Income Distribution

Ping Wang Department of Economics Washington University in St. Louis

April 2024

A. Introduction

- Stylized facts (U.S. over the past 4 or 5 decades):
 - wage inequality increased sharply: 90%-10% ratio rose by over 40%, documented by Katz-Autor (1999)
 - despite an increase in skill premium/between-group inequality, the majority of the increase in wage inequality is *residual*, due to unobserved characteristics of workers in the same education and demographic group
- While the literature provides adequate explanation on the between-group inequality, it is largely failed in explaining the within-the-skilled-group inequality, with only a few attempts including, Aghion (2000), Violante (2002), Jovanovic (2009) and Tang and Wang (2014)
- Most of the existing studies focus on ex ante fixed innate ability, such as *Glomm-Ravikumar (1992)*, Acemoglu (1999), Caselli (1999), *Aghion (2000)*, Galor-Moav (2000), *Violante (2002)* which results in counterfactually high persistency in inequality (cf. Gottschalk-Moffitt 1994)
- Inequality is also associated with geographic stratification, particularly within municipals and to some degree across different regions
 - Banabou (1996) offers a simple framework for human capital stratification
 - Acemoglu-Dell (2009) provide useful decomposition of wage inequalities

- Between-firm wage inequality may be driven by firm productivity, firm-worker match quality (Bils-Kudlyak-Lins 2023), trade (Helpman-Itskhoki-Redding 2010), different labor supply (*Erosa-Fuster-Kambourov-Rogerson 2024*), and occupation spillover (*Gottlieb-Hémous-Hicks-Olsen 2023*), but within-job (industry-occupation pair) wage inequality due to job match quality, performance pay and endogenous sorting (Tang-Tang-Wang 2023)
- Piketty (2014) emphasizes a sharp rise in top inequality
 - historical data: Piketty (2014)
 - new data: tax administrative data (no top coding), wealth data
 - methodological issues: Krusell-Smith (2015), Weil (2015)
- Wealth inequality:
 - super stars: Jones-Kim (2014), Aghion-Akcigit-Bergeaud-Blundell-Hemous (2015), Gabaix-Lasry-Lions-Moll (2015)
 - asset risk and nonliear taxation: Benhabib-Bisin (2016), Kaymak-Poschke (2016), Lusardi-Michaud-Mitchell (2017)
 - financial knowledge: *Lusardiy-Michaudz-Mitchell (2017)*
 - automation: Moll-Rachel-Restrepo (2019)
 - health shocks: Wang-Wong-Yao (2020)
 - survey: *De Nardi (2015)*
- Inequality and growth: Matsuyama (2002), Jovanovic (2009), *Oberfield (2023)*

- **B.** Education Provision, Growth and Inequality: Glomm-Ravikumar (1992)
- Different from the representative-agent framework developed by Lucas (1988), this paper allows for human capital heterogeneity, which enables a clean study of the issues of growth vs. distribution as well as private vs. public education
- 1. The Model
- 2-period lived agents, who work when young and consume when old (endogenous labor-leisure trade-off, with altruism)
- Preferences: $V_t = \ln n_t + \ln c_{t+1} + \ln e_{t+1}$, that is, and agent of generation-t cares leisure, consumption and the offspring's quality of education
- Human Capital:
 - **distribution:** $G_t(h) \sim \log \operatorname{normal}(\mu_t, \sigma_t^2)$
 - evolution: $h_{t+1} = \theta h_t^{\delta} (1 n_t)^{\beta} e_t^{\gamma}, \ \delta, \beta, \gamma \in (0,1)$ (Lucas: $\gamma = 0, \delta = \beta = 1$)
- **CRS production:** output = h_{t+1}

• Two educational system:

public education:
$$E_{t+1} = \tau_{t+1}H_{t+1}, H_{t+1} = \int h_{t+1}dG_{t+1}(h_{t+1})$$

(income tax) (mean income)private education: $e_{t+1} = h_{t+1} - c_{t+1}$

- 2. Optimization and Equilibrium
- a. Public Education:

0

0

• Individual optimization:

$$\max_{n,c} \ln n_t + \ln c_{t+1} + \ln E_{t+1}$$

s.t. $c_{t+1} = (1 - \tau_{t+1})h_{t+1}$
 $h_{t+1} = \theta (1 - n_t)^{\beta} E_t^{\gamma} h_t^{\delta}$
 $\Rightarrow \max_{n_t} \ln n_t + \ln[(1 - \tau_{t+1})\theta E_t^{\gamma} h_t^{\delta}] + \beta \ln(1 - n_t) + \ln E_{t+1}$
• FOC: $1 - n_t = \frac{\beta}{1 + \beta}$

• Government optimization:

$$\max_{\tau} \ln[(1-\tau_{t+1})\boldsymbol{h}_{t+1} + \ln \tau_{t+1} \boldsymbol{H}_{t+1} \qquad (\because \boldsymbol{n}_{t} = \frac{1}{1+\boldsymbol{\beta}} \text{ fixed})$$
$$\Rightarrow \max_{\tau} \ln(1-\tau) + \ln \tau$$

- FOC: $\tau = 1/2$
- Equilibrium:
 - human capital evolution: $h_{t+1} = \theta(\frac{\beta}{1+\beta})^{\beta}(\frac{1}{2})^{\gamma}H_t^{\gamma}h_t^{\delta} \equiv AH_t^{\gamma}h_t^{\delta}$

• aggregate human capital: $H_t = \exp[\mu_t + \frac{\sigma_t^2}{2}]$

- mean: $\boldsymbol{\mu}_{t+1} = \ln \boldsymbol{A} + \gamma \ln \boldsymbol{H}_t + \delta \boldsymbol{\mu}_t$, or, $\boldsymbol{\mu}_{t+1} = \ln \boldsymbol{A} + (\gamma + \delta) \boldsymbol{\mu}_t + \frac{\gamma \sigma_t^2}{2}$

- variance (inequality measure): $\sigma_{t+1}^2 = \delta^2 \sigma_t^2$

b. Private Education

• Individual optimization

$$\max_{n_{t}, e_{t+1}, e_{t+1}} \ln n_{t} + \ln c_{t+1} + \ln e_{t+1}$$

s.t. $h_{t+1} = \theta (1 - n_{t})^{\beta} e_{t}^{\gamma} h_{t}^{\delta}$
 $c_{t+1} = h_{t+1} - e_{t+1}$
 $\Rightarrow \max_{n_{t}, e_{t+1}} \ln n_{t} + \ln[\theta (1 - n_{t})^{\beta} e_{t}^{\gamma} h_{t}^{\delta} - e_{t+1}] + \ln e_{t+1}$
FOCs: $c_{t+1} \equiv e_{t+1} = \frac{1}{2} h_{t+1}; 1 - n_{t} = \frac{\beta}{\frac{1}{2} + \beta} > \frac{\beta}{1 + \beta}$ (free-rider in public education)

• Equilibrium:

•

Equilibrium:
•
$$h_{t+1} = \theta(\frac{\beta}{\frac{1}{2} + \beta})^{\beta}(\frac{1}{2})^{\gamma} h_{t}^{\gamma+\delta} \equiv B h_{t}^{\gamma+\delta}$$
 (B > A)
• $\mu_{t+1} = \ln B + (\gamma + \delta) \mu_{t}$
• $\sigma_{t+1} = (\gamma + \delta)^{2} \sigma_{t}^{2}$

- **3.** Growth vs. Inequality
- Inequality:
 - Public education: inequality \downarrow over time
 - Private education: inequality may decline (or rise) over time if $\delta + \gamma < (\text{or} >)1$
- Is inequality harmful for growth?

• public education:
$$H_{t+1} = AH_t^{\gamma+\delta} \exp\left[-\frac{1}{2}\delta(1-\delta)\sigma_t^2\right] \Rightarrow d\left(\frac{H_{t+1}}{H_t}\right)/d\sigma_t^2 < 0$$

• private education:
$$H_{t+1} = BH_t^{\gamma+\delta} \exp[\frac{1}{2}(\gamma+\delta)(\gamma+\delta-1)\sigma_t^2]$$

$$\Rightarrow d\left(\frac{H_{t+1}}{H_t}\right) / d\sigma_t^2 < (\text{or} >)0 \text{ if } \delta + \gamma < (\text{or} >)1$$

• Kuznets curve: the correlation between growth and inequality is consistent with the Kuznets curve under private education

- 4. Political Economy and Institutional Choice: Public vs. Private Education
- Mechanism: majority voting by the old (political economy) ignore n_t (decision by the young)
- Value functions:

• **Public education:**
$$V^{old}$$
 (public) = $2\ln(\frac{1}{2}) + \ln h + \mu + \frac{\sigma^2}{2}$

- Private education: V^{old} (private) = $2\ln(\frac{1}{2}) + 2\ln h$
- Median voter's decision:

•
$$V^{old}$$
 (public) $-V^{old}$ (private) $= [\mu - \ln h(\text{median})] + \frac{\sigma^2}{2} = \frac{\sigma^2}{2} > 0$

(ex ante mean μ = median < ex post mean = $\mu + \frac{\sigma}{2}$, because log normal

distribution has a long tail)

- outcome: select public education system (U.S. : 86%- public education)
- Problem: under public education, the declined income inequality is inconsistent with the real world observation

- C. General Purpose Technology and Between/Within-Group Inequality: Aghion (2000)
- Stylized facts in U.S. & U.K: within-group inequality started before betweengroup inequality
- Equipment price and skill premium Krusell et al. (2000 Econometrica):

$$y_{t} = A_{t} \{K_{S}^{\alpha} [\mu u^{\sigma} + (1 - \mu)(\lambda k_{e}^{\rho} + (1 - \lambda)S_{t}^{\rho})^{\frac{\sigma}{\rho}}]^{\frac{1 - \alpha}{\sigma}}$$

under $\frac{1}{1 - \sigma} > \frac{1}{1 - \rho}$ (stronger complementarity between k_{e} and S),
equipment price $\downarrow \Rightarrow \frac{W_{s}}{W_{u}} \uparrow$

- 1. Between-Group Inequality
- General purpose technology (GPT) experimentation and adoption require skilled labor

• Production:
$$y = [\int_0^1 A(i)^{\alpha} x(i)^{\alpha} di]^{1/\alpha}$$
, $A(i) = \begin{cases} 1 & \text{if sector } i \text{ uses old GPT} \\ \gamma > 1 & \text{if sector } i \text{ uses new GPT} \end{cases}$

• Skilled Labor:
$$L_s(t) = L[1-(1-s)e^{-\beta t}]$$

- β = speed of exogenous skill acquisition
- $1 = n_0$ (old GPT) + n_1 (experimenting new) + n_2 (new)
- Arrival of new GPT:

$$\boldsymbol{\lambda}(\boldsymbol{n}_2) = \begin{cases} \boldsymbol{\lambda}_0 & \text{if } \boldsymbol{n}_2 \leq \overline{\boldsymbol{n}} \\ \boldsymbol{\lambda}_0 + \Delta & \text{if } \boldsymbol{n}_2 \geq \overline{\boldsymbol{n}} \end{cases}$$

where λ_0 is small, Δ is large and λ_1 is the arrival of successful experimentation

- **Population dynamics:**
 - $\circ \qquad \dot{n}_1 = \lambda(n_2)n_0 \lambda_1 n_1$
 - $\circ \quad \dot{n}_2 = \lambda_1 n_1$

- Early stage (A): $n_1 + n_2$ is too small to absorb $L_s \implies$ integrated labor market with wage equalization, i.e., $(1-n_2)x_0+n_1L_1+n_2x_2=L$
- Later stage (B): L_s is fully absorbed by n_1 and $n_2 \Rightarrow$ segmented labor market with $n_1L_1+n_2x_2=L_s$ and $(1-n_2)x_0=L_u$

- 2. Within-Group Inequality
- Machine lasts exactly two periods (with no depreciation within the two periods)
- Only a random fraction (σ) of workers get chance to adopt new GPT (crucial to create with-group heterogeneity)
- Continual adoption of new GPT yields higher productivity due to learning (at rate τ)
- By experience, learning of old GPT is more efficient (at rate $\eta > \tau$)

- Production
 - new GPT: $v_t = A_t x_{ot}^{1-\sigma}$
 - old GPT: $z_t = A_{t-1} [(1+\eta)x_{1t}]^{1-\alpha}$
- Technology evolution: $A_t = (1+\gamma)A_{t-1}$
- Labor and Population Identity:
 - n_{ij} (transition from *i* to *j*) with *i*, *j* = 0 (new) or 1 (old)

$$\circ x_0 = (1 + \tau)n_{00} + n_{10}$$

 $\circ x_1 = n_{01} + n_{11}$

$$\circ n_{00} + n_{10} + n_{01} + n_{11} = 1$$

- Adaptability Constraints: $\dot{n}_{00} \leq \sigma(n_{00} + n_{10})$ and $\dot{n}_{10} \leq \sigma(n_{01} + n_{11})$
- Steady-State Transition: $n_{10} = n_{01}$

• Consumption Efficiency:
$$u(c) = \sum \beta^t \ln c \Rightarrow 1 + r = \frac{1}{\beta} \frac{c_{t+1}}{c_t} = \frac{1}{\beta} (1 + \gamma)$$

• Labor Demand:

$$\circ \qquad \frac{w_0}{w_1} = \frac{1+\gamma}{(1+\eta)^{1-\alpha}} (\frac{x_0}{x_1})^{-\alpha}$$

$$\circ \qquad w_{00} = (1 + \tau) w_0 \quad ; \quad w_{10} = w_0 \quad ; \quad w_{01} = w_{11} = w_1$$

- Labor Supply:
 - value functions:

$$- v_{i0} = w_{i0} + \beta \{\sigma \max(v_{00}, v_1) + (1 - \sigma)v_1\}$$

$$- v_1 = w_1 + \beta \{\sigma \max(v_{10}, v_1) + (1 - \sigma)v_1\}$$

• cases:

- when
$$v_{10} < v_1$$
, labor supply decision $\Rightarrow x_0/x_1 = 0$

- when $v_{10} > v_1$, labor supply decision $\Rightarrow x_0/x_1 = \chi$

- when
$$v_{10} = v_1 \left(\frac{w_0}{w_1} = \Omega\right) = v_1 = w_1 + \beta \sigma v_1 + (1 + \sigma) v_1 = w_1 = \sigma (1 - \beta) v_1,$$

 $w_0 = \sigma [v_1 - \beta v_{00}], w_{00} = (1 - \beta \sigma) v_{00} - (1 - \sigma) v_1$

• Labor Market Equilibrium

$$\boldsymbol{L}^{\boldsymbol{d}} = \boldsymbol{L}^{\boldsymbol{s}} \Longrightarrow \quad \frac{\boldsymbol{w}_{0}}{\boldsymbol{w}_{1}} = \frac{1+\boldsymbol{\gamma}}{(1+\boldsymbol{\eta})^{1-\boldsymbol{\alpha}}} \left[\frac{1-\boldsymbol{\sigma}}{\boldsymbol{\sigma}(1+\boldsymbol{\sigma\tau})}\right]^{\boldsymbol{\alpha}} \equiv \Phi(\boldsymbol{\gamma}, \boldsymbol{\sigma}, \boldsymbol{\eta}, \boldsymbol{\tau})$$

• Wage inequality within the skilled group:

$$\circ = \max \{\frac{w_{00}}{w_0}, \frac{w_{00}}{w_1}\}$$

$$O = \max \{\frac{w_{00}}{w_0}, \frac{w_{00}}{w_0}, \frac{w_0}{w_1}\}$$

$$\circ$$
 =(1+τ) max {1, Φ}

• in general, within- group inequality rises when GPT size (γ) \uparrow , GPT learning (τ) \uparrow , and monopoly rent $\uparrow (\sigma \downarrow \text{ or } \eta \downarrow)$

• Problem: the underlying force driving within-group inequality is rather ad hoc

- D. Skill Transferability and Residual Wage Inequality: Violante (2002)
- Stylized facts (US over the past 4 or 5 decades):
 - wage inequality increased sharply: 90%-10% ratio rose by over 40%, documented by Katz-Autor (1999)
 - despite an increase in skill premium/between-group inequality, the majority of the increase in wage inequality is *residual*, due to unobserved characteristics of workers in the same education and demographic group
- Previous studies on wage inequality focus on ex ante fixed innate ability
 - such as Acemoglu (1999), Caselli (1999), Aghion (2000), and Galor-Moav (2000)
 - counterfactually high persistency in inequality: Gottschalk-Moffitt (1994) find temporary components are as large as permanent ones
- Violante (2002) takes a deeper look at the data, finding that increased earning variability is due to:
 - more frequent job separation for a given turnover rate
 - more volatile dynamics of wages on the job and between jobs
- The above observations motivate the construction of a theory of inequality focusing on the accumulation and the transferability of specific human capital
- Key driving force: technology differences across machines of different vintages

- 1. The Basic Structure and Results
- Technology frontier advances at rate $\gamma > 0$
- Each machine has two periods of productive life and does not depreciate after the first period (as in Aghion 2000)
- A machine M_j of age j matched with worker of skill z produces output: $y_j = (1+\gamma)^{-\theta_j} z$
- Matching surplus sharing rule: ξ to worker and 1-ξ to firm
- Value functions:
 - value of employed:
 - with machine M_0 : $V_0 = w_0 + \beta \max\{V_1, U\}$
 - with machine M_{j} : $V_{1} = w_{1} + \beta U$
 - value of unemployed: $\vec{U} = \alpha \vec{V}_0 + (1 \alpha) \vec{V}_1$ where β = productivity-adjusted discount factor
 - α = probability of meeting a new machine
- Separation decision for workers on new technologies: $\chi = \{0,1\}$
 - by construction, $w_0 > w_1$; thus, $U > V_1$
 - so if $\chi = 1$, we must have equal fractions of idle M_0 and M_1 , i.e., $\alpha = 1/2$
- Wage inequality $var(ln(w)) = [(\theta ln(1+\gamma)/2]^2 \approx [(\theta \gamma)/2]^2$, depending exclusively on the technology differences across machines of different vintages (γ)

- 2. Generalization: Vintage Human Capital
- A worker on M_j may move on $M_{j'}$ with cumulated skills determined by the transferability process: $z_{jj'} = (1+\gamma)^{\tau[j'-(j+1)]}$ (following the adaptation structure in Aghion 2000)
 - the transferability of specific human capital is measured by τ
 - equilibrium skill levels:
 - $z_{01} = 1$

$$- z_{00} = z_{11} = (1 + \gamma)^{-\tau}$$

-
$$z_{10} = (1+\gamma)^{-2\tau}$$

- Productivity-adjusted wage: $w_{ii} = (1+\gamma)^{-\theta j}$
- Value functions: change to V_{ij} based on w_{ij}
- Worker's separation decision:

$$\circ \quad \tau \le \theta \Longrightarrow \chi = 1 \text{ for all } \gamma$$

- $\circ \quad \tau > \theta \implies \chi = 1 \text{ for } \gamma > \gamma_c$
- Wage inequality: $var(ln(w)) \approx (\theta \gamma)^2 var(j) + var(ln(z)) 2\theta \gamma cov(ln(z),j)$
 - higher γ increases var(ln(z)) and cov(ln(z),j), raising var(ln(w)) if $\chi = 0$
 - the effect of γ on var(ln(w)) is ambiguous if $\chi = 1$

3. Calibration

• Observation: residual wage inequality

• Parameterization

Parameters	Moment to match (yearly average)	Source
$\gamma_L = .036$	growth of rel. price of equipment (< 1974)	Krusell et al. [2000]
$\gamma_H = .048$	growth of rel. price of equipment (> 1974)	Krusell et al. [2000]
$\theta = .7$	growth of real average wage $= .024$	Murphy and Welch [1992]
$\beta = .964$	rate of return on $capital = .05$	Cooley [1995]
$\kappa = 5$	labor share $= .68$	Cooley [1995]
J = 28	average age of equipment $= 7.7$	Bureau of Economic Analysis [1994]
$\lambda = .345$	wage growth within job $= .03$	Topel [1991]
$\tau = 1.90$	wage loss upon layoff $= .23$	Jacobson et al. [1993], Topel [1991]
Z = 20	transitory residual wage variance = .053	CPS data, Gottschalk and Moffitt [1994]
δ = .05	separation rate from employment = .166	Blanchard and Diamond [1990]

• F	Titness	of the	Model
-----	---------	--------	-------

	Variance of log wages		Variance of	Variance of	Covariance
	DATA	MODEL	technologies	skills	component
$\gamma_L = .035$.053	.053	.008	.085	038
$\gamma_H = .048$.089	.085	.014	.145	074
	Average age of capital	Average skill level	Wage growth within-job	Wage loss upon layoff	Separation rate
$\gamma_L = .035$ $\gamma_H = .048$	$7.700 \\ 7.448$	$\frac{11.086}{8.595}$.030 .044	$230 \\305$.166 .171

4. Open Issues

- firm-specific technologies
- occupational mobility
- general vs. specific human capital

- E. Human Capital Stratification
- In reality, households are stratified in various degrees by race, income, education and other socioeconomic indicators
- The Dissimilarity index (Duncan-Duncan 1955): using the 2000 Census data, Peng and Wang (2005) show highly stratified top 30 MSAs in the US:

M etropolitan Statistical Area (M S A)	Dissim ilarity Index	
DC-Baltimore, Detroit	0.70 or higher	
M ilw aukee, Cleveland, St. Louis, <mark>New York</mark>		
Philadelphia, Cincinnati, Chicago, Indianapolis	0.00 - 0.09	
Pittsburgh, Atlanta, Kansas City	0.50 - 0.59	
Houston, Boston, Los Angeles		
Tampa, San Antonio, Phoenix, M inneapolis	0.40 - 0.49	
San Diego, Norfolk, San Francisco		
M iam i, D enver, Sacram ento, O rlando		
Dallas, Seattle, Portland	0.39 or lower	

- It has been shown that since 1980, racial segregation in the U.S. has declined while economic segregation has risen
- Human capital and housing are believed the two primary sources of economic segregation
- 1. The Model: Benobou (1996)
- Interactions
 - Local positive spillovers in human capital evolution
 - Global positive spillovers in goods production
- Human Capital and Education
 - human capital evolution: $h_{t+1}^i = \phi^i ((1 u_t^i)h_t^i)^{\delta} (E_t^i)^{1-\delta}$
 - public education: $E_t^i = \tau_t^i \int y_t^i dG_t^i(y_t^i)$
- Output: $y_{t+1}^i = A(\boldsymbol{H}_t)^{\alpha} (\boldsymbol{h}_t^i)^{1-\alpha}$
- Combining the above relationships $\Rightarrow h_{t+1}^i = B^i (h_t^i)^{\delta} (H_t)^{\alpha(1-\delta)} (L_t^i)^{(1-\alpha)(1-\delta)}$, where L^i is a "local" human capital aggregator

- 2. Segregated vs. Integrated Equilibrium
- Segregated equilibrium features locational clustering by human capital/income
- Integrated equilibrium features mixture of groups with different human capital/income
- Two fundamental forces:
 - complementarity between L^i and $h^i =>$ segregation (assortative matching)
 - complementarity between H and $h^i =>$ integration (homogenizing)
- 3. Results
- Co-existence of segregated and integrated equilibria
- Integration lowers inequality as compared to segregation
- Integration lowers growth in SR but raises it in LR, because *H* has a larger scale effect in the long run

- F. Income Inequality Across Space and Time: Acemoglu-Dell (2009)
- Stylized fact: large cross-country and within-country differences in per capita income
- Potential causes of such disparities:
 - differences in *human capital*
 - differences in technological know-how
 - differences in production efficiency due to various institutions and organizations
- 1. The Model
- Measure of inequality (municipal m in country j) by the Theil index:

$$T = \sum_{j=1}^{J} \frac{L_j \, y_j}{L \, y} \left(\frac{\ln y_j}{y}\right) + \sum_{j=1}^{J} \frac{L_j \, y_j}{L \, y} \left[\sum_{m=1}^{M_j} \frac{L_{jm} \, y_{jm}}{L_j \, y_j} T_{jm} + \sum_{m=1}^{M_j} \frac{L_{jm} \, y_{jm}}{L_j \, y_j} \ln\left(\frac{y_{jm}}{y_j}\right)\right]$$

where $T_{jm} = \sum_{i=1}^{L_{jm}} \frac{y_{jmi}}{L_{jm}y_{jm}} \ln\left(\frac{y_{jmi}}{y_{jm}}\right)$ is the within-municipal m Theil index in country j

• Alternative measures: mean log deviation, variance/coefficient of variation, gini coefficient

• Wage inequality

		Theil	index
	90/10	Between Country	Within Country
Municipals			
actual pop weights	34.2	0.250	0.544
equal pop weights	28.6	0.285	0.622
Regions			
actual pop weights	36.7	0.203	0.529
equal pop weights	32.7	0.139	0.615

• more *within* than between country inequalities

• more inequality using *municipal* than region data

• Decomposition of wage inequality measured by Theil index

	Ove	erall Inequ	ality	Residual Inequality			
	BetweenBetweenWithinCountryMunic.Munic.		Between Country	Between Munic.	Within Munic.		
Municipals							
actual pop weights	0.265	0.067	0.424	0.033	0.040	0.389	
equal pop weights	0.301	0.105	0.474	0.041	0.053	0.404	
U.S.		0.050	0.365		0.020	0.291	

- "residual" *within-the-skilled-group* inequalities account for a large portion of overall inequalities
- *within-municipal* disparities are most important for wage inequalities
- between-country disparities are important only for "non-residual" *between-skilled-and-unskilled-group* inequalities
- between-municipal disparities are never important

- G. The Battle between the Top 1% and the Remaining 99%: Pikety (2014)
- Income inequality

- Wealth inequality
 - U.S. Wealth Inequality: <u>https://www.youtube.com/watch?v=QPKKQnijnsM</u>
- Capital In The 21st Century:
 - **BBC:** <u>https://www.youtube.com/watch?v=HL-YUTFqtuI</u>
 - ABC: <u>https://www.youtube.com/watch?v=I05wLUuvQGM</u>

- Methodological issues:
 - Piketty: r measures return to capital, g measures return to labor, so r > g implies widened inequality
 - Krusell-Smith (2015): Piketty's r > g theory works only with the unconventional definition of capital-output in terms of net capital (net of depreciation) and NNP
 - Weil (2015): market value of tradeable assets are incomplete measures for productive capital and wealth, missing
 - value of human capital
 - transfer wealth
 - these omitted types of wealth are distributed more equally than tradeable assets

- H. Wealth Inequality: De Nardi (2015)
- Cagetti-De Nardi (2006): over the past 3 decades in the U.S., top 1% own 1/3 of national wealth, top 5% more than 1/2 (see also an older literature led by Wolff 1992, 1998)
- Can typical models predict such a high concentration of wealth?
- 1. The Bewley (1977) Model of Permanent Income
- Infinitely lived agents with time-additive preferences:

$$E\left\{\sum_{t=1}^{\infty}\beta^{t}u(c_{t})\right\}$$

- u takes a CRRA form
- Labor endowment subject to an idiosyncratic labor productivity shock z, taking finite number of values and following a first-order Markov process with transition matrix Γ(z)
- A single asset *a* that may be used to insure against labor income risk
- Production of a single good Y using K and L under a CRS technology

• Household's problem:

$$V(x) = \max_{(c,a')} \left\{ u(c) + \beta E \left[V(a', z') | x \right] \right\}$$
$$c + a' = (1+r)a + zw$$

s.t.

$$c \ge 0, \quad a' \ge \underline{a},$$

- $\underline{a} =$ net borrowing limit
- state $\mathbf{x} = (a, \mathbf{z})$
- In a stationary equilibrium, the distribution of people with (a, z) is constant
- Quantitative analysis by Aiyagari (1994): log(labor earning) follows AR(1) with autocorrelation = 0.6 and std dev of the innovations = 0.2

 % wealth in top

 Gini
 1%
 5%
 20%

 U.S. data, 1989 SCF

 .78
 29
 53
 80

 Aiyagari Baseline

 .38
 3.2
 12.2
 41.0

• wealth inequality largely underestimated compared to the 1989 Survey of Consumer Finance (not much improved even doubling std dev)

- 2. A Overlapping-Generations Bewley Model with Survival Risk: Huggett (1996)
- Agents live for at most N periods, subject to survival probability s_t of surviving up to t conditional on surviving at t-1

• Lifetime utility:
$$E\left\{\sum_{t=1}^{N}\beta^{t}\left(\Pi_{j=1}^{t}s_{t}\right)u(c_{t})\right\}$$

- Labor endowment is now age-specific: e(z, t)
 - again, z is Markov with transition $\Gamma(z)$
- No annuity, so people self-insure against earning risk and long life
- Those die prematurely leave accidental bequests
- Same production technology as in Bewley
- Household's problem:

$$V(a, z, t) = \max_{\substack{(c, a') \\ c + a' = (1 + r)a + e(z, t)w + T + b_t}} \left\{ u(c) + \beta s_{t+1} E \left[v(a', z', t+1) | z \right] \right\}$$

s.t.

$$c \ge 0, \quad a' \ge \underline{a} \quad and \quad a' \ge 0 \quad if \quad t = N$$

- T = lump-sum redistributed accidental bequests
- **b** = social security payments to the retired

- Stationary equilibrium: similar to Bewley, with periodically balanced bequest transfers and government budget
- Quantitative results:

Transfer		Perc	Percentage wealth in the top			Percentage with	
wealth	Wealth						negative or
ratio	Gini	1%	5%	20%	40%	60%	zero wealth
1989 U.S.	data						
.60	.78	29	53	80	93	98	5.8 - 15.0
A basic overlapping-generations Bewley model							
.67	.67	7	27	69	90	98	17

- improved, but still far off for the top 1 or 5% wealth distribution
- 3. Wealth Distribution in Variations of the Bewley Model
- Benhabib-Bisin (2015): with intergenerational transmission and redistributive fiscal policy, the stationary wealth distribution is Pareto, driven critically by capital income and estate taxes
- Benhabib-Bisin-Zhu (2016): capital income shocks more important than labor income shocks

- 4. Human Capital Transmission and Voluntary Bequests: De Nardi (2004)
- Household's value:

$$V(a,t) = \max_{c,a'} \left\{ u(c) + s_t \beta E_t V(a',t+1) + (1-s_t)\phi(b(a')) \right\}$$

• value from leaving bequest by providing a worm glow (enjoyment of giving a la Andreoni (1989):

$$\phi(b(a')) = \phi_1 \left(1 + \frac{b(a')}{\phi_2}\right)^{1-\sigma}$$

- overall bequest motive: φ_1
- bequest luxuriousness φ₂
- Two intergenerational linages:
 - human capital: inheritance in labor productivity
 - bequests

• Quantitative results

Transfer		Perc	entag	ge weal	th in t	he top	Percentage with
wealth	Wealth						negative or
ratio	Gini	1%	5%	20%	40%	60%	zero wealth
1989 U.S	5. data						
.60	.78	29	53	80	93	98	5.8 - 15.0
No inter	generation	al lin	ks, eq	ual be	quests 1	to all	
.67	.67	7	27	69	90	98	17
No inter	generation	al lin	ks, un	equal	beques	ts to ch	ildren
.38	.68	7	27	69	91	99	17
One link	: parent's	beque	est mo	otive			
.55	.74	14	37	76	95	100	19
Both lin	ks: parent'	's beq	uest i	motive	and pr	oductiv	vity inheritance
.60	.76	18	42	79	95	100	19
• unequ	al bequest	s do n	ot ma	tter			
• both i	ntergenera	tiona	l links	matter	to top	group v	wealth distribution

- 4. Entrepreneurship: Cagetti-De Nardi (2004)
- Agents are altruistic and face uncertainty about death time
- Occupational choice: workers vs. entrepreneurs
 - entrepreneurial production with working capital k and ability θ : $f(k) = \theta k^{\nu} + (1 - \delta)k$
 - working capital subject to borrowing constraints, so k = a + b(a), with borrowing b depending on asset collateral a
- Quantitative findings:

Wealth	Fraction of	Perce	ntage	wealth	in the top
Gini	entrepreneurs	1%	5%	20%	40%
Data					
0.78	10%	29	53	80	93
Baseline	model with ent	reprene	eurs		
0.8	7.50%	31	60	83	94

• over-estimation in top 5% wealth share especially under a smaller share of entrepreneurs

- I. Financial Knowledge and Wealth Inequalities: Lusardiy-Michaudz-Mitchell (2017)
- Even the best fit model stated above is off, not to mention its ad hoc modeling strategy
- Can we fo better? A potential new avenue is to consider heterogeneous financial knowledge
- Education and lifecycle income profile:

• Lifecycle wealth profile:

• Fraction of financial knowledgeable and fraction of using financial advisors

- Financial knowledge => high return R, but with unit cost π
- With saving s, wealth a = Rs
- Household optimization: $\max_{a,R} u(y \pi R a/R) + \beta u(a)$

• with log utility, wealth-income ratio is: $\frac{a^*}{y} = \frac{y}{(2+\frac{1}{\beta})^2 \pi}$

- increasing in y
- decreasing in π

• Model the evolution of financial knowledge: $f_{t+1} = (1 - \delta)f_t + i_t$

- Cash on hand: $x_t = a_t + y_t oop_t$ (oop = out of pocket expenditure)
- Wealth evolution: $a_{t+1} = \widetilde{R}_{\kappa}(f_{t+1})(x_t + tr_t c_t \pi(i_t) c_d I(\kappa_t > 0))$ where $\kappa =$ fraction of wealth in sophisticated financial asset and $\widetilde{R}_{\kappa}(f_{t+1}) = (1 - \kappa_t)\overline{R} + \kappa_t \widetilde{R}(f_t)$
- Income process

$$\log y_{e,t} = g_{y,e}(t) + \mu_{y,t} + \nu_{y,t}$$
$$\mu_{y,t} = \rho_{y,e}\mu_{y,t-1} + \varepsilon_{y,t}$$
$$\varepsilon_{y,t} \sim N(0, \sigma_{y,\varepsilon}^2), \ \nu_{y,t} \sim N(0, \sigma_{y,v}^2)$$

• Out of pocket expenditure process:

 $\log oop_{e,t} = g_{o,e}(t) + \mu_{o,t} + \nu_{o,t}$ $\mu_{o,t} = \rho_{o,e}\mu_{o,t-1} + \varepsilon_{o,t}$ $\varepsilon_{o,t} \sim N(0, \sigma_{o,\varepsilon}^2), \ \nu_{o,t} \sim N(0, \sigma_{o,v}^2)$

• Bellman equation:

$$V_d(s_t) = \max_{c_t, i_t, \kappa_t} n_{e,t} u(c_t/n_{e,t}) + \beta p_{e,t} \int_{\varepsilon} \int_{\eta_y} \int_{\eta_o} V(s_{t+1}) dF_e(\eta_o) dF_e(\eta_y) dF(\varepsilon)$$
$$a_{t+1} = \widetilde{R}_{\kappa}(f_{t+1})(a_t + y_{e,t} + oop_{e,t} + tr_t - c_t - \pi(i_t) - c_d I(\kappa_t > 0))$$
$$f_{t+1} = (1 - \delta) f_t + i_t$$
$$\widetilde{R}_{\kappa}(f_{t+1}) = (1 - \kappa_t) \overline{R} + \kappa_t \widetilde{R}(f_t).$$

• Calibration results (using Tauchen 1986 discretization of the two processes):

• decomposition of wealth inequality

• importance of financial knowledge: accounting for 30-40% of wealth inequality of the retired, even more important than replacement rate, demographics and health mortality factors

- J. Automation, Uneven Growth and Distribution: Moll-Rachel-Restrepo (2019)
- Individuals differ in skill z with density ℓ_z, facing a Poisson death rate p and replaced by those of the same skill
- Individual optimization:

$$\max_{\substack{\{c_z(s), a_z(s)\}_{s \ge 0}}} \int_0^\infty e^{-(\varrho+p)s} \frac{c_z(s)^{1-\sigma}}{1-\sigma} ds$$

s.t. $\dot{a}_z(s) = w_z + ra_z(s) - c_z(s)$, and $a_z(s) \ge -w_z/r$

- non-negative income
- incidental bequest with new born having $a_z(0) = 0$
- Production: $Y = A \prod_{z} Y_{z}^{\gamma_{z}}$ with $\sum_{z} \gamma_{z} = 1$ and $\ln Y_{z} = \int_{0}^{1} \ln \mathcal{Y}_{z}(u) du$
 - each skill z works on a task $\mathcal{Y}_z(u)$ in sector z that produces output \mathbf{Y}_z

• **task production:**
$$\mathcal{Y}_z(u) = \begin{cases} \psi_z \ell_z(u) + k_z(u) & \text{if } u \in [0, \alpha_z] \\ \psi_z \ell_z(u) & \text{if } u \in (\alpha_z, 1] \end{cases}$$

- \circ α_z measures the degree of automation
- (A, γ_z , α_z) summarize technologies: TFP, sector-biased technical changes and automation

- Market-Clearing:
 - **labor:** $\int_0^1 \ell_z(u) du = \ell_z$
 - capital: $K = \sum_{z} \int_{0}^{\alpha_{z}} k_{z}(u) du = \sum_{z} \ell_{z} \int_{0}^{\infty} a_{z}(s) p e^{-ps} ds$
- Assumption I (immediate adoption of available automation technology) $\frac{w_z}{\psi_z} > R$ for all z
- Under A-I, equilibrium features
 - output: $Y = \mathcal{A}K^{\sum_{z} \gamma_{z} \alpha_{z}} \prod (\psi_{z} \ell_{z})^{\gamma_{z}(1-\alpha_{z})}$
 - factor prices: $w_z = (1 \alpha_z) \frac{\gamma_z}{\ell_z} Y$ and $R = \alpha \frac{Y}{K}$
 - **TFP growth:** $d \ln \text{TFP}_{\alpha} = \sum_{z} \gamma_{z} \ln \left(\frac{w_{z}}{\psi_{z} R} \right) d\alpha_{z} > 0$, rising in α_{z} under A-I
- Steady-state equilibrium:
 - equating capital demand and supply: $\frac{1 \rho/r^*}{p\sigma + \rho r^*} = \frac{\alpha}{1 \alpha} \frac{1}{r^* + \delta}$

• diagrammatic illustration:

• S-S return to wealth $r^* = \rho + p\sigma \alpha_{net}^*$, rising with the net capital share α^*_{net} that is increasing in the average degree of automation α (not the distribution of α_z)

• steady-state effect of automation on aggregate output:

$$d\ln Y^* = \frac{1}{1-\alpha} d\ln \mathrm{TFP}_{\alpha} + \frac{\alpha}{1-\alpha} d\ln(K/Y)^* > 0$$

- steady-state effect of automation on relative wage and average wage w*:
 - higher $\alpha_z => \text{lower } w_z^*/w^*$
 - $\exists \bar{p}$ s.t.
 - for $p < \overline{p}$, higher $\alpha_z =>$ average wage w* rises
 - for $p > \overline{p}$, higher $\alpha_z =>$ average wage w* falls
 - automation can lead to wage stagnation under higher death rate
 - higher p => capital supply more inelastic in the long run
 - less output expansion as a result of automation
 - so negative displacement effect can wipe out positive productive effect, leading to lower wage bill and lower average wage
- Distribution:
 - effective wealth $x_z(s) = a_z(s) + w_z^*/r^*$
 - effective wealth distribution: random exponential growth with Poisson death => Pareto wealth distribution

- Calibration results:
 - p = 3.85%
 - \circ $\alpha(1980) = 0.345, \alpha(1980) = 0.428$
 - aggregate labor share:

• predicted wage distribution:

K. Labor Supply and Inequality: Erosa-Fuster-Kambourov-Rogerson (2024)

• IPUMS-CPS data over 1976-2015 indicate:

- large quantitative differences in inequality in wages and earnings both across and within occupations
- occupations with high mean wages exhibit larger gaps in mean log earnings/mean log wages
- occupations with high mean wages exhibit smaller gaps between the within occupation variance of log earnings/variance of log wages
- negative relationship between the within occupation variance of log hours and log mean wages
- negative relationship between log mean hours and the within occupation variance of log hours

- Consider a Roy model with 3 occupations: (H, M, L), each with 1/3 employment share, ranked by mean hours
- Key average data moments:
 - log mean wage = 2.61, 2.28, 1.93 (earning: 10.32, 9.87, 9.41)
 - variance of log wage = 0.33, 0.28, 0.28 (earning: 0.46, 0.48, 0.60)
- 3 dimensions of generalization of standard Roy:
 - endogenous work hour decision
 - heterogeneous tastes for leisure (and hence labor supply elasticities)
 - nonlinearity of efficiency units of labor as a function of labor hours, varying across occupations
- Preference: a continuum of individuals of mass one, with type i individual's

utility given by, $\ln c_i + \phi_i \frac{(T-h_i)^{1-\gamma}}{1-\gamma}$, $\phi_i > 0$, $\gamma > 0$

- Linear production depending efficiency units of labor: $Y_j = E_j$, $j = \{H, M, L\}$
- Individual i's efficiency units of labor nonlinear in hours: $e_{ij} = a_{ij}h_{ij}^{1+\theta_j}, \theta_j > 0$, with $\theta_H \ge \theta_M \ge \theta_L$ (linear when $\theta_j = 0$)

Individual optimization:

$$\max_{c_i,\{h_{ij}\}_{j=H,M,L}} \left\{ \ln c_i + \phi_i \frac{\left(T - \sum_{j=H,M,L} h_{i,j}\right)^{1-\gamma}}{1-\gamma} \right\}$$
subject to $c_i = \sum_{j=H,M,L} a_{ij} h_{ij}^{1+\theta_j}, \quad \sum_{j=H,M,L}^3 h_{ij} \leq T, \ h_{ij} \geq 0$

- Two-stage decision:
 - Stage 1: choose optimal hours conditional on an occupational choice
 - Stage 2: choose the optimal occupation under hours chosen in stage 1
- FOC of stage 1: $\frac{1+\theta_j}{\phi_i} = h_{ij}(T-h_{ij})^{-\gamma} \equiv g(h_{ij}) \Longrightarrow \mathbf{h}_{iH} > \mathbf{h}_{iM} > \mathbf{h}_{iL}$
- Within-occupation hours distribution is driven by $\varepsilon_{h_{ij},\phi_i} = \frac{dh_{ij}}{h_{ij}} / \frac{d\phi_i}{\phi_i} = -\frac{1}{1 + \gamma \frac{h_{ij}}{T h_{ij}}}$
 - its absolute value depends negatively on hours least responsive for H and most responsive for L
 - occupation H has highest mean hours and lowest dispersion of log hours and occupation L lowest mean hours and highest dispersion of log hours
 - negative relationship between mean & variance of log hours across j
 - a proportional decrease in ϕ_i within an occupation leads to an increase in mean hours and a decrease in the variance of log hours

• Calibration:

Description	Parameter	Non-linear
non lineauity U	0	0.4400
non-linearity H	OH	0.4490
non-linearity M	OM	0.3576
non-linearity L	Θ_L	0.2673
corr (a_H, ϕ)	PaH, ¢	0.0
corr (a_M, ϕ)	Pa_M, ϕ	0.0
corr (a_L, ϕ)	Pal, ¢	0.0
corr (a_H, a_M)	PaH, aM	0.9863
corr (a_H, a_L)	PaH,aL	0.9392
corr (a_M, a_L)	Pamal	0.9779
mean ab occ. H	Man	-1.3631
mean ab occ. M	Ham	-1.3190
mean ab occ. L	Har	-0.6888
var ab occ. H	σ_{aH}^2	0.4199
var ab occ. M	O ² aM	0.3532
var ab occ. L	$\sigma_{a_L}^2$	0.2929
mean taste for leisure	Ho	25.0072
var taste for leisure	02	1.6371
	φ	
Target	Data	Non-linear
log mean hours occ. H	7.705	7.707
\log mean hours occ. M	7.590	7.591
\log mean hours occ. L	7.456	7.454
\log mean wages occ. H	2.611	2.611
\log mean wages occ. M	2.277	2.276
\log mean wages occ. L	1.931	1.931
share of emp. occ. H	0.333	0.333
share of emp. occ. M	0.333	0.333
var log hours occ. L	0.239	0.238
var log wages occ. H	0.334	0.332
var log wages occ M	0.281	0.287
var log wages occ. L	0.294	0.290
var log hours occ. H	0.099	0.100
var log hours occ. M	0.146	0.147
the log hours occ. In	0.110	0.111
Loss Function× (10^{-5})		6.47

• Occupational differences:

	Data	Non-linear
Mean Log Earnings		
Occ H	10.322	10.339
Occ M	9.872	9.889
Occ L	9.407	9.420
Log Earn Gap H-M	0.449	0.450
Log Earn Gap L - M	-0.466	-0.469
Var Log Earnings		
Occ H	0.464	0.480
Occ M	0.476	0.486
Occ L	0.598	0.621
Var log earn- Var log wages		
Occ H	0.130	0.147
Occ M	0.195	0.199
Occ L	0.304	0.331
Corr of log hours and log wages		
Occ H	0.075	0.130
Occ M	0.115	0.127
Occ L	0.120	0.177

• overall good fit, except variance of log earnings for L and cov of log hours and log wages for H and L

• Non-targeted moments:

	Data	Non-linear
Log Mean Hours		
Occ H - Occ M	0.114	0.116
$Occ \ L$ - $Occ \ M$	-0.134	-0.137
Var Log Hours		
Occ H - Occ M	-0.047	-0.047
$Occ \ L$ - $Occ \ M$	0.093	0.091
Log Mean Wages		
Occ H - Occ M	0.334	0.335
$Occ \ L$ - $Occ \ M$	-0.346	-0.345
Var Log Wages		
Occ H - Occ M	0.053	0.045
$Occ \ L$ - $Occ \ M$	0.013	0.003
Emp shares		
Occ H	0.333	0.333
Occ M	0.333	0.333
Occ L	0.333	0.334

• overall good fit, except variance of log wages

- L. Occupation Spillover and Top Inequality: Gottlieb-Hémous-Hicks-Olsen (2023)
 - - log change
- A new trend since 1980: rise of within-occupation top income inequality

• Could inequality spill over across occupations?

p99/p90

Within-Occupation

0

p98/p90

 Consider two types of agents: widget makers (a continuum of mass 1) and potential doctors of mass μ_d

p90/p80

• A widget maker of ability x can produce x widgets, $P(X > x) = \left(\frac{x_{\min}}{x}\right)^{\alpha_x}$, with $\alpha_x > 1$ and $x_{\min} = \frac{\alpha_x - 1}{\alpha_x} \hat{x}$ s.t. mean is fixed at \hat{x} as α_x changes (mean preserving spread)

p95/p80

Between-Occupation

p99/p80

- Each doctor of ability Z serves λ patients, $P(Z > z) = \left(\frac{z_{min}}{z}\right)^{\alpha_z}$, with $1/\lambda < \mu_d$ 0 s.t. everyone can be served
 - those failing to become doctor having widget ability of x_{min}
 - a more capable doctor does not increase # of patients served but raises patients utility by improving their health more effectively
- Utility depends on widget consumption & healthcare quality: $u(z,c) = z^{\beta}c^{1-\beta}$
- **Optimization:**
 - widget maker: $\max_{z,c} u(z,c) = z^{\beta} c^{1-\beta}$ subject to $\omega(z) + c \le x \Longrightarrow$ 0 (FOC) $\omega'(z) z = \frac{\beta}{1-\beta} [x - \omega(z)]$
 - doctor: due to sufficient supply of doctors, some below a cutoff z_c would be 0 better off by working as widget maker
 - **market-clearing** => $P(X > m(z)) = \lambda \mu_d P(Z > z), \forall z \ge z_c$ -
- Pareto distr. => matching function $m(z) = x_{\min} (\lambda \mu_d)^{-\frac{1}{\alpha_x}} \left(\frac{z}{z_{\min}}\right)^{\frac{\alpha_z}{\alpha_x}}$ Combining => a differential eq $w'(z) z + \frac{\beta}{1-\beta} w(z) = \frac{\beta}{1-\beta} x_{\min} \left(\frac{\lambda^{\alpha_x-1}}{\mu_d}\right)^{\frac{1}{\alpha_x}} \left(\frac{z}{z_{\min}}\right)^{\frac{\alpha_z}{\alpha_x}}$ 0

using boundary condition at z_c , the solution takes the following form: 0

$$w(z) = x_{\min} \left[\frac{\lambda \beta \alpha_x}{\alpha_z (1-\beta) + \beta \alpha_x} \left(\frac{z}{z_c} \right)^{\frac{\alpha_z}{\alpha_x}} + \frac{\alpha_z (1-\beta) + \beta \alpha_x (1-\lambda)}{\alpha_z (1-\beta) + \beta \alpha_x} \left(\frac{z_c}{z} \right)^{\frac{\beta}{1-\beta}} \right]$$

• it has a Pareto tail
$$x_{\min} \frac{\lambda \beta \alpha_x}{\alpha_z (1-\beta) + \beta \alpha_x} \left(\frac{z}{z_c}\right)^{\frac{\alpha_z}{\alpha_x}}$$

- top-income inequality of doctors spill over to inequality of the widget 0 makers and the entire population
- **Model fit:**

Table 1: Wage income: Ratio 98/90: actual values and predicted values Physicians General Population α^{-1} α^{-1} Year Actual Predicted Actual Predicted 0.341.701.720.251.501.5019801990 0.38 1.87 1.850.401.891.9020000.422.001.96 0.331.75 1.71 20120.421.991.960.341.721.72

Table 3: Spillover estimates for Physicians						
	OLS		1st Stage		IV	
Dependent variable	$\frac{\ln(\alpha_o^{-1})}{(1)}$	$\frac{\ln(\alpha_o^{-1})}{(2)}$	$\frac{\ln(\alpha_{-o}^{-1})}{(3)}$	$\frac{\ln(\alpha_{-o}^{-1})}{(4)}$	$\frac{\ln(\alpha_o^{-1})}{(5)}$	$\frac{\ln(\alpha_o^{-1})}{(6)}$
$\ln(\alpha_{-o}^{-1})$	0.16^{**} (0.08)	0.22^{***} (0.06)			1.74^{**} (0.75)	1.50^{**} (0.70)
ln(Average Income)		-0.40^{***} (0.09)		0.17^{***} (0.05)		-0.60^{***} (0.14)
$\ln(\text{Population})$		-0.02 (0.03)		-0.06 (0.04)		0.07 (0.07)
$\ln(I)$			0.70^{***} (0.24)	0.70*** (0.26)		
LMA FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
N	750	750	750	750	750	750
F-Statistic					8.65	7.43

• Spillover estimates for physicians

• same applies to dentists, real estate agents and system analysts and scientists, but not to financial managers, other managers, engineers, or other professionals

- M. Inequality and Growth: Oberfield (2023)
- In conjunction with widening inequality, the US has experienced fallen productivity over the past two decades. Putting aside issues regarding the measurement of TFP (using working-age population, including labor and capital utilization, etc.), can one come up with a unified endogenous growth model explaining this much concerning observation?
- Oberfield (2023) proposed two The two key ingredients:
 - non-homothetic preferences
 - productivity improvements directed toward goods with larger market size
- Households: a continuum of mass one with identical preferences
 - each supplying labor inelastically differing in labor productivity ~ $G(\ell)$
 - facing a tax function $T(y) = y \bar{y}^{\tau} y^{1-\tau}$
 - \overline{y} s.t. balanced GBC
 - τ = degree of progressiveness (=1 => uniform)
 - after-tax income y-T(y) is log-linear in pre-tax income y
 - **GBC** => $w\ell^{1-\tau}/\overline{\ell^{1-\tau}}$, where $\overline{\ell^{1-\tau}} \equiv \int \ell^{1-\tau} dG(\ell)$

• nonhomothetic preference: a nonhomothetic CES with a specific function of consumption weights $\begin{bmatrix} \sup C \\ C \end{bmatrix}$ s.t. $\left[\int_{-\infty}^{\infty} h\left(i - \gamma \log C\right)^{\frac{1}{\sigma}} \left(\frac{c_i}{C}\right)^{\frac{\sigma-1}{\sigma}} di \right]^{\frac{\sigma}{\sigma-1}} \ge 1$

- consumption wight function:
$$h(i - \gamma \log C)$$

- as C rises, weights toward higher ranked goods with higher i
- γ = strength of nonhomotheticity (homothetic when γ = 0)
- expenditure minimization followed by consumption bundle choice =>

$$c_i = p_i^{-\sigma} E^{\sigma} C^{1-\sigma} h\left(i - \gamma \log C\right) \text{ with } \mathbf{C} \text{ solving } C\left(\int_{-\infty}^{\infty} p_i^{1-\sigma} h\left(i - \gamma \log C\right) di\right)^{\frac{1}{1-\sigma}} = E$$

consumption bundle: $c_i = \frac{E}{p}h\left(i - \gamma \log \frac{E}{p}\right)$

• weight:
$$h(u) = \frac{1}{\sqrt{2\pi v_h}} e^{-\frac{u^2}{2v_h}}$$
, $u = i - \gamma \log C$, v_h = taste dispersion

■ labor productivity distribution: log-normal mean 1 (Gaussian) $G'(\ell) = \frac{1}{\ell} \frac{1}{\sqrt{2\pi v_{\ell}}} e^{-\frac{(\log \ell + v_{\ell}/2)^2}{2v_{\ell}}}, v_{\ell} = \text{labor productivity dispersion}$ product concentration: Herfindahl-Hirschman Index of aggregate expenditures across goods

$$HHI = \int_{-\infty}^{\infty} \omega_i^2 di$$
, where $\omega_i \equiv \frac{p_i y_i}{\int_{-\infty}^{\infty} p_i y_i d\tilde{i}}$ and $y_i = \int c_{\ell i} dG(\ell) \Longrightarrow$

 $HHI = \frac{1}{2\sqrt{\pi}\sqrt{v_h + (1-\tau)^2 \gamma^2 v_\ell}}$ which depends negatively on taste

and labor productivity dispersion with the latter effect more prominent when the strength of nonhomotheticity (γ) is higher

- Production: each i is produced labor under a general technology A and a goods specific technology B_i
 - production function: $Y_{it} = A_t B_{it} L_{it}$
 - evolution of goods specific technology: $\frac{\dot{B}_{it}}{B_{it}} = \phi L_{it}$ (learning by doing)
- Equilibrium:
 - **labor market clearing:** $L_{it} = \frac{Y_{it}}{A_t B_{it}} = \frac{1}{A_t B_{it}} \int c_{\ell i t} dG(\ell)$
 - balanced growth (BGP): constant tax function and $\frac{A_t}{A_t} = g$ under which all growing variables grow at g and all non-growing variables are constant and $\frac{\dot{B}_{it}}{B_{it}} = \phi L_{it} = \phi L_{\omega_{it}}$, where the unique BGP exists if $e^{(\sigma-1)\frac{\phi L}{\gamma g}} < 2$

• **TFP growth:**
$$\frac{d \log \widehat{TFP}_t}{dt} = \int_{-\infty}^{\infty} \omega_{it} \frac{\dot{Y}_{it}}{Y_{it}} di,$$

-
$$\omega_{it} \equiv \frac{p_{it}Y_{it}}{\int_{-\infty}^{\infty} p_{it}^*Y_{it}} = \frac{w_t L_{it}}{w_t L} = \frac{L_{it}}{L} \text{ can be measured by expenditure share}$$

- **thus,**
$$\frac{d \log \widehat{TFP}_t}{dt} = \frac{\dot{A}_t}{A_t} + \phi L \underbrace{\int_{-\infty}^{\infty} \omega_{it}^2 di}_{HHI}, \text{ implying more concentrated}$$

product market driven by demand (expenditure) can lead to higher TFP and economic growth

- with uniform price
$$\mathbf{p}_i = \mathbf{p}$$
, $\frac{d \log TFP_t}{dt} \approx g + \phi L \frac{1}{2\sqrt{\pi}\sqrt{v_h + (1-\tau)^2 \gamma^2 v_\ell}} =>$
more equitable distribution of after-tax income serves as a driver of TFP and economic growth => negative relationship between inequality and growth

• in general,
$$p_{it} = \frac{w_t}{A_t B_{it}}$$
, so $\frac{\dot{p}_{it}}{p_{it}} = \frac{\dot{w}_t}{w_t} - \frac{\dot{A}_t}{A_t} - \frac{\dot{B}_{it}}{B_{it}}$ and inflation dynamics is
 $\widehat{Inflation}_{\ell t} = \frac{\dot{w}_t}{w_t} - \frac{\dot{A}_t}{A_t} - \int_{-\infty}^{\infty} \omega_{\ell it} \frac{\dot{B}_{it}}{B_{it}} di = \frac{\dot{w}_t}{w_t} - g - \phi L \int_{-\infty}^{\infty} \omega_{\ell it} \omega_{it} di \approx \frac{\dot{w}_t}{w_t} - \frac{\dot{A}_t}{A_t} - \phi L \int_{-\infty}^{\infty} \omega_{\ell it}^0 \omega_{it}^0 di$ with
 ω_{it}^0 and $\omega_{i\ell t}^0$ denoting aggregate and individual expenditure shares without
LBD ($\varphi = 0$)

- thus, when φ is small and h and G are Gaussian, if $\log \ell$ is k-sd above the mean and $\log \ell'$ k-sd below, then $\widehat{Inflation_{\ell t}} < \widehat{Inflation_{\ell' t}} =>$ the poor got hurt more
- one may also compute the price index facing household *l* by rewriting

$$E_{\ell t} = C_{\ell t} P_{\ell t} \text{ and } P_{\ell t} = \left[\int_{-\infty}^{\infty} h \left(i - \gamma \log C_{\ell t} \right) p_{it}^{1-\sigma} di \right]^{\frac{1}{1-\sigma}} \Longrightarrow \frac{\dot{P}_{\ell t}}{\dot{P}_{\ell t}} = \frac{\dot{w}_t}{w_t} - \frac{\dot{A}_t}{A_t} = \frac{\dot{w}_t}{w_t} - g$$

 $\Rightarrow \frac{P_{\ell t}}{w_t/A_t}$ is constant for all ℓ , i.e., to all households, their consumption price indexes relative to effective wages remain stable over time

- Taking stock,
 - non-homothetic preferences together with productivity improvements (LBD) directed toward goods with larger market size (demand shifts) can induce a negative relationship between inequality and growth, so the observation of fallen TFP and rising income inequality can be explained
 - overall, the poor got hurt more due to suffering unfavorable inflation bias
 - nonetheless, price of consumption bundle relative to effective wages remain stable over time, so individual welfare measured by w/P_{ℓ} improves at the same constant rate g regardless of labor productivity ℓ

Appendix: On Modeling Top Income or Wealth Distributions

- To model the distribution of labor/non-labor earnings by the super rich (top 1%) or their financial/non-financial wealth, we must source to the class of univariate extreme value distributions (ExVDs), which can only be one of the three types (cf. Fisher-Tippett 1928):
 - Type 1, Gumbel (1958): $Pr(X \le x) = exp[-e^{(x-\mu)/\sigma}]$, or double exponential
 - Type 2, Fréchet (1927): $Pr(X \le x) = exp\{-[(x-\mu)/\sigma]^{-\xi}\}$ for $x \ge \mu$, o.w. = 0
 - Type 3, Weibull (1939): $Pr(X \le x) = \exp\{-[(x-\mu)/\sigma]^{\xi}\}$ for $x \le \mu$, o.w. = 0 where X is the random variable of interest (income or wealth) and $\mu, \sigma > 0$ and $\xi > 0$ are location, scale and shape parameters
- Key properties:
 - These ExVDs are limiting distributions of the greatest value among n independent random variables with each following the same distribution when n → ∞
 - X follows an ExVD \Rightarrow -X follows an ExVD as well
 - Type 2 and 3 can be transformed to type 1 with $Z = log(X-\mu)$ and $Z = log(\mu-X)$, respectively

• Combining all $3 \Rightarrow \Pr(X \le x) = \{1 + \xi[(x-\mu)/\sigma]\}^{-1/\xi}, \text{ with } 1 + \xi[(x-\mu)/\sigma] > 0, \sigma > 0 \text{ and } \xi \in (-\infty,\infty):$

$$- \quad \xi \to -\infty \text{ or } \infty \Rightarrow \text{type } 1$$

$$- \xi > 0 \Rightarrow type 2$$

$$- \xi < 0 \Rightarrow type 3$$

- A special case of type 2 ExVD is Pareto: $Pr(X \le x) = 1 (x/x_{min})^{-\xi}$ with $x_{min} \ge 1$ where $1/\xi$ measures the thickness of the (right) tail $-\xi > 1 \Rightarrow$ finite mean and $\xi > 2 \Rightarrow$ finite variance (may not hold in practice)
- Pareto distribution is useful for income/wealth distribution because of the following property:
 - named after Pareto (1986) for his insight toward income heterogeneity
 - by setting $x_{\min}=1$, $Pr(income > x) = (x)^{-\xi}$, a simple power law
 - Piketty-Saez (2003) top p percentile share = $(100/p)^{1/\xi-1}$ with top 1% share = $(100)^{1/\xi-1} \rightarrow 10\%$ if $\xi \rightarrow 2$ and $\rightarrow 3.2\%$ if $\xi \rightarrow 4$
 - in practice, many thick tail distributions have a Pareto tail in most countries, top-20% income distribution follows Pareto
 - the entire distribution may be a combination of log-normal or logistic with a Pareto tail (use percentile chart to approximate the distribution and check precision by χ^2 test)