.61 1.47 10 11.26 0.795 22 11.87 0.450 25
Elect 9.74 0.909 24 9.76 1.38 22 9.79 0.567 34
Trans.Eq 12.20 0.700 13 11.78 1.35 20 12.16 0.820 25

Table Notes. Revenue-productivity measure TFPR2 is computed using Eq. (41).

uantitative feature of the benchmark framework, we choose the limit
echniques 𝑎𝐾 and 𝑎𝐿 such that the distribution of technique wedges

satisfies 𝜙 ∈ [−0.999, 30] in every industry-cluster. In this section, as
well as in the rest of the quantitative analysis, we present results for
the years of 1995, 2005 and 2014, where 2014 is the last year of
observations in our data. In Appendix C (C.6a–C.6d) we provide results
for additional years between 1996–2012. Notably, if we trim outliers
of computed wedges by 15%, those large estimates would no longer
exist.

Table 6 presents relative TFP estimates across the distribution of
manufacturing industry-clusters. When presenting the TFP estimates,
in each year we set the TFP of the industry-cluster with the lowest
10
measured TFP in a particular year equal to 1 and then provide the TFP
estimate of each industry relative to this base-industry.

The TFP estimates in Table 6 reveal that the ranking of the TFPs
across the 7 manufacturing industry clusters largely remains the same
when TFPs are ranked according to the physical productivity measures
TFPQ1 and TFPQ2. Particularly, in years 2005 and 2014 the TFP-
ranking of industries coincide completely when TFPQ1 and TFPQ2
physical-productivity measures are applied.11

In Tables 7a–7c, we provide distributional properties with respect
to TFPQ and TFPR measures — in logs, whose aggregations provide
the TFP estimates presented in Table 6. For each industry-cluster, the
distributional properties of TFPQ1, TFPR1 and TFPR2 are relatively
stable over-time. In Table 7 we do not provide the properties of TFPQ2
measure, to which we refer in the next block of tables, since 𝑇𝐹𝑃𝑄2 is
equivalent to �̂�.

In Tables 8a–8d we present the distributional properties (means
and standard deviations) of firm-specific distortions 𝜂𝐾 , 𝜂𝑌 and 𝜙 and
also firm-level technology frontier �̂�. Table 8a illustrates that from
1995 to 2014 the average firm across all manufacturing industries
switched from being slightly subsidized to being slightly taxed when it
comes to capital distortions. For output distortions, 𝜂𝑌 ’s, as presented
in Table 8b, a wide dispersion is observed for many industries, which
will turn out to be important for misallocation and TFP accounting.
Importantly, technique wedges, 𝜙’s, are different than zero-optimum
throughout the years and across the industry clusters — with sig-
nificantly large dispersions, which promotes technique wedges as a
potentially important barrier for TFP growth. Finally, Table 8d shows
that the distribution of ln(�̂�) (equivalent to TFPQ2) is relatively stable
over-time, aligning with the stability of over-time variation in TFPQ1,
TFPR1 and TFPR2 that we established in Tables 7a–7c.

6.3. Counterfactual experiments with US benchmark

We use the TFP measure developed at (43) in order to conduct
counterfactual quantitative experiments and to understand by what
proportion the TFP of each manufacturing industry-cluster would rise
(or deteriorate) and influence the aggregate development if we were to
reduce the distortions originating from capital, output and technique
decisions of the production process.

Before we proceed with the presentation of results we would like to
note that for the case of TFPQ2 measure, we will only provide quanti-
tative results with respect to technique wedges, because the measured
impacts of capital and output distortions on industry-TFPs do not vary
with the measurement of TFPQ. This is the case because capital and
output distortions affect the industry TFP through firm-specific TFPR
dispersion under both TFPQ specifications. Finally, the counterfactuals
presented in this section focus on the years of 1995, 2005 and 2014
while a wider coverage of counterfactual TFP results over the period
1996–2012 are reported in Appendix C Tables C.6a–C.6d.

6.3.1. Reducing distortions under productivity measures (TFPQ1,TFPR1)
We set each distortion one-at-a-time for each firm equal to zero

and compute the resulting TFP gains (or losses). Specifically, in each
quantitative exercise we shut down a particular source of heterogene-
ity resulting from capital, output or technique distortionary wedges,
respectively by setting 𝜂𝐾 = 0, or 𝜂𝑌 = 0, or 𝜙 = 0 for all firms in an
industry, re-compute firm-level TFPQs and TFPRs resulting from this
exercise, measure the counterfactual TFP and report the ratio between
the counterfactual TFP and the benchmark TFP in Tables 9a–9d. There-
fore, in Tables 9a–9d as well as in all counterfactual experiment tables

11 For the year of 1995 the ranking of TFPs is mostly unaltered as well when
switching from TFPQ1 measure to TFPQ2, with the exception that the most-
and the second-most productive industries change ordering when the physical
productivity measurement is altered.
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Table 8a
Distribution of 𝜂𝐾 .

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. −0.103 0.390 24 0.355 1.19 17 0.110 0.153 37
Paper −0.032 0.177 34 0.081 0.158 19 0.097 0.144 29
Chem −0.015 0.264 75 0.065 0.195 75 0.066 0.532 147
Metal 0.046 0.131 14 0.050 0.292 14 0.061 0.283 27
Mach. −0.190 0.397 16 0.184 0.398 22 0.059 0.267 36
Elect −0.087 0.349 31 0.117 0.390 26 0.044 0.276 44
Trans.Eq −0.220 0.448 13 0.645 2.57 20 0.111 0.253 27

Table Notes. Capital distortion 𝜂𝐾 is backed out using Eq. (34).

Table 8b
Distribution of 𝜂𝑌 .

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. −0.030 1.48 24 −0.128 0.541 17 −0.438 1.92 37
Paper −0.590 1.21 34 −0.305 0.623 19 −0.458 0.851 29
Chem −0.969 2.51 72 −1.44 5.37 70 −30.27 204.00 115
Metal −0.695 0.696 14 −0.459 0.745 15 −0.356 0.795 27
Mach. −8.82 33.53 14 −0.537 1.31 22 −0.455 2.34 35
Elect −0.513 3.38 31 −2.63 11.68 25 −0.203 0.737 39
Trans.Eq 0.096 0.468 13 −3.20 11.71 20 0.004 0.650 28

Table Notes. Output distortion 𝜂𝑌 is backed out using Eq. (31).

Table 8c
Distribution of 𝜙.

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. −0.954 0.208 24 −0.999 0.000 17 −0.210 4.79 37
Paper −0.956 0.162 34 −0.927 0.160 19 −0.922 0.138 29
Chem −0.932 0.289 76 −0.480 3.55 76 1.45 7.20 150
Metal −0.915 0.099 14 −0.971 0.020 15 −0.640 1.30 27
Mach. 1.63 7.83 16 −0.201 3.60 22 −.847 0.564 36
Elect 0.557 1.11 31 1.15 6.60 27 .723 4.88 44
Trans.Eq 1.84 8.61 13 −0.976 0.081 20 −0.163 4.20 28

Table Notes. Technique wedge 𝜙 is backed out using Eq. (33).

Table 8d
Distribution of ln(�̂�) = 𝑇𝐹𝑃𝑄2.

Industry 1995 2005 2014

Mean S. Dev # Obs Mean S. Dev # Obs Mean S. Dev # Obs

Food-To. 24.30 1.84 23 24.90 1.51 15 24.15 2.01 36
Paper 21.63 1.16 32 22.07 1.52 18 21.90 1.38 29
Chem 22.07 2.73 64 22.29 2.88 64 20.89 3.98 103
Metal 20.10 1.11 14 20.62 1.84 13 20.81 1.55 23
Mach. 20.02 3.31 10 20.40 2.33 22 21.63 1.48 25
Elect 19.41 2.17 24 19.36 3.07 22 19.65 1.77 34
Trans.Eq 23.65 2.38 13 22.10 3.41 20 22.95 2.32 25

Table Notes. Augmented technology frontier �̂� is backed out using Eq. (35), where
𝑇𝐹𝑃𝑄2 ≡ �̂�.

of the quantitative analysis 𝛥𝑇𝐹𝑃 > 1 indicates an expansion in the
industry-TFP (aggregate development) in response to the removal of
distortions, whereas 𝛥𝑇𝐹𝑃 < 1 implies a contraction.

In Table 9a we report the TFP gains resulting from setting 𝜂𝐾 = 0
for all firms. When 𝜂𝐾 = 0 is set for all firms, this also affects the
ndustry-wide 𝑇𝐹𝑃𝑅, which contains a geometric average of capital

distortions. Taking into account this implication of the quantitative
experiment for the aggregate industry revenue productivity along-side
the implied changes in firm-specific revenue productivities, we re-
compute the resulting TFP using (43) and report the ratio between the
counterfactual TFP and the benchmark TFP in Table 9a.

The results in Table 9a reveal that the dispersions in capital distor-
ions are not very important in determining industry-TFPs for manufac-
uring industry-clusters. Specifically, reducing capital distortions (both
11
Table 9a
Setting 𝜂𝐾 = 0 with TFPQ1.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.012 0.979 1.000
Paper 0.993 1.002 1.007
Chem 1.004 1.000 1.005
Metal 0.989 0.984 1.016
Mach. 1.023 0.996 1.006
Elect 1.032 1.021 1.034
Trans.Eq 1.042 0.940 1.004

Table Notes. Tables 9a–b present counterfactual experiments, where
𝜂𝐾 = 0 (9a) or 𝜂𝑌 = 0 (9b) is set for all firms and the resulting
counterfactual TFPs are computed. The reported 𝛥 𝑇𝐹𝑃 is the ratio
between the counterfactual TFP and the benchmark TFP. 𝛥𝑇𝐹𝑃 > 1
indicates an expansion in the industry-TFP after the removal of the
distortions, whereas 𝛥𝑇𝐹𝑃 < 1 implies a contraction.

taxes and subsidies) to zero for all firms raises the industry TFP only
marginally. For the year of 2014, the largest impact of eliminating cap-
ital distortions are obtained for the cases of “Electrical Equipment” and
“Metal” industry-clusters, respectively, with 3.4% and 1.6% expansion
of the aggregate industry-TFP. In 2014, for the remaining industry-
clusters, the effects of capital distortions and the resulting misallocation
on industry TFPs are less than 1%. The overall effect of “capital misal-
location” on industry TFPs is smaller for the years of 1995 and 2005 —
with negative net aggregate effects of removing capital distortions fully
for the case of some industries (such as “Paper” and “Metal” in 1995
and “Food”, “Metal” and “Machinery” in 2005). The reason for such
negative consequences from removing capital distortions is associated
with “subsidized capital finance” on average, which can be observed
from the distributional properties of 𝜂𝐾 that we present in Table 8a.

The negligible TFP consequences of capital distortions that we
capture in our framework align with the findings of Gilchrist et al.
(2013). Using a measured TFP approach and secondary bond price data
also for publicly traded firms from Compustat North America, Gilchrist
et al. (2013) show that the dispersion in borrowing costs observed in
the bond-price data for manufacturing firms results in an efficiency loss
due to capital misallocation which is equivalent of 1-to-2 percent of the
measured benchmark TFP. Our overall findings with respect to the TFP
effects of capital distortions are also within the range of few percentage
points as we present in Table 9a.

We then proceed and report in Table 9b the TFP effects generated
from setting the output distortions equal to 𝜂𝑌 = 0 for all firms.
Similar to the case of 𝜂𝐾 , when 𝜂𝑌 = 0 is set for all firms, this
affects the industry-wide 𝑇𝐹𝑃𝑅. The quantitative results show that
the role of output distortions is much more substantial compared to capital
distortions in determining TFP losses. Even when a few outlier-cases are
put aside, the overall positive TFP effects of output distortions are as
high as 80%–90% (“Machinery” and “Electrical Equipment” industry-
clusters) of the benchmark TFP — with 30%–40% potential TFP gains
on average across clusters of manufacturing industries and over time
from removing output distortions.

Finally, Table 9c reports the TFP effects resulting from setting 𝜙 = 0
or all firms. Different from the cases of 𝜂𝐾 = 0 and 𝜂𝑌 = 0, when
𝜙 distortions are shut down to zero for all firms under the TFPQ1
measure, industry-wide TFPR is not affected — with productivity gains
channeled through the increases in firm-specific TFPQs only. The re-
sults show that technique wedges are quantitatively very significant in
generating efficiency losses and reducing industry TFPs, where in many
industry cases (such as 5 out of 7 industries for the year of 2014) the TFP
effects of technique wedges are the most consequential among three sources
of distortions. In all three years, for which we provide quantitative
results, reducing the technique wedges to zero for all firms results
in TFP gains that for most industries exceed 100% of the benchmark
industry TFP.
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Table 9b
Setting 𝜂𝑌 = 0 with TFPQ1.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.242 1.109 50.667
Paper 1.420 1.002 1.193
Chem 1.442 2.611 30.908
Metal 1.060 1.128 1.062
Mach. 11.164 1.992 1.754
Elect 1.845 8.264 1.473
Trans.Eq 1.014 3.716 1.527

Table Notes. Tables 9a–b present counterfactual experiments, where
𝜂𝐾 = 0 (9a) or 𝜂𝑌 = 0 (9b) is set for all firms and the resulting
counterfactual TFPs are computed. The reported 𝛥 𝑇𝐹𝑃 is the ratio
between the counterfactual TFP and the benchmark TFP. 𝛥𝑇𝐹𝑃 > 1
indicates an expansion in the industry-TFP after the removal of the
distortions, whereas 𝛥𝑇𝐹𝑃 < 1 implies a contraction.

Table 9c
Setting 𝜙 = 0 with TFPQ1.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.626 1.592 1.577
Paper 5.287 9.730 9.208
Chem 9.346 9.362 10.050
Metal 3.768 14.044 7.996
Mach. 3.089 3.106 3.526
Elect 1.642 2.925 5.747
Trans.Eq 2.677 2.817 2.848

Table Notes. Tables 9c–d present counterfactual experiments, where
𝜙 = 0 with TFPQ1 (9a) or 𝜙 = 0 with TFPQ2 (9b) is set for all firms
and the resulting counterfactual TFPs are computed.

Table 9d
Setting 𝜙 = 0 with TFPQ2.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.486 1.000 1.577
Paper 3.193 6.984 6.694
Chem 7.105 9.249 9.860
Metal 2.229 4.845 7.344
Mach. 3.009 3.102 3.122
Elect 1.587 2.843 5.662
Trans.Eq 2.635 2.140 2.847

Table Notes. Tables 9c–d present counterfactual experiments, where
𝜙 = 0 with TFPQ1 (9a) or 𝜙 = 0 with TFPQ2 (9b) is set for all firms
and the resulting counterfactual TFPs are computed.

Table 9e
Setting 𝜂𝐾 = 0 with TFPQ1.

For 𝜌 = −0.15 in all industries
Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.012 0.979 1.000
Paper 0.993 1.001 0.999
Chem 1.003 0.997 1.007
Metal 0.989 0.987 1.071
Mach. 1.032 0.996 1.007
Elect 1.033 1.027 1.029
Trans.Eq 1.044 0.939 1.005

As we illustrate in Appendix C Tables C.6a–C.6d, strong and persis-
ent quantitative effects of technique wedges and relatively negligible
ffects of capital distortions are present not only for a selected few
ears, but for a wide coverage of years between 1996–2012.
12
Table 9f
Setting 𝜂𝑌 = 0 with TFPQ1.

For 𝜌 = −0.15 in all industries
1995 2005 2014

Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.242 0.979 50.667
Paper 1.264 1.001 0.787
Chem 1.320 0.997 29.130
Metal 0.945 0.987 0.839
Mach. 11.057 0.996 1.801
Elect 1.839 1.027 1.281
Trans.Eq 0.985 0.939 1.488

Table Notes. Tables 9e–f present counterfactual experiments, where in
addition to the 𝜂𝐾 and 𝜂𝑌 counterfactual 𝜌 gets set equal to 0.15 in each
industry, which is the flexibility level of Food-Tobacco industry.

6.3.2. Reducing distortions under productivity measures (TFPQ2, TFPR2)
We repeat the previous quantitative analysis for the case of TFPQ2

measure in order to ensure the robustness of our quantitative results
with respect to the measurement of physical productivity of firms. As
already highlighted before, when doing that, we only provide results
from technique wedge exercises, since the implications of capital and
output distortions for industry TFPs remain the same under the two
alternative TFPQ measures.

In this alternative framework the TFP effects of technique wedges
get channeled through the TFPR dispersion. We again set 𝜙 equal to
zero for all firms and compute TFP effects in every industry-cluster
and report them in Table 9d. Our results indicate that, although the TFP
effects of technique wedges slightly contract under the TFPQ2 measure, the
overall effects remain substantially large throughout the years and across
the manufacturing industry clusters. One exception to this pattern is the
“Food-Tobacco” industry for the year of 2005: in that particular year,
the variance of technique wedges equals to zero for the Food-Tobacco
industry and hence there are no TFPR-dispersion driven gains to be
obtained for the aggregate industry TFP.

We conclude that the two alternative productivity measures that
we construct generate overall comparable TFP effects of technique
wedges. Thus, our main quantitative findings are not sensitive to the
measurement of firm-level productivities.

6.3.3. Flexibility and TFP gains
The results presented in Tables 9c and 9d reveal the substantial

implications of technique wedges for industry TFPs. An important
feature of our theoretical structure is the mitigating effect of indus-
trial production flexibility, 𝜌, on counterproductive consequences of
technique wedges. The generalized production framework allows us to
investigate this property associated with industry-level factor flexibil-
ity. Next we investigate the quantitative relevance of this theoretical
channel. Specifically, we are interested in addressing the following
question: How does the industry-level production flexibility affect the
TFP consequences of technique wedges?

As one can observe in the expressions for TFPQ1 (at (38)) and
TFPR2 (at (41)), flexibility of production mitigates technique wedges in
generating efficiency losses for industry TFPs as long as the conditions
set at item (iii) of Proposition 4.1 hold. We first note that the condition
(iii-a) at Proposition 4.1 holds for all industries except for “Food &
Tobacco” industry. Second, the lower limit 𝑎𝐿 that we impose at the
industry level ensures that the condition (iii-b) of Proposition 4.1 holds
for the “Food & Tobacco” industry. Therefore, for all industries in our
quantitative framework the conditions of Proposition 4.1 get satisfied;
and hence, theoretically the higher the industry-level flexibility of
production the lower should be the distortionary effects of technique
wedges. Hence, the TFP gains from removing technique wedges are
expected to be the highest in industries in which the efficient units of
capital and labor are strong complements.



Journal of Development Economics 167 (2024) 103251B.R. Uras and P. Wang
Table 9g
Setting 𝜙 = 0 with TFPQ1.

For 𝜌 = −0.15 in all industries
1995 2005 2014

Industry 𝛥 𝑇𝐹𝑃 Contrib.
of 𝜌 to
𝛥 𝑇𝐹𝑃

𝛥 𝑇𝐹𝑃 Contrib.
of 𝜌 to
𝛥 𝑇𝐹𝑃

𝛥 𝑇𝐹𝑃 Contrib.
of 𝜌 to
𝛥 𝑇𝐹𝑃

Food-To. 1.626 – 1.592 – 1.577 –
Paper 1.559 71% 1.545 84% 1.565 83%
Chem 1.498 84% 1.478 84% 1.496 85%
Metal 1.990 47% 1.955 86% 1.988 75%
Mach. 1.615 48% 1.596 49% 1.563 56%
Elect 1.985 −21% 1.808 38% 1.915 67%
Trans.Eq 1.642 39% 1.698 39% 1.705 40%
Table 9h
Setting 𝜙 = 0 with TFPQ1.

For 𝜌 = −0.15 in all industries
1995 2005 2014

Industry 𝛥 𝑇𝐹𝑃 Contrib.
of 𝜌 to
𝛥 𝑇𝐹𝑃

𝛥 𝑇𝐹𝑃 Contrib.
of 𝜌 to
𝛥 𝑇𝐹𝑃

𝛥 𝑇𝐹𝑃 Contrib.
of 𝜌 to
𝛥 𝑇𝐹𝑃

Food-To. 1.486 – 1 – 1.577 –
Paper 1.389 57% 1.308 81% 1.269 81%
Chem 1.481 79% 1.475 84% 1.470 85%
Metal 1.029 54% 1 89% 1.987 73%
Mach. 1.588 47% 1.595 49% 1.563 50%
Elect 1.976 −25% 1.767 38% 1.848 67%
Trans.Eq 1.615 39% 1.356 37% 1.704 40%

Table Notes. Tables 9g–h present counterfactual experiments, where in addition to the 𝜙 counterfactual
𝜌 gets set equal to 0.15 in each industry. In ‘‘Contribution of 𝜌 to 𝛥 𝑇𝐹𝑃 ’’ column, a positive (negative)
percentage illustrates by what percentage the original gains from setting 𝜙 = 0 reported in Table 9c would
contract(expand) if the industry’s flexibility equaled 0.15 instead of its original level reported in Table 2.
g
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Table 10a
Decomposition of Detrimental TFP Effects (TFPQ1).

Capital
wedge

Output
wedge

Technique
wedge

Total

Average over industries
1995 0.4% 7.5% 92.0% 100%
2005 −0.2% 17.0% 83.1% 100%
2014 0.1% 51.6% 48.3% 100%

Average over time
Food-To. −0.3% 58.6% 41.7% 100%
Paper 0.0% 2.5% 97.5% 100%
Chem 0.0% 25.3% 74.7% 100%
Metal 0.0% 1.1% 98.9% 100%
Mach. 0.1% 36.5% 63.4% 100%
Elect 0.8% 39.2% 60.0% 100%
Trans.Eq 0.7% 22.2% 77.1% 100%
Overall Avg. 0.1% 23.6% 76.3% 100.0%

Table 10b
Decomposition of Detrimental TFP Effects (TFPQ2).

Capital
wedge

Output
wedge

Technique
wedge

Total

Average over industries
1995 0.5% 9.6% 90.0% 100.0%
2005 −0.3% 19.1% 81.1% 100.0%
2014 0.1% 52.6% 47.4% 100.0%

Average over time
Food-To. −0.9% 78.4% 22.5% 100.0%
Paper 0.0% 4.2% 95.8% 100.0%
Chem 0.0% 26.6% 73.4% 100.0%
Metal −0.2% 2.4% 97.8% 100.0%
Mach. 0.1% 38.1% 61.8% 100.0%
Elect 0.8% 39.7% 59.5% 100.0%
Trans.Eq 0.6% 25.8% 73.5% 100.0%
Overall Avg. 0.1% 25.8% 74.2% 100.0%
13
The quantitative results in Tables 9c and 9d are in line with this
key theoretical prediction. The industries with the lowest level of
production flexibility (where factors are more complementary), as we
presented in Table 2, are “Metal”, “Paper” and “Chemicals”. When
focusing on the average TFP gains over the three years of our study,
these industries feature the largest measured TFP gains from removing
technique wedges. On the other extreme, “Food-Tobacco” industry has
the highest production flexibility (where factors are more substitutive),
which also turns out to have the smallest measured TFP gains from
correcting technique wedges. Machinery, Electrical Equipments and
Transportation Equipments industries have intermediate levels of flexi-
bility and these industries have mediocre potential of TFP-growth from
correcting technique wedges.

In order to deepen our understanding on the interaction of industry-
flexibility with technique wedges and the quantitative implications
of this interaction, we conduct another set of counterfactuals: In Ta-
bles 9e–9h we raise the level of production of flexibility for each
industry to −0.15, which is the level of production flexibility of the
Food-Tobacco industry. This allows us to account for the contribution
of 𝜌 in explaining the variation in TFP gains across industry-clusters
from correcting distortions. Before we present the quantitative results
we note that “counterfactual TFP exercises with the counterfactual-𝜌”
enerate two opposing effects resulting from the expansion in 𝜌. On
he one hand, as we discussed above in detail, the rise in 𝜌 lowers the
enefits from reducing technique wedges. This property follows from
roposition 4.1. On the other hand, increasing 𝜌 raises TFP because of
ts direct impact on TFPQ1 as well as TFPQ2, a property which follows
rom the result in Proposition 3.2. If the former effect is strong enough
o dominate the latter, compared to what we have obtained in Tables 9c
nd 9d we should record quantitatively smaller TFP expansions from
-counterfactuals in Tables 9g and 9h.

The results in Tables 9e–9h reveal that for almost all industry-
ear combinations the mitigation effect of 𝜌 is quite strong such that
roduction flexibility explains a large fraction of the TFP gains from
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reducing technique wedges. Although the TFP gains from reducing 𝜂𝐾
nd 𝜂𝑌 distortions do also change slightly when, ceteris paribus, 𝜌
s increased to the level of Food-Tobacco industry, the reductions in
FP gains from removing technique wedges contract substantially: by
aising 𝜌 of each industry to the level of the industry with the lowest
we observe that a large part of the inter-industry variation in TFP-

ains from reducing technique wedges vanishes. As we also report in
ables 9g and 9h, 40%–80% of TFP gains from reducing technique
edges are explained by the difference between the actual flexibility of
roduction in a particular industry and the flexibility of production of
he Food-Tobacco industry. Hence, we conclude that industry-wide pro-
uction flexibility is a quantitatively important component to channel
he TFP consequences of technique wedges.

.3.4. Decomposition of TFP effects
In Tables 10a and 10b we provide a decomposition analysis for

he detrimental TFP effects of distortionary wedges based on what we
resented in Tables 9a-d. In both tables we present results over time
nd across industry classifications. The quantitative results from this
nalysis allow us to conclude that technique wedge is by far the most
mportant source of inefficiency across all industries and over time,
ccounting for about three quarters of all detrimental distortionary
ffects on TFP and almost all of such TFP losses in Paper and Metal
ndustries. As also highlighted before, capital wedge is inconsequen-
ial throughout. Output wedge accounts for about a quarter of the
etrimental TFP effects; it becomes more important over time and is
articularly important in Food & Tobacco industry. Finally, our findings
re robust regardless of the application of TFPQ1 or TFPQ2 as the
hysical productivity measure.

.4. Cross-country comparisons: India and China

Next we would like to tackle whether persistent and quantitatively
ignificant efficiency losses associated with technique wedges are vis-
ble in developing-country firm-level data as well. If so, this would
ave important development policy implications. In order to address
his point we refer to the Global-database of Compustat for publicly-
raded firm-level data from India and China. We choose the Compustat
lobal-data for the cross-country analysis in order to work with data-

ets that are by nature comparable to the US Benchmark: working with
ompustat Global allows to compare publicly traded firms in the US
ith the publicly traded firms in the context of developing countries.

Publicly traded firms in developing countries are expected to be
arge firms as well (as for the case of the US) to not face heavy distor-
ionary taxes when financing capital inputs. Such publicly traded firms
re expected not to be subject of heavy financial market imperfections,
hich loom large in developing countries. If at all, they might be
ven on the beneficiary-side of financial frictions. However, technique
edges could also be important for the efficiency losses of publicly

raded firms in developing countries.
Tables 11a and 11b present descriptive statistics of firm-level vari-

bles for the country-cases of China and India using data from Com-
ustat Global Fundamentals Annual for the years between 1995–2014.
hen compared against what we have presented in Table 5 (for the
S Benchmark), the distributional properties here exhibit firm-size
istributions that are skewed towards larger scale establishments in
oth China and India.

We then back-out distortions and technology frontiers at firm-level
using the benchmark US parameters (𝑟, 𝜎; 𝛼, 𝜌), and then conduct the

FP counterfactual analyses: we shut down each source of distortion
ne-at-a-time and present the ratio between the resulting counterfac-
ual TFP and the benchmark TFP in Tables 12a–12b (13a–13b) for India
for China). Because of the limited availability of manufacturing data
bservations in the year of 1995 for India and China we report results
nly for the years of 2005 and 2014. Furthermore, since for the case of
14

hina in 2005 manufacturing data for Food-Tobacco and Paper industry a
Table 11a
India: Distributional properties of firm-variables.

Variable name Mean Std. Dev. Min Max # Obs.

ln(Labor) 6.63 6.63 0 11.79 16 977
ln(Capital) 19.92 2.00 8.69 28.42 67 828
ln(Total Labor Cost) 17.44 2.45 6.90 26.27 68 561
ln(Total Capital Cost) 19.75 2.01 7.60 28.47 63 520
ln(Total Revenue) 20.35 2.25 6.90 29.21 69 837

Table 11b
China: Distributional properties of firm-variables.

Variable name Mean Std. Dev. Min Max # Obs.

ln(Labor) 7.57 1.50 3.04 13.22 3448
ln(Capital) 19.68 1.23 13.15 28.29 59 039
ln(Total Labor Cost) 18.51 1.78 8.29 25.51 4576
ln(Total Capital Cost) 19.80 1.62 10.89 28.43 54 759
ln(Total Revenue) 20.49 1.27 6.90 28.45 64 684

Table Notes. Firm-level averages in Tables 10a–b are from Compustat-Global Fun-
damentals Annual for the years between 1995–2014 — from firms operational in
manufacturing industry-clusters presented in Table 1.

Table 12a
India: Setting 𝜂𝐾 = 0 and 𝜂𝑌 = 0.

𝜂𝐾 = 0 𝜂𝑌 = 0

2005 2014 2005 2014
Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.043 1.007 6.518 6.103
Paper 1.020 0.991 4.124 4.890
Chem 1.016 0.648 7.984 1.561
Metal 0.989 0.899 2.435 66.260
Mach. 0.997 1.009 2.895 2.885
Elect 0.978 0.998 1.702 16.003
Trans.Eq 1.000 1.016 1.464 4.715

clusters are not available, we do not analyze those two industries in
2005 for China.

The results indicate that for Indian and Chinese manufacturing
industries reducing the capital distortions as a whole do not stimulate
the aggregate TFPs any more than they would for US manufacturing
industries. In some industry clusters reducing capital distortions lower
industry TFPs. This quantitative result we explain by the “relatively
large” firms that we get to study when using Compustat Global data.

Moving onto output distortions, for both India and China we observe
that in both 2005 and 2014 shutting down 𝜂𝑌 = 0 increases TFP by
quantitatively significant proportions, for most of the manufacturing
industries. This is a similar pattern that we had also obtained for the
US benchmark.

Importantly, removing technique wedges results in substantial TFP gains
n both India and China: In both years of the analysis, technique wedges
enerate substantial efficiency losses for the aggregate industry-TFPs

with larger TFP gains from correcting technique wedges in indus-
ries with low production flexibility. Also, when compared against the
fficiency effects of technique wedges in the US, in India and India
he effects of technique wedges are not any lower than those of in the
S benchmark. This quantitative result suggests that technique wedges

hould be regarded as an important issue for developing countries as
ell.

.5. Robustness

In this section we test the sensitivity of our main findings from
he US benchmark analysis with respect to the specification of produc-
ion framework, the benchmark values of macro parameters, outliers,
he potential mismeasurement of firm-level variables, and finally the
elative benchmark of counterfactual policy experiments. All tables
ssociated with the robustness analysis are included in Appendix C.
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Table 12b
India: Setting 𝜙 = 0.

𝜙 = 0 with 𝑇𝐹𝑃𝑄1 𝜙 = 0 with 𝑇𝐹𝑃𝑄2

2005 2014 2005 2014

Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.506 1.503 1.497 1.501
Paper 10.497 14.494 2.475 13.399
Chem 9.903 12.978 4.405 8.966
Metal 11.416 26.939 9.705 18.070
Mach. 7.011 6.758 1.940 6.379
Elect 7.675 9.995 4.760 4.976
Trans.Eq 2.608 2.604 1.000 2.061

Table 13a
China: Setting 𝜂𝐾 = 0 and 𝜂𝑌 = 0.

𝜂𝐾 = 0 𝜂𝑌 = 0

2005 2014 2005 2014

Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. N/A 0.989 N/A 1.469
Paper N/A 1.030 N/A 2.585
Chem 1.003 0.990 2.520 8.607
Metal 0.976 0.991 2.130 4.008
Mach. 1.037 0.946 1.724 2.026
Elect 1.047 1.003 2.117 3.239
Trans.Eq 1.018 0.993 0.803 1.886

Table 13b
China: Setting 𝜙 = 0.

𝜙 = 0 with 𝑇𝐹𝑃𝑄1 𝜙 = 0 with 𝑇𝐹𝑃𝑄2

2005 2014 2005 2014

Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. N/A 1.538 N/A 1.000
Paper N/A 7.733 N/A 2.081
Chem 8.166 9.921 0.838 3.008
Metal 10.939 16.274 6.044 2.912
Mach. 9.703 4.108 6.793 2.240
Elect 1.436 10.166 1.412 8.027
Trans.Eq 2.681 2.574 1.284 1.727

First, we offer a comparison with the special case of neoclassical
roduction function,

= 𝑧
[

𝜆𝐾𝜌 + (1 − 𝜆)𝐿𝜌]
1
𝜌 . (45)

here 𝑇𝐹𝑃𝑄 is given by 𝑇𝐹𝑃𝑄 = �̂� and 𝑎𝐾 = 𝑎𝐿 = �̂� is exogenously
set for all firms. Thus, there is no flexible techniques decision-making
at the firm-level. Using this alternative specification we conduct a set
of quantitative experiments, where we reduce capital and output dis-
tortions to zero when the technology is given by (45) and the firms are
subject to heterogenous factor (𝜂𝐾 ) and output (𝜂𝑌 ) distortions, which
we continue to back out using (31) and (34). The results are reported
in Tables C.1a and C.1b in Appendix C (for the years of 1995, 2005 and
2014). We find that capital distortions are still negligible while output
distortions are substantial in determining the TFP efficiency losses. This
important result shows that the quantitative TFP effects of capital and
output distortions that we captured previously are not sensitive to our
‘‘generalized production framework’’ specification.

Second, we turn to checking whether our results are sensitive to
typical parametrization as in Hsieh and Klenow (2009): the average
cost of capital 𝑟 and the elasticity of substitution 𝜎 across Dixit–Stiglitz
varieties within an industry. In Appendix Tables C2a–b and C3a–b in,
we check the sensitivity of our TFP counterfactual results changing the
value of 𝜎 from 3 to 2 and 4 and 𝑟 from 0.1 to 0.07 and 0.13 (for the
year of 2014 for the sake of brevity). We find essentially no change
from our previous primary quantitative findings, in relative roles played
by capital and output distortions and technique wedges in determining
15
industry TFPs and in the role of 𝜌 for mitigating the distortionary effects
of technique imperfections.

Third, we perform a robustness test by eliminating outlier-firms
from the analysis based on the level of revenue productivities, TFPR1
and TFPR2 (for the year of 2014). It is noted that when backing out the
technique wedges we already truncated the distribution of TFPQs and
TFPRs across firms by limiting the extreme values that 𝜙 can take. In
the counterfactual TFP analysis reported in Appendix Tables C.4a (and
C.4b) we take a further step and leave out any firm from our analysis
whose TFPR1 (and TFPR2) takes a value that is not within 1.5 standard
deviation of industry’s mean TFPR1 (and TFPR2), which reduces the
sample sizes by 10%–20%. As can be seen in Tables C4a–b, the primary
quantitative findings fully remain.

Fourth, we turn to the more subtle issue of mismeasurement. Among
the five firm-level variables used in our quantitative exercises (namely,
number of employees, total cost of labor, capital stock, total cost of
capital, and revenues) capital stock, total cost of capital, and rev-
enues might be prone to some mismeasurement problems. To address
these concerns, we provide the following theoretical and quantitative
exercises.

At first we consider the case of mismeasured capital stock. Specif-
ically, we suppose that the “capital stock” measure that we observe,
call it �̂� from now on, is a distorted version of the actual capital stock
utilized by the firm (denoted with 𝐾). We note that the measurement
problem is not with “total capital expenditures” but with “capital
stock”. That is �̂�(1 + 𝑢𝐾 ) = 𝐾, where 𝑢𝐾 is a firm-specific capital
mismeasurement distortion. Then the maximization program stays the
same for the firm as we have analyzed previously (with 3 distortions),
but the 𝐾∕𝐿 ratio equation becomes:

�̂�
𝐿

= 𝑤
𝑟

𝛼
1 − 𝛼

⋅
(1 + 𝜙)

𝜌
1−𝜌

1 + 𝜂𝐾
1

1 + 𝑢𝐾
.

Then, the 3 equations to be utilized to back out distortions become:

1 − 𝜂𝑌 = 𝜎
𝜎 − 1

𝑇𝐶
𝑝𝑌

, (46)

1 + 𝜙 =
{1 − 𝛼

𝛼

[𝑇𝐶
𝑤𝐿

− 1
]}

1−𝜌
𝜌 , (47)

(1 + 𝜂𝐾 )(1 + 𝑢𝐾 ) = 1
𝑟�̂�

(𝑇𝐶 −𝑤𝐿). (48)

The output distortion 𝜂𝑌 still gets uniquely identified by (46) and 𝜙
is uniquely identified by (47), whereas (1 + 𝜂𝐾 )(1 + 𝑢𝐾 ) gets jointly
identified through (48) but we cannot decouple 𝜂𝐾 and 𝑢𝐾 . Hence, even
if we allow for a fourth firm-level distortion as mismeasured capital, we
can still identify 𝜙 – exactly the way we identified it in the benchmark
framework – as well as the output distortion 𝜂𝑌 . This property is a
theoretical robustness check for the identification of technique wedge
term 𝜙.

Since allowing for mismeasured capital stock does not affect the
identification of technique and output distortions, it does not influence
their quantitative impact on TFP either. Identification of capital dis-
tortions could of course get affected by capital-stock mismeasurement.
But, given the relatively negligible effects of capital distortions that
we captured – that are also comparable to the previous findings of
the literature – we move on and study the quantitative implications
of mismeasured total cost of capital. Mismeasured cost of capital could
affect the identification of distortions. Since we cannot observe mis-
measurement in cost of capital at the firm-level, we focus on two
aggregate cases. In a set of alternative TFP counterfactual exercises
we assume that the total cost of capital to be 15% larger (smaller)
than the benchmark measurement and report the results in Table C.5a
(Table C.5b), again for the year of 2014. The results reveal that our
previous findings are robust to a uniform mismeasurement of total cost
of capital across firms. Specifically, assuming that for all firms the
total cost of capital is systematically larger (or smaller) than what we
captured in the benchmark does not alter the key findings that capital
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distortions are relatively negligible, whereas primarily technique and
then output distortions are key drivers of TFP efficiency losses.

Next, we study the robustness of our results with respect to the
inclusion of intermediate inputs. For this purpose we first consider a
structural approach by assuming that the total output of a firm is given
by  = 𝑌 𝜐𝐼1−𝜐, where 𝑌 captures firm’s output net of intermediate
inputs, 𝐼 represents the intermediate inputs and 𝜐 is the share of
intermediate inputs in production. Firm’s output net of intermediates
is produced by combining capital (𝐾) and labor (𝐿) as specified previ-
ously. Suppose that 𝜐 is determined at the level of the industry and also
that the unit cost of intermediate inputs for all firms equal to 𝑞 within
an industry. This framework allows us to obtain the structural revenues

net of intermediate inputs as 𝑝
(

1−𝜐
𝑞

)
1−𝜐
𝜐

. Since
(

1−𝜐
𝑞

)
1−𝜐
𝜐 is an industry-

ide multiplier, it does not impact the quantitative TFP implications
f distortionary wedges. This means as long as firms’ unit costs of
ntermediate inputs do not exhibit heterogeneity, firms’ intermediate
nput demand would not alter the conclusions we obtained in our
enchmark analysis with regard to TFP effects of technique, capital,
nd output distortions.

However, unit cost of intermediate inputs may show heterogeneity
cross firms. In Tables C.7a–C.7d, we take this potential heterogeneity
nto account. Following, De Loecker et al. (2020), we utilize the cost
of goods sold data item of Compustat – net of the total cost labor –
as a measure for the cost of (variable) intermediate inputs at the firm
level. We compute the net revenues for each firm by subtracting the
intermediate inputs cost from revenues and performing the quantitative
analyses using this net revenues measure.12

As the results presented in Tables C.7a–C.7d reveal, our main find-
ngs largely remain the same after incorporating firm-level intermediate
nputs in our analysis, with large TFP gains from removing technique
istortions and negligible TFP impact of capital distortions across the
pectrum of manufacturing industries.

Fifth and lastly, we explore the implications of altering the nature
f our counterfactual experiments. Our main quantitative analyses
oncentrate on reducing the distortions to a level of zero and then
omputing TFP gains (i.e., 𝜂𝐾 , 𝜂𝑌 , and 𝜙 were set equal to zero

in the counterfactual analyses). As a final robustness check, we set
capital, output and technique distortions equal to their mean values
– denoted with �̄�𝐾 , �̄�𝑌 , and �̄� respectively – in a particular industry

year combination and quantify the counterfactual implications of
liminating distortions. For the case of 𝜂𝐾 counterfactual, this exercise
s quite useful, because setting 𝜂𝐾 = �̄�𝐾 for all firms helps to measure
FP effects of eliminating capital distortions in a manner that keeps the
verage capital input constant within an industry. We report the results
rom these alternative quantitative analyses in Tables C.8a–C.8d.

Altering the counterfactual target from 𝜂𝐾 = 0 to 𝜂𝐾 = �̄�𝐾 for
he case of capital distortions causes a negligibly small change with
espect to the TFP effects of capital distortions compared to what we
aptured in the main quantitative analysis: we continue to observe a
inimal impact for the capital distortions on TFP also with 𝜂𝐾 = �̄�𝐾 .

or the case of output distortions, changing the counterfactual target to
𝑌 = �̄�𝑌 causes no change for the counterfactual TFP impact of output
istortions, because as it can be observed from the TFP (Eq. (43)) and
FPR (Eqs. (39) and (44)) expressions, including a factor of (1 − 𝜂𝑌 ) in
he counterfactual TFPR for all firms is equivalent to not including this
actor at the firm-level TFPR (as we did in 𝜂𝑌 = 0 counterfactual) while

taking into account that (1 − 𝜂𝑌 ) then gets to enter in the comparison
of industry-level 𝑇𝐹𝑃𝑅’s between the benchmark and counterfactual

12 There is not a strong correlation between the level of revenues and
he share of intermediate inputs in Compustat data, where the correlation
oefficient for the relationship between revenues and intermediate input share
i.e., intermediate-inputs-cost/total revenues) is −0.003.
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cases. A similar conclusion is obtained for the counterfactuals of 𝜙 = �̄�
with TFPQ1 and TFPQ2), where changing the target of 𝜙 = 0 in the
ounterfactuals to 𝜙 = �̄� switches the impact of eliminating technique
edges on TFP between what we had reported in the main quantitative
nalyses for the counterfactuals with TFPQ1 and TFPQ2.

. Concluding remarks

We have developed a generalized production framework, where
irms decide on their output scale, production factors as well as pro-
uction techniques that determine the efficient use of factors under
urrently operating technologies. We have characterized factor de-
ands, techniques choice and the unit cost of production. By allowing

irms to differ in technology frontiers, capital finance frictions, tech-
ique wedges and output distortions, we have developed an aggregated
easure of industry TFP. We have then examined the consequences of

apital, output and technique distortionary wedges for the aggregate
roductivity as well as the interplay of the TFP effects of distor-
ions with industry-level production flexibility, by also providing an
mpirical justification for our theoretical structure.

The theoretical results indicate that while both capital and tech-
ique wedges raise the unit cost of production, substitutability between
echnique-augmented factors reduces the efficiency losses borne by
echnique wedges: The detrimental effects of capital financing dis-
ortions are independent of the extent of industry-level production
lexibility, but the detrimental effects of technique imperfections are
mplified by industry production inflexibility.

We have undertaken a number of quantitative exercises by cal-
brating the model to fit the observations from firm-level data in
anufacturing industries. Our quantitative results can be summarized

s the following: (i) for all manufacturing industry-clusters – through-
ut the years of the analysis – technique wedges and output distortions
ccount for most of the efficiency losses at the level of industry TFPs;
ii) the impact of technique wedges in generating efficiency losses in
he aggregate is generally larger than that of the output distortions for
any industry-clusters and over time; (iii) capital distortions have a

argely negligible impact on industry-level TFPs; (iv) the overall quan-
itative findings are comparable across US, China and India; (iv) the
nefficiency impact of technique wedges get mitigated by the industry-
ide flexibility of production, implying that TFP gains from removing

echnique wedges are larger in industries where efficient units of capital
nd labor exhibit strong complementarity.

An important policy implication arising from our analysis is that
o achieve greater production efficiency and macroeconomic develop-
ent, mitigating technique imperfections should be granted with high
riority. Such policy arrangement may include, but not limited to, tax
ncentives for flexible manufacturing systems.

There are several extensions that can build upon our analysis, such
s the investigation of the interplay between technique imperfections
nd industry flexibility on extensive margin misallocation under un-
ertainty and the analysis of different market structures in driving the
mportance of technique wedges for the aggregate productivity. These
xtensions we leave to future work.

RediT authorship contribution statement

Burak R. Uras: Conceptualization, Data curation, Formal analy-
is, Funding acquisition, Investigation, Methodology, Project admin-
stration, Resources, Software, Supervision, Validation, Visualization,

riting – original draft, Writing – review & editing. Ping Wang:
onceptualization, Data curation, Formal analysis, Funding acquisition,

nvestigation, Methodology, Project administration, Resources, Soft-
are, Supervision, Validation, Visualization, Writing – original draft,
riting – review & editing.



Journal of Development Economics 167 (2024) 103251B.R. Uras and P. Wang

d
l

L

𝐵

w
N

𝑔

w
b

𝛯

w
p
i

m

o

m

T

𝐷

l
c
p
t

r
a
w
f
e

𝑐

Declaration of competing interest

With this document we declare that as the authors of this manuscript
we have no conflict of interest resulting from the research presented in
our manuscript.

Data availability

The authors do not have permission to share data.

Appendix A

To rationalize technique wedge 𝜙 as an outcome of endogenous
ecision making, consider a learning cost 𝛯(𝑒) where 𝑒 ∈ [0, 1] is
earning intensity. Notably,

�̂�𝛼𝐾 �̂�
1−𝛼
𝐿 = (1 + 𝜙)𝛼(1−𝛼)(1 + 𝜙)−𝛼(1−𝛼)

(

𝑎∗𝐾
)𝛼 (𝑎∗𝐿

)1−𝛼 =
(

𝑎∗𝐾
)𝛼 (𝑎∗𝐿

)1−𝛼 = 𝑧

that is, by construction, even with imperfect technique choice, the
techniques constraint 𝐻(𝑎𝐾 , 𝑎𝐿) = 𝑎𝛼𝐾𝑎

1−𝛼
𝐿 = 𝑧 is unchanged. This

means one cannot rationalize the endogenous technique choice via
endogenous choice of menu. Rather one should rationalize it based on
the technique gap between (�̂�𝐾 , �̂�𝐿) and

(

𝑎∗𝐾 , 𝑎
∗
𝐿
)

.
To begin, we measure the benefit from reducing the gap. For

simplicity, let us measure the gap in 𝑎𝐾∕𝑎𝐿-ratio in a quadratic form
(nonsmooth in the absolute-value form):

𝑔𝑎𝑝 =
(

�̂�𝐾∕�̂�𝐿 − 1
𝑎∗𝐾∕𝑎

∗
𝐿

)2
= 𝜙2

et the benefit be logistic given by

(𝑔𝑎𝑝) = 2
1 + exp (𝑔𝑎𝑝)

,

hich is well-defined with 𝐵 (0) = 1, 𝐵 (∞) = 0, 𝐵′ < 0 and 𝐵′′ < 0.
ext, let learning technology be Ricardian:

𝑎𝑝(𝑒) = 𝜗 ⋅ (1 − 𝑒)

ith 𝑔𝑎𝑝(0) = 𝜗 > 0, 𝑔𝑎𝑝(1) = 0 and 𝑔𝑎𝑝′ < 0. Finally, let learning cost
e quadratic:

(𝑒) = 𝜉𝑒2,

here 𝜉 is subject to a firm-specific distortionary wedge as a result of
roduction design frictions. Then the optimization problem of Stage 2
n our model can be specified as:

ax
𝑒

𝐵 (𝑔𝑎𝑝(𝑒)) − 𝛯(𝑒)

r, by substituting in functional forms:

ax
𝑒

2
[

1 + exp (𝜗 ⋅ (1 − 𝑒))
]−1 − 𝜉𝑒2.

he first-order condition is

(𝑒) ≡ 𝜗
[

1 + exp (𝜗 ⋅ (1 − 𝑒))
]−2 exp (𝜗 ⋅ (1 − 𝑒)) = 𝜉𝑒,

where it is easily shown that 𝐷′ = −𝜗
[

1 + exp (𝜗 ⋅ (1 − 𝑒))
]−3 exp (𝜗⋅

(1 − 𝑒)) < 0, = 𝜗
[

1 + exp (𝜗)
]−2 exp (𝜗) > 0 = 𝛯′(0) and 𝐷(1) = 𝜗∕4.

Thus, we have an interior solution of effort intensity if

𝐷(1) = 𝜗∕4 ≤ 𝜉 = 𝛯′(1).

Let 𝑒∗(𝜉) solve 𝐷(𝑒∗) = 𝜉𝑒∗. It is clear that 𝑒∗(𝜉) is decreasing in 𝜉 and
at its minimum support 𝑒∗(𝜗∕4) = 1. Denote the mean of 𝜉 as 𝜉 and the
corresponding effort intensity as 𝑒∗. We can then back out

𝜙 = ±
√

𝑔𝑎𝑝(𝑒∗) = ±
√

𝜗 ⋅ [1 − 𝑒∗(𝜉)],

with 𝜙 ≷ 0 iff 𝜉 ≷ 𝜉. The above expression therefore links production
design friction 𝜉 to technique wedge 𝜙 with larger production design
frictions leading to greater technique wedge.
17
Appendix B

In this Appendix, we provide detailed mathematical derivations and
proofs of various Lemmas and Propositions.

Benchmark step-2 solution: The cost minimizing 𝐾 − 𝐿
The second-step is the standard neoclassical cost minimization prob-

em presented at (4). Denoting the Lagrange multiplier associated with
onstraint by 𝜇1, solving for 𝜇1 will provide the marginal cost of
roducing one extra unit of output. First order conditions with respect
o 𝐾 and 𝐿 are derived as the following

𝐾 ∶ 𝑟 = 𝜇1𝜆𝑎
𝜌
𝐾𝐾

𝜌−1[(𝑎𝐾𝐾)𝜌 + (𝑎𝐿𝐿)𝜌]
1−𝜌
𝜌

⇒ 𝐾 = 𝜇
1

1−𝜌
1 𝑟

−1
1−𝜌 𝜆

1
1−𝜌 𝑎

𝜌
1−𝜌
𝐾 𝑌 ; (49)

𝐿 ∶ 𝑤 = 𝜇1(1 − 𝜆)𝑎𝜌𝐿𝐿
𝜌−1[(𝑎𝐾𝐾)𝜌 + (𝑎𝐿𝐿)𝜌]

1−𝜌
𝜌

⇒ 𝐿 = 𝜇
1

1−𝜌
1 𝑤

−1
1−𝜌 (1 − 𝜆)

1
1−𝜌 𝑎

𝜌
1−𝜌
𝐿 𝑌 . (50)

Putting (49) and (50) together yields to the 𝐾∕𝐿 ratio at (6). Plugging
𝐾 and 𝐿 from (49) and (50) into the constraint at (4) and solving for
𝜇1 provides the unit cost of production that we presented at (7).

Benchmark step-1 solution: The optimized 𝑎𝐾 -𝑎𝐿
The first-step cost minimization problem is stated at (5). Denoting

the lagrange multiplier associated with the constraint by 𝜇2, we can
derive the first order conditions with respect to 𝑎𝐾 and 𝑎𝐿

𝑎𝐾 ∶ 𝑟
𝜌

𝜌−1 𝜆
1

1−𝜌 𝑎
− 𝜌

𝜌−1−1

𝐾

[

(

𝑟
𝑎𝐾

)
𝜌

𝜌−1
𝜆

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
𝜌

𝜌−1
(1 − 𝜆)

1
1−𝜌

]

𝜌−1
𝜌 −1

= 𝜇2𝛼𝑎
𝛼−1
𝐾 𝑎1−𝛼𝐿 , (51)

𝑎𝐿 ∶ 𝑤
𝜌

𝜌−1 (1-𝜆)
1

1−𝜌 𝑎
− 𝜌

𝜌−1−1

𝐿

[

(

𝑟
𝑎𝐾

)
𝜌

𝜌−1
𝜆

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
𝜌

𝜌−1
(1-𝜆)

1
1−𝜌

]

𝜌−1
𝜌 −1

= 𝜇2(1-𝛼)𝑎𝛼𝐾𝑎
−𝛼
𝐿 . (52)

Solving (51) and (52) together provide us with the optimized 𝑎𝐾∕𝑎𝐿
atio at (8). Plugging (8) in (6) solves for the optimized 𝐾∕𝐿 ratio as
function of model parameters 𝛼 and 𝜆; and factor prices 𝑟 and 𝑤 as
e expressed at (9). In order to determine the levels of 𝑎𝐾 and 𝑎𝐿 as

unctions of 𝑧, 𝑤∕𝑟, 𝛼 and 𝜌, we plug (8) in 𝐻(𝑎𝐾 , 𝑎𝐿) and obtain the
xpressions at (10) and (11). Plugging 𝑎𝐾 and 𝑎𝐿 in 𝑐(.) provides

(𝑤, 𝑟) = 1
𝑧
𝑟𝛼𝑤1−𝛼 [𝜆𝛼(1 − 𝜆)1−𝛼

]− 1
𝜌

[

( 𝛼
1 − 𝛼

)1−𝛼
+
( 1 − 𝛼

𝛼

)𝛼]
𝜌−1
𝜌

.

Finally, putting the related terms together yields the unit cost expres-
sion at (12).

Proof of Proposition 2.1
In order to evaluate the optimality of an interior solution we need

to consider two relevant cases, (i) 𝜌 ∈ (−∞, 0) and (ii) 𝜌 ∈ (0, 1), and
check whether the unit cost function at (12) is indeed minimized for
𝑎∗𝐾 − 𝑎∗𝐿 that we derived at (10) and (11).

Case-i: 𝜌 ∈ (−∞, 0).
We perturb the 𝑎𝐾 − 𝑎𝐿 choice from 𝑎∗𝐾 − 𝑎∗𝐿 we just derived by

𝜖 – while keeping the firm on the same technology menu dictated by
its technology frontier 𝑧 – and investigate whether the optimal 𝜖 that
minimizes the unit cost is 𝜖 = 0.

Specifically, suppose that the firm operates with a capital intensity
of �̂�𝐾 = (1+ 𝜖)1−𝛼𝑎∗𝐾 – with −1 < 𝜖 finite – instead of 𝑎∗𝐾 . Since the firm
is bound by the technology frontier 𝑧, this implies that �̂� = (1+ 𝜖)−𝛼𝑎∗
𝐿 𝐿
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𝜖
l
b
c
g

f

f

f

so that (�̂�𝐾 )𝛼(�̂�𝐿)1−𝛼 = 𝑧. Given �̂�𝐾 − �̂�𝐿, the unit cost of production
becomes

𝑐(𝑤, 𝑟; 𝜖) = 1
𝑧

(

(𝛼
𝜆

)
1
𝜌 𝑟
𝛼

)𝛼 (
( 1 − 𝛼
1 − 𝜆

)

1
𝜌 𝑤
1 − 𝛼

)1−𝛼

× (1 + 𝜖)𝛼
(

1 + 𝛼
(

(1 + 𝜖)
𝜌

1−𝜌 − 1
))

𝜌−1
𝜌

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡𝛺(𝜖)

. (53)

Then,

𝜕𝑐
𝜕𝜖

= 𝑐
𝛺(𝜖)

[

𝛼(1 + 𝜖)𝛼−1
(

1 + 𝛼
(

(1 + 𝜖)
𝜌

1−𝜌 − 1
))

𝜌−1
𝜌

− 𝛼(1 + 𝜖)𝛼+
2𝜌−1
1−𝜌

(

1 + 𝛼
(

(1 + 𝜖)
𝜌

1−𝜌 − 1
))

−1
𝜌

]

. (54)

We note that 𝜕𝑐
𝜕𝜖 = 0 if and only if 𝜖 = 0. Next we check whether

= 0 constitutes a global minimum or a global maximum (and if the
atter turns out to be the case the optimal 𝑎𝐾−𝑎𝐿 choice would be given
y a corner solution and not by (10) and (11)). There are two cases to
onsider: 𝜖 > 0 and 𝜖 < 0. We can easily note that 𝜖 = 0 constitutes a
lobal minimum for the unit cost function if and only if

or 𝜖 > 0, 𝜕𝑐
𝜕𝜖

> 0, (55)

or 𝜖 < 0, 𝜕𝑐
𝜕𝜖

< 0. (56)

Using (54), we can see that

or 𝜖 > 0, 𝜕𝑐
𝜕𝜖

> 0 if (1 − 𝛼) > (1 − 𝛼)(1 + 𝜖)
𝜌

1−𝜌 , (57)

for 𝜖 < 0, 𝜕𝑐
𝜕𝜖

< 0 if (1 − 𝛼) < (1 − 𝛼)(1 + 𝜖)
𝜌

1−𝜌 . (58)

Both conditions hold, since 0 < 𝛼 < 1 and 𝜌 < 0. Hence, choosing 𝑎𝐾−𝑎𝐿
interiorly as (10) and (11) in the second-stage minimizes the firm’s unit
cost of production as long as 𝜌 < 0.

Case-ii: 𝜌 ∈ (0, 1).
Expressions (10)–(12) fully remain for the case of 1 > 𝜌 > 0; and

therefore, we do not repeat them. The optimality conditions (54)–(58)
also remain. What changes compared to the case-i is that with 𝜌 > 0
the conditions of optimality become

for 𝜖 > 0, (1 − 𝛼) < (1 − 𝛼)(1 + 𝜖)
𝜌

1−𝜌 , (59)

for 𝜖 < 0, (1 − 𝛼) > (1 − 𝛼)(1 + 𝜖)
𝜌

1−𝜌 . (60)

Therefore, given (57)–(58), in industries with 𝜌 ∈ (0, 1) the optimal
(𝑎∗𝐾 , 𝑎

∗
𝐿) combination is at a corner. Hence, depending on the parameter

constellations of the economy the optimal 𝑎∗𝐾 and 𝑎∗𝐿 are given by

𝑎∗𝐾 = 𝑎𝐾 , (61)

𝑎∗𝐿 =
(

𝑧𝑎−𝛼𝐾
)

1
1−𝛼 , (62)

or,

𝑎∗𝐾 =
(

𝑧𝑎𝛼−1𝐿
)

1
𝛼 , (63)

𝑎∗𝐿 = 𝑎𝐿. (64)

Proof of Proposition 2.2
We re-write the unit cost function as

𝑐(𝑤, 𝑟) = 1
𝑧
𝑟𝛼𝑤1−𝛼

⎡

⎢

⎢

⎢

⎢

(

𝜆𝛼(1 − 𝜆)1−𝛼
)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⎤

⎥

⎥

⎥

⎥

1
𝜌
⎡

⎢

⎢

⎢

⎣

𝛼𝛼(1 − 𝛼)1−𝛼
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝛺

⎤

⎥

⎥

⎥

⎦

1−𝜌
𝜌

(65)
18

⎣

𝛺1 ⎦

2

The first term inside the square brackets (𝛺1) is greater than 1
whereas the second term (𝛺2) is smaller than 1. Therefore, the im-
pact of more flexibility on cost of production depends on 𝜆 and 𝛼.
Specifically, if

𝜆𝛼(1 − 𝜆)1−𝛼 < 𝛼𝛼(1 − 𝛼)1−𝛼 (66)

then more flexibility is desirable. In order to see the parameter condi-
tions for which the (66) holds; note that

argmax
𝜆

𝜆𝛼(1 − 𝜆)1−𝛼 = 𝛼,

which implies that the highest value the LHS of (66) could attain equals
to 𝛼𝛼(1−𝛼)1−𝛼 . Therefore, 𝜆𝛼(1−𝜆)1−𝛼 ≤ 𝛼𝛼(1−𝛼)1−𝛼 for all 𝜆, 𝛼 ∈ [0, 1].

Derivation of unit cost of production with distortions
Recursive solution to firm’s staged decision making process is as

follows.

𝐒𝐭𝐚𝐠𝐞-𝟒. max
𝑝

(1 − 𝜂𝑌 )𝑝𝑌 𝑑 (𝑝) − 𝑐(𝜙, 𝜂)𝑌 𝑑 (𝑝) =
[

(1 − 𝜂𝑌 )𝑝 − 𝑐(𝜙, 𝜂)
]

𝑌 𝑑 (𝑝)

𝑠.𝑡. 𝑌 𝑑 (𝑝) =
( 𝑝
𝑃

)−𝜎
𝑌𝐽 .

First-order conditions are

(1 − 𝜂𝑌 )𝑌 𝑑 (𝑝) = 𝜎
[

(1 − 𝜂𝑌 )𝑝 − 𝑐(𝜙, 𝜂)
]

𝑌 𝑑 (𝑝)∕𝑝,

(1 − 𝜂𝑌 )𝑝 = 𝜎
[

(1 − 𝜂𝑌 )𝑝 − 𝑐(𝜙, 𝜂)
]

,

𝑝 = 𝜎
𝜎 − 1

𝑐
1 − 𝜂𝑌

,

which provides the pricing function.

𝐒𝐭𝐚𝐠𝐞-𝟑. min
𝐾,𝐿

𝑟(1 + 𝜂𝐾 )𝐾 +𝑤𝐿

𝑠.𝑡. 𝑌 = [𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌]
1
𝜌 .

First-order conditions are

(1 + 𝜂𝐾 )𝑟 = 𝑀𝑃𝐾 = 𝜇
𝜆
(

𝑎𝐾𝐾
)𝜌

𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌
𝑌
𝐾

𝑤 = 𝑀𝑃𝐿 = 𝜇
(1 − 𝜆)(𝑎𝐿𝐿)𝜌

𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌
𝑌
𝐿

𝑤
(1 + 𝜂𝐾 )𝑟

=
𝜇 (1−𝜆)(𝑎𝐿𝐿)𝜌

𝜆(𝑎𝐾𝐾)𝜌+(1−𝜆)(𝑎𝐿𝐿)𝜌
𝑌
𝐿

𝜇 𝜆(𝑎𝐾𝐾)𝜌
𝜆(𝑎𝐾𝐾)𝜌+(1−𝜆)(𝑎𝐿𝐿)𝜌

𝑌
𝐾

=
(1 − 𝜆)(𝑎𝐿𝐿)𝜌𝐾
𝜆
(

𝑎𝐾𝐾
)𝜌 𝐿

= 1 − 𝜆
𝜆

(

𝑎𝐿
𝑎𝐾

)𝜌
(𝐾
𝐿

)1−𝜌

(1 + 𝜂𝐾 )𝑟𝐾 +𝑤𝐿 = 𝜇
𝜆
(

𝑎𝐾𝐾
)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌

𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌
𝑌 , or, 𝑐 = 𝜇

We can express 𝐾∕𝐿 ratio and the unit cost as a function of (𝑎𝐾 , 𝑎𝐿) as
follows.

𝐾
𝐿

=
(

𝑤
(1 + 𝜂𝐾 )𝑟

)
1

1−𝜌 ( 𝜆
1 − 𝜆

)

1
1−𝜌

(

𝑎𝐾
𝑎𝐿

)
𝜌

1−𝜌

𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤)

=
(1 + 𝜂𝐾 )𝑟𝐾 +𝑤𝐿

[𝜆(𝑎𝐾𝐾)𝜌 + (1 − 𝜆)(𝑎𝐿𝐿)𝜌]
1
𝜌

=
(1 + 𝜂𝐾 )𝑟

(

𝑤
(1+𝜂𝐾 )𝑟

)
1

1−𝜌
(

𝜆
1−𝜆

)
1

1−𝜌
(

𝑎𝐾
𝑎𝐿

)
𝜌

1−𝜌 +𝑤

[

𝜆
(

𝑎𝐾
(

𝑤
(1+𝜂𝐾 )𝑟

)
1

1−𝜌
(

𝜆
1−𝜆

)
1

1−𝜌
(

𝑎𝐾
𝑎𝐿

)
𝜌

1−𝜌

)𝜌

+ (1 − 𝜆)(𝑎𝐿)𝜌
]

1
𝜌

=

(

(1+𝜂𝐾 )𝑟
𝑎𝐾

)
−𝜌
1−𝜌 (𝜆)

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
−𝜌
1−𝜌 (1 − 𝜆)

1
1−𝜌

(𝑤)
−1
1−𝜌 (1 − 𝜆)

1
1−𝜌

(

𝑎𝐿
)

𝜌
1−𝜌

[

𝜆
(

𝑎𝐾
(

𝑤
(1+𝜂 )𝑟

)
1

1−𝜌
(

𝜆
1−𝜆

)
1

1−𝜌
(

𝑎𝐾
𝑎

)
𝜌

1−𝜌

)𝜌

+ (1 − 𝜆)(𝑎𝐿)𝜌
]

1
𝜌

𝐾 𝐿
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y

o

𝑐

1

o

𝛼

N

=

(

(1+𝜂𝐾 )𝑟
𝑎𝐾

)
−𝜌
1−𝜌 (𝜆)

1
1−𝜌 +

(

𝑤
𝑎𝐿

)
−𝜌
1−𝜌 (1 − 𝜆)

1
1−𝜌

[

𝜆
(

(

1
(1+𝜂𝐾 )𝑟

)
1

1−𝜌 (𝜆)
1

1−𝜌
(

𝑎𝐾
)

1
1−𝜌

)𝜌

+ (1 − 𝜆)((𝑤)
−1
1−𝜌 (1 − 𝜆)

1
1−𝜌

(

𝑎𝐿
)

1
1−𝜌 )𝜌

]
1
𝜌

=

[

(

(1 + 𝜂𝐾 )𝑟
𝑎𝐾

)
−𝜌
1−𝜌

(𝜆)
1

1−𝜌 +
(

𝑤
𝑎𝐿

)
−𝜌
1−𝜌

(1 − 𝜆)
1

1−𝜌

]
1−𝜌
−𝜌

.

Stage-2. The ex ante unforeseeable distortion (𝜙) to techniques-
choice gets determined, which pushes the techniques-combination away
from the benchmark chosen in Stage-1. Since we assume that the
expected value of 𝜙 equals zero under unforeseeable technique wedges,
in Stage-1 the firm chooses techniques optimally:

𝐒𝐭𝐚𝐠𝐞-𝟏. min
𝑎𝐾 ,𝑎𝐿

𝑐(𝑎𝐾 , 𝑎𝐿; 𝑟, 𝑤) =

[

(

(1 + 𝜂𝐾 )𝑟
𝑎𝐾

)
𝜌

𝜌−1

𝜆
1

1−𝜌 +
(

𝑤
𝑎𝐿

)
𝜌

𝜌−1

(1 − 𝜆)
1

1−𝜌

]
𝜌−1
𝜌

𝑠.𝑡. 𝑎𝛼𝐾𝑎
1−𝛼
𝐿 = 𝑧,

ielding ex ante optimal 𝑎∗𝐾 and 𝑎∗𝐿

𝑎∗𝐾 = 𝑧
(

𝑤
𝑟(1 + 𝜂𝐾 )

)−(1−𝛼)
( 𝛼
1 − 𝛼

)(1−𝛼)
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)(1−𝛼)
(

1
𝜌

)

,

𝑎∗𝐿 = 𝑧
(

𝑤
𝑟(1 + 𝜂𝐾 )

)𝛼
( 𝛼
1 − 𝛼

)−𝛼
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)−𝛼
(

1
𝜌

)

,

and the distorted �̂�𝐾 and �̂�𝐿 as of Stage-2 then take the form of:

�̂�𝐾 = 𝑧
(

𝑤
𝑟(1 + 𝜂𝐾 )

)−(1−𝛼)
( 𝛼
1 − 𝛼

)(1−𝛼)
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)(1−𝛼)
(

1
𝜌

)

(1 + 𝜙)1−𝛼 ,

�̂�𝐿 = 𝑧
(

𝑤
𝑟(1 + 𝜂𝐾 )

)𝛼
( 𝛼
1 − 𝛼

)−𝛼
(

1−𝜌
𝜌

)

( 1 − 𝜆
𝜆

)−𝛼
(

1
𝜌

)

(1 + 𝜙)−𝛼 .

Finally, plugging �̂�𝐾 and �̂�𝐿 into the unit cost function from Stage-2
yields the final form of unit cost of production.

𝑐 =

(

(1 + 𝜙)(1 + 𝜂𝐾 )𝑟
)𝛼 𝑤1−𝛼𝜆−𝛼

1
𝜌 (1 − 𝜆)−(1−𝛼)

1
𝜌

(

𝛼
1−𝛼

)𝛼
(

1−𝜌
𝜌

)

𝑧

[( 𝛼
1 − 𝛼

)

(1 + 𝜙)
𝜌

1−𝜌 + 1
]

𝜌−1
𝜌

=

(

(1 + 𝜙)(1 + 𝜂𝐾 )𝑟
)𝛼 𝑤1−𝛼𝜆−𝛼

1
𝜌 (1 − 𝜆)−(1−𝛼)

1
𝜌 (𝛼)𝛼

1
𝜌 (1 − 𝛼)(1−𝛼)

1
𝜌 𝛼−𝛼 (1 − 𝛼)

𝜌−1
𝜌

−(1−𝛼)

𝑧
⋅

[( 𝛼
1 − 𝛼

)

(1 + 𝜙)
𝜌

1−𝜌 + 1
]

𝜌−1
𝜌 ,

r,

(𝜙; 𝜂) =
(1 + 𝜙)𝛼

𝑧

(

(𝛼
𝜆

)
1
𝜌 𝑟(1 + 𝜂𝐾 )

𝛼

)𝛼 (
( 1 − 𝛼
1 − 𝜆

)

1
𝜌 𝑤
1 − 𝛼

)1−𝛼

×
[

1 + 𝛼
(

(1 + 𝜙)
𝜌

1−𝜌 − 1
)]

𝜌−1
𝜌 .

Proof of Proposition 3.1
Let us define 𝛷 ≡ 1+𝜙. Suppose that 𝜌 < 0 and 𝜙 > 0. First observe

that:

𝑐 ∝ 𝛷𝛼
[

1 + 𝛼
(

𝛷
𝜌

1−𝜌 − 1
)]

1−𝜌
−𝜌

𝜕𝐶
𝜕𝛷

= 𝛼𝛷𝛼−1
[

1 + 𝛼
(

𝛷
𝜌

1−𝜌 − 1
)]

1−𝜌
−𝜌 −𝛷𝛼

[

1 + 𝛼
(

𝛷
𝜌

1−𝜌 − 1
)]

1−𝜌
−𝜌

−1
𝛼𝛷

𝜌
1−𝜌

−1

= 𝛼𝛷𝛼−1
[

1 + 𝛼
(

𝛷
𝜌

1−𝜌 − 1
)]

1−𝜌
−𝜌

−1 {[
1 + 𝛼

(

𝛷
𝜌

1−𝜌 − 1
)]

−𝛷
𝜌

1−𝜌

}

= 𝛼𝛷𝛼−1
[

1 + 𝛼
(

𝛷
𝜌

1−𝜌 − 1
)]

1−𝜌
−𝜌

−1 {
1 − 𝛼 − (1 − 𝛼)𝛷

𝜌
1−𝜌

}

= 𝛼 (1 − 𝛼)𝛷𝛼−1
[

1 + 𝛼
(

𝛷
𝜌

1−𝜌 − 1
)]

−1
𝜌
(

1 −𝛷
𝜌

1−𝜌

)

> 0 for 𝛷 > 1 and 𝜌 < 0

And, also observe that:

𝜕2𝑐
𝜕𝛷𝜕𝜌

∝ 𝜕
𝜕𝜌

[

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
)]

−1
𝜌
(

1 −𝛷
𝜌

1−𝜌
)

=
[

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
)]

−1
𝜌
(

1 −𝛷
𝜌

1−𝜌
) 1 ln

(

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
))
19

𝜌2
Table C.1a
Setting 𝜂𝐾 = 0 with Neo-classical production.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.017 0.975 1.000
Paper 0.995 1.001 0.994
Chem 1.003 0.998 1.006
Metal 0.990 0.988 1.118
Mach. 1.043 0.996 1.008
Elect 1.037 1.049 1.020
Trans.Eq 1.048 0.939 1.005

Table C.1b
Setting 𝜂𝑌 = 0 with Neo-classical production.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.807 1.624 71.520
Paper 2.724 2.639 3.029
Chem 6.889 14.179 175.894
Metal 0.389 3.392 0.818
Mach. 15.795 2.675 4.040
Elect 0.670 1.615 1.026
Trans.Eq 2.204 8.624 3.651

Table Notes. Tables C1a–b present counterfactual experiments, where –
instead of the staged-decision making production with techniques choice
– a Neo-classical production framework is used with �̂� ≡ 𝑇𝐹𝑃𝑄.

+
(

−1
𝜌

)

[

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
)]

−1
𝜌 −1

𝛼 1
(1 − 𝜌)2

ln (𝛷)
(

1 −𝛷
𝜌

1−𝜌
)

−
[

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
)]

−1
𝜌 1

(1 − 𝜌)2
ln (𝛷)

∝
(

1 −𝛷
𝜌

1−𝜌
) 1
𝜌2

ln
(

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
))

−
{

1 −
(

−1
𝜌

)

[

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
)]−1

𝛼
(

1 −𝛷
𝜌

1−𝜌
)

}

1
(1 − 𝜌)2

ln (𝛷)

< 0 for the case of 𝛷 > 1 and 𝜌 < 0 if

>
(

−1
𝜌

)

[

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
)]−1

𝛼
(

1 −𝛷
𝜌

1−𝜌
)

, (67)

r, if
(

1 −𝛷
𝜌

1−𝜌
)

<
𝜌

𝜌 − 1
, (68)

since
(

1 −𝛷
𝜌

1−𝜌
)

1
𝜌2

ln
(

1 − 𝛼
(

1 −𝛷
𝜌

1−𝜌
))

< 0 and 1
(1−𝜌)2

ln (𝛷) > 0.
ote that (68) is a sufficient condition.

Then we can conclude:
a. if 1

𝛼
𝜌

𝜌−1 > 1, no further condition needed;
b. if 1

𝛼
𝜌

𝜌−1 < 1, we need:

1 −
( 1
𝛷

)

−𝜌
1−𝜌 < 1

𝛼
𝜌

𝜌 − 1
,

or,

𝛷 < 1
(

1 − 1
𝛼

𝜌
𝜌−1

)
𝜌−1
𝜌

,

which is the upper bound 1 + �̄�. The case of 𝜌 < 0 and 𝜙 < 0 produces
similar “mirror image” results but no upper bound is needed.

Appendix C

In this Appendix, we provide supplementary tables to the quantita-
tive analysis (for Section 6) and supplementary figures (for Sections 2
and 3).
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Fig. 1. Interior optimal techniques choice.

Fig. 2. Techniques choice distortion.

Fig. 3. Technique optimizing problem: Efficient vs. Distorted solution.
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Table C.2a
Misallocation counterfactuals with 𝜎 = 2 (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

(TFPQ1) (TFPQ2)

Food-To. 1.000 50.064 1.577 1.577
Paper 1.007 1.123 7.110 5.169
Chem 1.005 29.266 9.778 9.592
Metal 1.016 1.014 5.825 5.350
Mach. 1.006 1.718 3.271 2.897
Elect 1.034 1.381 4.011 3.952
Trans.Eq 1.000 1.563 2.838 2.836

Table C.2b
Misallocation counterfactuals with 𝜎 = 4 (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

(TFPQ1) (TFPQ2)

Food-To. 1.000 51.854 1.577 1.577
Paper 1.008 1.254 10.629 7.728
Chem 1.006 32.231 10.183 9.989
Metal 1.017 1.124 10.572 9.710
Mach. 1.006 1.801 3.865 3.423
Elect 1.035 1.556 7.086 6.981
Trans.Eq 1.008 1.484 2.853 2.852

Table C.3a
Misallocation counterfactuals with 𝑟 = 0.07 (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

(TFPQ1) (TFPQ2)

Food-To. 1.000 51.689 1.577 1.577
Paper 1.007 1.188 9.058 6.661
Chem 1.005 31.461 10.042 9.847
Metal 1.016 1.062 7.913 7.280
Mach. 1.006 1.757 3.431 3.060
Elect 1.034 1.470 5.706 5.615
Trans.Eq 1.004 1.545 2.847 2.847

Table C.3b
Misallocation counterfactuals with 𝑟 = 0.13 (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

(TFPQ1) (TFPQ2)

Food-To. 1.000 49.686 1.577 1.575
Paper 1.007 1.197 9.361 6.729
Chem 1.006 30.380 10.058 9.871
Metal 1.017 1.062 8.080 7.409
Mach. 1.006 1.752 3.620 3.184
Elect 1.034 1.476 5.790 5.711
Trans.Eq 1.004 1.510 2.849 2.845

Table C.4a
Misallocation counterfactuals with constrained TFPR1-dispersion (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

% Bench-Sample

(TFPQ1) (TFPQ2)

Food-To. 1.000 50.667 1.577 1.577 83%
Paper 1.007 1.193 9.208 6.694 89%
Chem 1.005 30.908 10.050 9.860 90%
Metal 1.016 1.062 7.996 7.344 91%
Mach. 1.006 1.754 3.526 3.122 92%
Elect 1.034 1.4734 5.747 5.662 85%
Trans.Eq 1.004 1.527 2.848 2.847 92%
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Table C.4b
Misallocation counterfactuals with constrained TFPR2-dispersion (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

% Bench-Sample

(TFPQ1) (TFPQ2)

Food-To. 1.000 50.667 1.577 1.577 80%
Paper 1.007 1.193 9.208 6.694 89%
Chem 1.005 30.908 10.050 9.860 88%
Metal 1.016 1.062 7.996 7.344 86%
Mach. 1.006 1.754 3.526 3.122 80%
Elect 1.034 1.473 5.747 5.662 82%
Trans.Eq 1.004 1.527 2.848 2.847 88%

Table Notes. In the quantitative experiments of Table C.4a (C.4b) we leave out any
firm whose TFPR1 (TFPR2) is not within 1.5 standard deviation of the mean TFPR1
(TFPR2). The column Bench-Sample reports the size of the constrained sample relative
to the size of the original sample — after leaving out the outliers.

Table C.5a
Misallocation counterfactuals with 15% larger TC of Capital (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

(TFPQ1) (TFPQ2)

Food-To. 1.000 45.168 1.577 1.556
Paper 1.007 1.212 10.082 6.834
Chem 1.006 28.111 10.096 9.942
Metal 1.016 1.061 8.507 7.540
Mach. 1.006 1.737 4.032 3.411
Elect 1.034 1.496 6.051 6.005
Trans.Eq 1.004 1.423 2.852 2.822

Table C.5b
Misallocation counterfactuals with 15% smaller TC of Capital (Year 2014).

Industry 𝛥 𝑇𝐹𝑃
from
𝜂𝐾 = 0

𝛥 𝑇𝐹𝑃
from
𝜂𝑌 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

𝛥 𝑇𝐹𝑃
from
𝜙 = 0

(TFPQ1) (TFPQ2)

Food-To. 1.000 57.718 1.577 1.577
Paper 1.007 1.173 8.386 6.549
Chem 1.005 34.599 9.990 9.753
Metal 1.016 1.065 7.371 6.999
Mach. 1.006 1.776 2.946 2.723
Elect 1.034 1.452 5.499 5.347
Trans.Eq 1.003 1.662 2.844 2.843

Table Notes. In the quantitative experiments of Table C.5a (C.5b) we raise (lower) the
easured total cost of capital for all firms in our analysis by 15%.

Table C.6a
Setting 𝜂𝐾 = 0 with TFPQ1 — 1996–2012.

Industry 1996 1998 2000 2002 2004

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.017 1.015 1.006 1.000 1.001
Paper 1.002 1.007 1.001 0.995 0.999
Chem 1.004 0.996 0.997 0.983 0.989
Metal 1.014 1.025 0.804 0.974 0.995
Mach. 1.004 0.891 0.968 0.985 0.998
Elect 1.016 0.902 1.044 1.028 0.973
Trans.Eq 1.017 1.004 1.005 1.036 1.000

Industry 2006 2008 2010 2012

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.002 1.003 0.998 0.998
Paper 1.008 0.997 1.004 1.008
Chem 0.996 0.986 0.980 1.010
Metal 0.946 1.014 1.033 1.000
Mach. 1.004 1.002 1.026 1.011
Elect 0.932 0.933 1.002 1.075
Trans.Eq 1.020 1.003 0.987 1.001
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Table C.6b
Setting 𝜂𝑌 = 0 with TFPQ1 — 1996–2012.

Industry 1996 1998 2000 2002 2004

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 0.921 1.461 5.385 1.696 1.763
Paper 1.158 1.815 2.884 1.046 1.022
Chem 2.230 8.856 38.544 4.709 6.846
Metal 1.077 1.045 3.098 1.798 1.316
Mach. 4.326 8.183 4.085 5.392 37.278
Elect 3.742 1.726 2.78 22.152 3.046
Trans.Eq 0.983 0.985 0.953 1.855 1.409

Industry 2006 2008 2010 2012

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.011 1.130 6.779 9.889
Paper 0.994 1.099 1.366 1.197
Chem 3.418 12.163 2.174 106.248
Metal 1.209 1.075 5.811 1.348
Mach. 2.556 2.388 1.060 1.733
Elect 14.217 60.642 4.234 10.724
Trans.Eq 25.626 1.358 1.217 4.651

Table C.6c
Setting 𝜙 = 0 with TFPQ1 — 1996–2012.

Industry 1996 1998 2000 2002 2004

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.644 1.640 1.636 1.617 1.620
Paper 6.119 16.220 10.816 8.882 9.863
Chem 9.501 9.271 9.399 9.362 9.363
Metal 2.777 3.004 3.381 3.557 14.058
Mach. 2.881 7.178 3.198 3.632 3.042
Elect 1.872 1.641 1.524 12.693 4.469
Trans.Eq 2.709 2.730 2.753 2.811 2.823

Industry 2006 2008 2010 2012

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.593 1.602 1.571 1.578
Paper 7.640 9.397 9.263 8.904
Chem 9.314 9.565 9.626 10.253
Metal 11.849 11.071 11.579 6.885
Mach. 2.964 2.734 2.949 3.075
Elect 2.617 5.576 6.026 5.774
Trans.Eq 2.829 2.805 2.784 2.832

Table C.6d
Setting 𝜙 = 0 with TFPQ2 — 1996–2012.

1996 1998 2000 2002 2004

Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.403 1.297 1.343 1.000 1.000
Paper 5.156 11.241 7.685 6.030 7.177
Chem 8.454 8.270 9.397 9.360 9.341
Metal 1.727 3.003 3.042 1.269 4.548
Mach. 2.151 7.164 3.165 3.619 2.726
Elect 1.460 1.551 1.465 12.616 4.381
Trans.Eq 2.706 1.551 2.159 2.790 2.567

Industry 2006 2008 2010 2012

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.000 1.600 1.564 1.566
Paper 7.357 7.562 8.224 6.917
Chem 9.250 9.565 9.626 9.899
Metal 11.471 5.712 11.450 5.141
Mach. 2.961 2.712 2.924 2.993
Elect 2.615 4.851 5.717 5.228
Trans.Eq 2.374 2.225 2.782 2.788
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Table C.7a
Setting 𝜂𝐾 = 0 with TFPQ1.

Revenues netted for interm. inputs
Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.010 0.979 0.999
Paper 1.000 1.002 1.011
Chem 1.004 1.000 1.007
Metal 0.989 0.979 1.019
Mach. 1.020 0.996 1.005
Elect 1.031 1.020 1.038
Trans.Eq 1.043 0.940 1.002

Table Notes. Tables C7a–b present counterfactual experiments, where
𝜂𝐾 = 0 (C.7a) or 𝜂𝑌 = 0 (C.7b) is set for all firms and the resulting
counterfactual TFPs are computed for a specification where revenues are
netted out for cost of goods sold — a proxy for intermediate goods usage.
The reported 𝛥 𝑇𝐹𝑃 is the ratio between the counterfactual TFP and
the benchmark TFP. 𝛥𝑇𝐹𝑃 > 1 indicates an expansion in the industry-
TFP after the removal of the distortions, whereas 𝛥𝑇𝐹𝑃 < 1 implies a
contraction.

Table C.7b
Setting 𝜂𝑌 = 0 with TFPQ1.

Revenues netted for interm. inputs
Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.135 1.603 −2.794
Paper 1.670 1.998 2.028
Chem 1.060 1.279 1.575
Metal 1.142 1.225 1.369
Mach. 0.833 1.165 1.103
Elect 0.893 2.077 1.711
Trans.Eq 0.957 0.914 0.760

Table Notes. Tables C7a–b present counterfactual experiments, where
𝜂𝐾 = 0 (C.7a) or 𝜂𝑌 = 0 (C.7b) is set for all firms and the resulting
counterfactual TFPs are computed for a specification where revenues are
netted out for cost of goods sold — a proxy for intermediate goods usage.
The reported 𝛥 𝑇𝐹𝑃 is the ratio between the counterfactual TFP and
the benchmark TFP. 𝛥𝑇𝐹𝑃 > 1 indicates an expansion in the industry-
TFP after the removal of the distortions, whereas 𝛥𝑇𝐹𝑃 < 1 implies a
contraction.

Table C.7c
Setting 𝜙 = 0 with TFPQ1.

Revenues netted for interm. inputs
Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.623 1.592 1.577
Paper 5.071 7.621 7.235
Chem 8.53 8.517 9.357
Metal 3.903 13.458 8.307
Mach. 2.972 3.137 3.300
Elect 1.687 3.179 4.314
Trans.Eq 2.679 2.813 2.846

Table Notes. Tables C7c–d present counterfactual experiments, where
𝜙 = 0 with TFPQ1 (C.7c) or 𝜙 = 0 with TFPQ2 (C.7d) is set for all firms
and the resulting counterfactual TFPs are computed for a specification
where revenues are netted out for cost of goods sold — a proxy for
intermediate goods usage.
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Table C.7d
Setting 𝜙 = 0 with TFPQ2.

Revenues netted for interm. inputs
1995 2005 2014

Industry 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.484 1.000 1.577
Paper 3.062 5.470 5.260
Chem 6.485 8.415 9.180
Metal 2.308 4.643 7.630
Mach. 2.895 3.132 2.922
Elect 1.630 3.089 4.250
Trans.Eq 2.637 2.137 2.845

Table Notes. Tables C7c–d present counterfactual experiments, where
𝜙 = 0 with TFPQ1 (C.7c) or 𝜙 = 0 with TFPQ2 (C.7d) is set for all firms
and the resulting counterfactual TFPs are computed for a specification
where revenues are netted out for cost of goods sold — a proxy for
intermediate goods usage.

Table C.8a
Setting 𝜂𝐾 = �̄�𝐾 .

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.000 1.022 1.015
Paper 0.989 1.012 1.021
Chem 1.002 1.006 1.013
Metal 1.002 0.997 1.033
Mach. 0.991 1.021 1.014
Elect 1.007 1.055 1.049
Trans.Eq 1.003 1.024 1.023

Table Notes. Tables C8a–b present counterfactual experiments, where
𝜂𝐾 = �̄�𝐾 (C.8a) and 𝜂𝑌 = �̄�𝑌 (C.8c) is set for all firms – with ̄𝜂𝐾 (and
𝜂𝑌 = �̄�𝑌 ) denoting the average level capital (and output) distortion in a
particular industry in a given year – and the resulting counterfactual
TFPs are computed. The reported 𝛥 𝑇𝐹𝑃 is the ratio between the
counterfactual TFP and the benchmark TFP. 𝛥𝑇𝐹𝑃 > 1 indicates an
expansion in the industry-TFP after the removal of the distortions,
whereas 𝛥𝑇𝐹𝑃 < 1 implies a contraction.

Table C.8b
Setting 𝜂𝑌 = �̄�𝑌 with TFPQ1.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.242 1.109 50.667
Paper 1.420 1.002 1.193
Chem 1.442 2.611 30.908
Metal 1.060 1.128 1.062
Mach. 11.164 1.992 1.754
Elect 1.845 8.264 1.473
Trans.Eq 1.014 3.716 1.527

Table Notes. Tables C8a–b present counterfactual experiments, where
𝜂𝐾 = �̄�𝐾 (C.8a) and 𝜂𝑌 = �̄�𝑌 (C.8b) is set for all firms – with ̄𝜂𝐾 (and
𝜂𝑌 = �̄�𝑌 ) denoting the average level capital (and output) distortion in a
particular industry in a given year – and the resulting counterfactual
TFPs are computed. The reported 𝛥 𝑇𝐹𝑃 is the ratio between the
counterfactual TFP and the benchmark TFP. 𝛥𝑇𝐹𝑃 > 1 indicates an
expansion in the industry-TFP after the removal of the distortions,
whereas 𝛥𝑇𝐹𝑃 < 1 implies a contraction.

Table C.8c
Setting 𝜙 = �̄� with TFPQ1.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.486 1.000 1.577
Paper 3.193 6.984 6.694
Chem 7.105 9.249 9.860
Metal 2.229 4.845 7.344
Mach. 3.009 3.102 3.122

(continued on next page)
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Table C.8c (continued).
Elect 1.587 2.843 5.662
Trans.Eq 2.635 2.140 2.847

Table Notes. Tables C8c–d present counterfactual experiments, where
𝜙 = �̄� with TFPQ1 (C.8c) or 𝜙 = �̄� with TFPQ2 (C.8d) is set for all firms
and the resulting counterfactual TFPs are computed — with �̄� denoting
the average level technique distortion in a particular industry in a given
year.

Table C.8d
Setting 𝜙 = �̄� with TFPQ2.

Industry 1995 2005 2014

𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃 𝛥 𝑇𝐹𝑃

Food-To. 1.626 1.592 1.577
Paper 5.287 9.730 9.208
Chem 9.346 9.362 10.050
Metal 3.768 14.044 7.996
Mach. 3.089 3.106 3.526
Elect 1.642 2.925 5.747
Trans.Eq 2.677 2.817 2.848

Table Notes. Tables C8c–d present counterfactual experiments, where
𝜙 = �̄� with TFPQ1 (C.8c) or 𝜙 = �̄� with TFPQ2 (C.8d) is set for all firms
and the resulting counterfactual TFPs are computed — with �̄� denoting
the average level technique distortion in a particular industry in a given
year.
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