Money, Finance and Growth

Ping Wang[©] Department of Economics Washington University in St. Louis

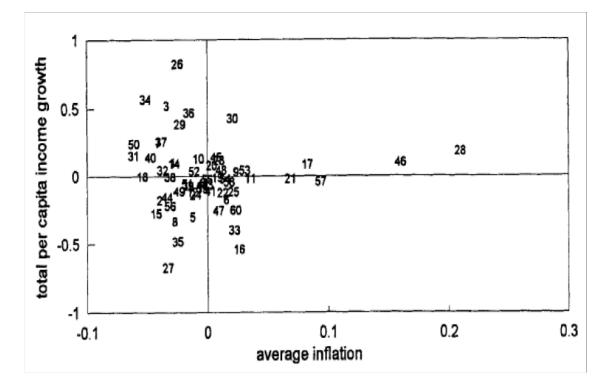
February 2022

- A. Introduction
- I. Empirical Regularities
- 1. Money and growth (Friedman-Schwartz; Walsh, ch. 1):

1

- a. positive correlation in levels
- **b.** largely negative correlation in growth rates
- c. presence of a liquidity effect

Summer-Heston data (1960-85, excluding poor quality data, 60 countries):



- Note: (i) High inflation countries: 28 = Indonesia, 46 = Iceland, 57 = Turkey, 17 = Mexico, 21 = Columbia;
 - (ii) High growth countries: 26 = Hong Kong, 34 = Singapore, 3 = Morocco, 30 = South Korea, 29 = Japan.

- 2. Finance and growth (Becsi-Wang 1997; Levine 1997):
 - a. positive correlation in levels (Goldsmith 1969, McKinnon 1973)
 - b. mixed relation in growth rates:
 - i. zero correlation for OECD (Fernandez-Galetovic 1994)
 - ii. weakly negative correlation for Latin America (DeGregorio-Guidotti 1995)
 - iii. strongly positive correlation for Asia (King-Levine 1993)

	Per Capita Income				
Financial Deepening	High	Middle	Low		
High	US, France, Italy, Switzerland	Chile, Venezuela	Kenya, Jamaica Honduras		
Middle	Norway, Germany, Denmark	Malaysia Trinidad & Tobago	Liberia, Uganda		
Low		Ireland, Hungary, Yugoslavia	Sri Lanka, Philippines Zimbabwe, Indonesia		

Notes: (1) Per capita income is measured by 1985 real GNP per capita in USS at 1980 constant prices where high income takes values of \$7,500 or above, middle income from \$3,000 to \$6,000, and low income up to \$2,000.

- (ii) Financial deepening is measured by the financial intermediation ratio (FIR) defined as in Goldsmith (the ratio of M to GNP) where high deepening takes values of 13% or above, middle deepening from 8% to 12%, and low deepening up to 7%.
- (iii) Gaps are allowed to ensure more definitive classification.

II. Key Literature

- Use of money:
 - money in the utility function (direct value, wealth or transactions time reduction): Samuelson (1947), Patinkin (1965), Sidrauski (1967), Brock (1974), *Wang-Yip (1992a)*, Wang-Yip (1992b)
 - cash in advance: Tsiang (1966), Clower (1967), Lucas (1980), Stockman (1981), Lucas-Stokey (1987), Cooley-Hansen (1989), *Wang-Yip (1992a)*, Gomme (1993), Ireland (1994), *Jones-Manuelli* (1995), Chang-Chang-Tsai-Wang (2017)
 - transactions cost: Saving (1973), Drazen (1979), Grossman-Weiss (1983), Rottemberg (1984), , *Wang-Yip (1992a)*, Jha-Wang-Yip (2002)
 - medium of intergenerational transactions: Samuelson (1958), Wallace (1980), McCullum (1983), Wang (1993), Van der Ploeg-Alogoskoufis (1994)
 - liquidity service: Feenstra (1986), Chang-Chang-Lai-Wang (2008)

- money and search: Wicksell (1898), Jones (1976), Wang (1987), Kiyotaki-Wright (1989, 1993), Trejos-Wrigth (1995), Lagos-Wright (2002), Laing-Li-Wang (2007, 2013)
- Major Roles of Financial Intermediation:
 - liquidity management: Diamond-Dybvig (1993), Bencinvinga-Smith (1991)
 - risk pooling: Townsend (1978), Greenwood-Jovanovic (1990), Bencivenga-Smith (1993)
 - productive loan services: *Tssidon (1992), Aghion-Bolton (1997)*
 - effective monitoring: Williamson (1986), Greenwood-Jovanovic (1990), and the literature on:
 - borrowing/collateral/pledgeability constraints
 - venture capitalism
 - micro finance
 - funds pooling: Besley (1994), Becsi-Wang-Wynne (1999), and the literature on micro finance

- **B.** Money in Dynamic General Equilibrium: Wang-Yip (1992)
- Provide a unified framework to study 3 main dynamic general equilibrium models of money
- Main issue: is money superneutral?
 - Tobin (1965): via asset substitution, higher money growth reduces real balances but encourages capital accumulation and output growth (Tobin effect)
 - Sidrauski (1967): even if money is valued directly, money growth has no effect on steady-state output
 - Stockman (1981): higher money growth reduces real balances, limits capital investment, and lowers output growth (reversed Tobin effect)

a. Money in the Utility Function

$$\max \int_0^\infty W(c(t), \ell(t), m(t)) e^{-\rho t} dt$$

s.t. $c(t) + \dot{k}(t) + \dot{m}(t) = f(k(t), \ell(t)) - nk(t) - (\pi(t) + n)m(t) + \tau(t)$

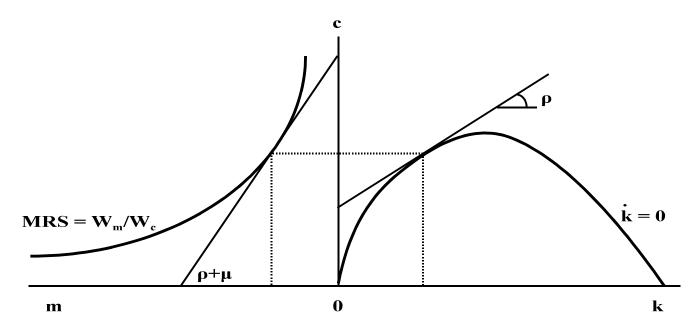
• FOCs and S-S BC:

$$f_k(k, \ell) = \rho + n$$

$$W_c(c, \ell, m) f_\ell(k, \ell) = -W_\ell(c, \ell, m)$$

$$W_m(c, \ell, m) = (\rho + \mu) W_c(c, \ell, m) .$$

$$c = f(k, \ell) - nk.$$



• Comparative statics

b. Cash in Advance

$$\max \int_{0}^{\infty} U(c(t), 1 - \ell(t))e^{-\rho t} dt$$

s.t. $c(t) + \dot{k}(t) + \dot{m}(t) = f(k(t), \ell(t)) - nk(t) - (\pi(t) + n)m(t) + \tau(t)$
 $m(t) \ge c(t) + \Gamma \dot{k}(t)$

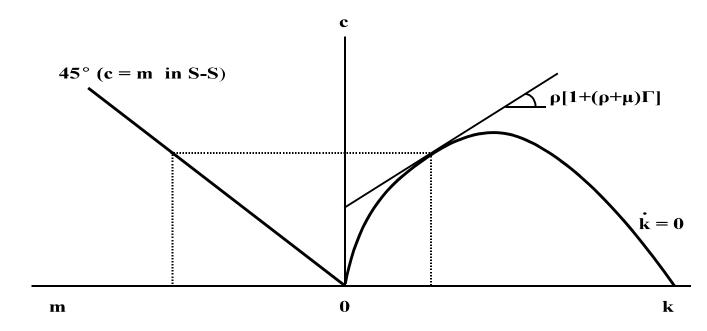
where $\Gamma = 0$, $U_{\ell} = 0 \Longrightarrow$ Lucas; $\Gamma = 1$, $U_{\ell} = 0 \Longrightarrow$ Stockman

• FOCs:

$$f_k = \rho + n + \rho(\rho + \mu)\Gamma$$
$$f_\ell U_c = (1 + \rho + \mu)U_x.$$

Thus, money growth affects MPK directly

• Equilibrium



Comparative statics
 higher μ => k decreases

- $\Rightarrow \ell \text{ lowers } (\mathbf{f}_{k\ell} > 0)$
- => y and c fall
- \Rightarrow (1- ℓ) reduces (U_{cx} > 0) and so ℓ rises
- => net effect on *l* ambiguous

c. Transactions Cost Model

$$\max \int_0^\infty U(\mathbf{c}(t), 1 - \ell(t) - T(t))e^{-\rho t}dt$$

s.t.
$$c(t) + \dot{k}(t) + \dot{m}(t) = f(k(t), \ell(t)) - nk(t) - (\pi(t) + n)m(t) + \tau(t)$$

where
$$T(t) = T(c(t), m(t))$$
, satisfying:
 $T_c > 0, T_m < 0, T_{cc} < 0, T_{mm} > 0, T_{mc} \le 0$

• FOCs:

$$f_k = \rho + n$$

$$f_\ell U_c = (1 + T_c f_\ell) U_x$$

$$-T_m f_\ell = \rho + \mu ,$$

where money growth affects output via MPL

• Comparative statics

higher $\mu \implies k/\ell$ unchanged, as does f_{ℓ}

- => (-T_m) increases and hence m decreases
- \Rightarrow T increases and ℓ decreases
- => k decreases, as does c
- => but the decrease in c lowers T
- \Rightarrow net effect on x = 1- ℓ T ambiguous
- d. Qualitative equivalence between the three models if $W_{c\ell} < 0$, $W_{cm} > 0$, $W_{\ell m} > 0$, $\Gamma = 0$, T(c,m) = 0 if $c \le m$ and = 1 otherwise
- e. Questions: As the three most used "conventional" approaches to money seem to yield qualitatively similar theoretical findings, can "newer" approaches deliver more insights along the lines of money, inflation and growth?

- C. Money and Endogenous Growth: Jones and Manuelli (1995)
- Modified Cooley-Hansen (1989) model to permit endogenous growth
- a. Basic One-Sector Endogenous Growth Model of Money
- Consumer's optimization: $\begin{array}{l} \max \sum_{i} \beta^{t} u(c_{1t}, c_{2t}, 1 - n_{t}) \\
 \text{s.t.} & \begin{array}{l} m_{t} + b_{t+1} \leq v_{t}, \\ p_{1t}c_{1t} \leq m_{t}, \\ v_{t+1} \leq (v_{t} - m_{t} - b_{t+1}) + (m_{t} - p_{1t}c_{1t}) - p_{2t}c_{2t} - p_{1t}x_{t} \\ & + p_{1t}w_{t}n_{t} + p_{1t}r_{t}k_{t} + (1 + R_{t+1})b_{t+1} + T_{t}, \\ k_{t+1} \leq (1 - \delta)k_{t} + x_{t}, \\ \end{array}$ where v = nominal wealth, T = money transfer (M_{t+1} - M_t), R = nominal interest rate, w, r = real factor prices p_{i} = nominal price of i (1 & 2 are cash & credit good) p_{i} = p if both goods are produced

• Firm's optimization

 $\max \pi_{t} = p_{1t}c_{1t} + p_{2t}c_{2t} + p_{1t}x_{t} - p_{2t}r_{t}k_{t} - p_{1t}w_{t}n_{t}$ s.t. $c_{1t} + c_{2t} + x_{t} \le F(k_{t}, n_{t})$

• FOCs

$$\frac{u_1(t) F_2(t)}{u_3(t)} = 1 + R_{t+1},$$

$$\frac{u_1(t)}{u_1(t+1)} = \frac{(1+R_{t+1})}{(1+R_{t+2})} \beta [1-\delta + F_1(t+1)]$$

$$\frac{u_1(t)}{u_2(t)} = 1 + R_{t+1},$$

$$1 + R_{t+2} = \frac{p_{t+1}}{p_t} [1-\delta + F_1(t+1)],$$
and the CIA holds for equality in equilibrium

• Asymptotic BGP equilibrium

(A1)
$$\mathbf{F} = \mathbf{A}\mathbf{k} + \mathbf{D}\mathbf{k}^{\alpha}\mathbf{n}^{1-\alpha}$$
, with $\beta(1 - \delta + A) > 1$
(A2) $\mathbf{u} = [(c_1^{-\lambda} + \eta c_2^{-\lambda})^{-1/\lambda}(1 - n)^{\psi}]^{1-\sigma}/(1 - \sigma)$, with $\sigma > 1, \lambda \ge -1$
 $\gamma^{\sigma} = \beta [1 - \delta + A]$
 $\pi \gamma = \mu$
 $1 + R = \pi [1 - \delta + A]$
 $c_2/c_1 = [\eta (1 + R)]^{1/(1 + \lambda)}$
where $\mu = \mathbf{M}_{t+1}/\mathbf{M}_t$, $\pi = \mathbf{p}_{t+1}/\mathbf{p}_t$
Thus, $\mathbf{r} = \mathbf{A} - \delta$ and $\gamma = [\beta(1 + \mathbf{r})]^{1/\sigma} = \mu/\pi$ (growth rate of m/p)

- Comparative statics
 - money is superneutral in the narrow sense (γ independent of μ)
 - higher μ leads to higher π , higher R, and higher c_2/c_1 (the only source of nonsuperneutrality in the broad sense)

- b. Two-Sector Endogenous Growth Model of Money
- Consumer's optimization:

$$\max \sum_{t} \beta^{t} u(c_{1t}, c_{2t}, 1-n_{t})$$

s.t. $m_t + b_{t+1} \le v_t$, $c_{1t} p_t \le m_t$, $v_{t+1} \le (v_t - m_t - b_{t+1}) + (m_t - p_t c_{1t}) - p_t c_{2t}$ $- p_t x_{kt} - p_t x_{ht} + p_t w_t n_t h_t + p_t r_t k_t$ $+ (1 + R_{t+1}) b_{t+1} + T_t$, $k_{t+1} \le (1 - \delta_k) k_t + x_{kt}$, $h_{t+1} \le (1 - \delta_k) h_t + x_{ht}$,

where physical/human capital investments are credit goods and the final good production function is given by, $F(k, nh) = Ak^{\alpha}(nh)^{(1-\alpha)}$, implying k/h = $\alpha/(1-\alpha)$ if $\delta_k = \delta_h$

- Firm's optimization stays the same (except modified production)
- Asymptotic BGP equilibrium with $\delta_k = \delta_h$

2 x 2 system in (
$$\gamma$$
,n):
(modified GR) $\gamma^{\sigma} = \beta \left[1 - \delta + \alpha A n^{1-\alpha} \left[(1-\alpha)/\alpha\right]^{1-\alpha}\right]$
(labor tradeoff) $\gamma = 1 - \delta + B n^{1-\alpha} \left(1 - \frac{(1-\alpha)(1-n)}{\psi n f(\mu, \gamma)}\right)$
where $f(\mu, \gamma) = 1 + \frac{\mu \beta^{-1} \gamma^{(\sigma-1)} - 1}{1 + \eta^{1/(1+\lambda)} (\mu \beta^{-1} \gamma^{(\sigma-1)})^{1/(1+\lambda)}}$

- Comparative statics
- money is generally nonsuperneutral even in the narrow sense
- for $\lambda > 0$ (c₁, c₂ complements): higher μ reduces c₁ and c₂, lowering n and γ
- for $\lambda < 0$ (c₁, c₂ substitutes): higher μ reduces c₁ but raises c₂, lowering n and γ if η is sufficiently small (CIA binds for almost all purchases)

- **D.** Finance and Growth A First Look: Becsi and Wang (1997)
- (i) Key: Add a banking sector to the AK-model of endogenous growth
- (ii) A Benchmark AK-model without the Financial Sector:
- a. optimization:

max
$$U = \int_0^\infty \frac{c^{1-\alpha} - 1}{1-\alpha} e^{-\rho t} dt$$

s.t. $\dot{k} = Ak - \eta k - c$, $k(0) = k_0 > 0$.

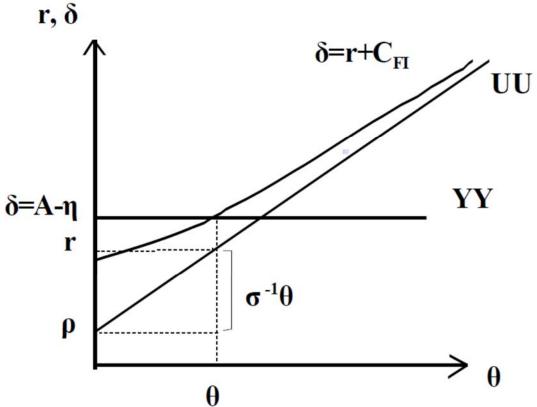
- b. Key relationships without a banking sector:
- Keynes-Ramsey equation: $\theta = \frac{\dot{c}}{c} = \frac{r-\rho}{\alpha} \implies r = \rho + \alpha \theta$ (UU)
- Production efficiency: $\delta = A \eta$ (YY)
- In the absence of an active banking sector: $r = \delta$

(iii) Incorporation of the Financial Sector into the AK-Model

- A key ingredient is to recognize the loan-deposit interest differential. With active banking, deposits are transformed into loans, but such operations are not costless.
- In the absence of reserve requirement, loanable funds equilibrium implies that deposits equal to loans, denoted by x (in real values)
- Denote the unit financial intermediation cost as C_{FI} , which is decreasing as an economy develops (i.e., $\partial C_{FI}/\partial \theta < 0$; see Lehr and Wang 1999 for empirical documentation).
- By competitive banking (perfectly competitive or monopolistically competitive), banks must reach zero profit: profit = $\delta x rx C_{FI} x = 0$, or, $\delta = r + C_{FI}(\theta)$.
- The financial markup can be derived as: $\mu = \delta r = C_{FI}(\theta)$, which depends negatively on the stage of economic development measured by the rate of growth θ .

(v) **BGP** Equilibrium

- Along a BGP, the endogenous growth rate must be pinned down by the loan rate and the production technology, whereas the preferences determines the deposit rate. r, δ
- The BGP equilibrium (θ, δ) is determined when the YY locus intersects with the markup locus, δ= which can then be used, in conjunction with UU, to pin down equilibrium r.



- Comparative statics:
 - production innovation: $A \neq => \delta \neq$, $r \neq$, $\mu \searrow$, $\theta \neq$
 - banking innovation: exog. $C_{FI} \cong \delta$ unchanged, $r \checkmark, \mu \searrow, \theta \checkmark$
 - annuity innovation: $\rho > \delta, \theta \neq r, r \neq \mu \neq$
 - effective monitoring: A \checkmark and $C_{FI} \simeq > \delta \checkmark$, r \checkmark , $\mu \simeq$, $\theta \checkmark$
 - technological and annuity innovation: A \checkmark and $\rho \cong > \delta \checkmark$, r? (\cong if direct effect dominates), $\mu \checkmark$, $\theta \checkmark$
 - limited bank entry: more local market power => $\mu \checkmark$, θ ? (Smith vs. Schumpeter)

E. Liquidity Management, Financial Intermediation and Growth: Bencivenga-Smith (1991)

- The role of financial intermediation: liquidity management.
- Liquid investment is not as productive as illiquid investment. To accommodate illiquid investment and possible withdrawals, banks hold liquid reserves. However, should there be unexpected withdrawals, banks may face a illiquidity problem.
- The model generalizes Diamond-Dybvig (1983) by incorporating liquidity management into an endogenous growth framework.
- a. The Model
- 3-period overlapping-generations (pop = 1), supplying 1 unit of labor only when young and consuming when middle-aged and old
- **Production:** $y = \overline{k}^{1-\theta} k^{\theta} L^{1-\theta}$ (Romer)
- Labor demand per entrepreneur: MPL = w

- Utility: $U = -(c_2 + \varphi c_3)^{-\gamma} / \gamma$, $\gamma > -1$ since $\sigma = 1/(1+\gamma)$
 - where $\phi = 0$ with probability 1- π (early withdrawers) $\phi = 1$ with probability π (entrepreneurs)
- Investment returns:
 - liquid investment: return = n > 0 (safe return)
 - illiquid investment:
 - return after 1 period = $x \in [0, n)$ (liquidated scrap value < n)
 - return after 2 period = R > n (LT investment return > n)
- Labor market equilibrium: $\pi L = 1$ (young's labor supply)
- Factor prices:
 - $\circ \quad w = (1-\theta)k\pi^{\theta}$
 - $\circ \quad r_k = \theta \pi^{\theta 1}$
- With financial intermediation, all wages are deposited in banks.

• Banks:

- have asset management portfolio of {z, q}, choosing a fraction z in liquid investment and q in illiquid investment, where z + q = 1
- have liabilities, paying
 - r₁ to 1-period deposits
 - r₂ to 2-period deposits without withdrawals (capital)
 - r₀ to liquidated 2-period deposits (scraped for consumption).
- **Banks' resources constraints (payments = revenues):**
 - 1-period: $(1-\pi)r_1 = \alpha_1 nz + \alpha_2 xq$ $(\alpha_1 + \alpha_2 = 1)$
 - 2-period: $\pi r_2 = (1-\alpha_2)Rq$
 - **2-period scraped:** $\pi r_0 = (1-\alpha_1)nz$
- Gurley-Shaw's bank (in the interest of the depositors, i.e., banks as coalitions formed by the young): choose $\{q, z, \alpha_1, \alpha_2, r_1, r_2, r_0\}$ to:

$$EV = (1 - \pi) \left[-\frac{(r_1 w)^{-\gamma}}{\gamma} \right] + \pi \left[-\frac{(\theta \pi^{\theta - 1} r_2 w + r_0 w)^{-\gamma}}{\gamma} \right]$$

s.t. $\alpha_1 + \alpha_2 = 1$, z + q = 1 and 3 bank resources constraints

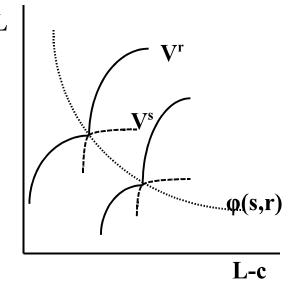
b. Results

- Equilibrium decisions: with $r_k R = \theta \pi^{\theta 1} R > n$,
 - $\alpha_1 = 1$ (1-period reserves always liquidated)
 - $\alpha_2 = 0$ (no pre-mature liquidation of capital)
 - $r_0 = 0$ (paying nothing to liquidated consumption)
- Financial intermediation emerges with *rate-of-return dominance*
 - it requires large γ (or small intertemporal substitution)
 - intuitively, small intertemporal substitution is equivalent to more risk aversion intertemporally, thus giving a stronger role for banks to form.
- Key finding: the rate of growth with financial intermediation is higher than without it if x is sufficiently small.
- Remark: Although the current model assumes forced savings (no value of period-1 consumption), main results are robust to such an extension.

- F. Finance, Human Capital Investment, and Growth: Tssidon (1992)
- Key: credit market imperfections can cause under-invest in human capital and low-growth trap
- a. The Model
- Introducing Jaffee-Russell (1976)'s credit rationing model into a 3period OLG model with human-capital based growth
- **Production (time-to-educate):** $Y_t = F(k_t, E_{t-1})$
- **3-period Individual Decisions:**
 - period-1: borrow to finance risky investment in human capital with returns at rate R^j , with two types $j \in \{r, s\}$
 - period-2: work and save
 - period-3: consume

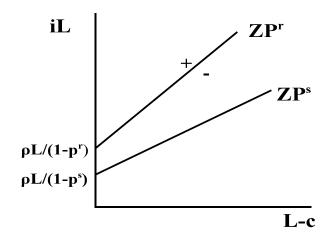
- Investment in Human Capital:
 - investment loan = *L*, with two types $j \in \{r, s\}$
 - **expected return:** $ER^{j} = (1 p^{j})(1 + R^{j}) + p^{j} \cdot 1$
 - assumptions: $ER^r > ER^s$, $p^r > p^s$ (high risk, high returns)
 - \circ individual's choice of *j* is unobservable to banks
- Expected Utility (j = r, s): $V_t^j = (1 - p^j)u((1 + \rho_{t+2})[(1 + R^j)W_{t+1} - (1 + i_{t+1})L]) + p^ju((1 + \rho_{t+2})(W_{t+1} - c_{t+1}))$
 - ρ = deposit rate
 - \circ *c* = collateral
 - \circ W = wage income

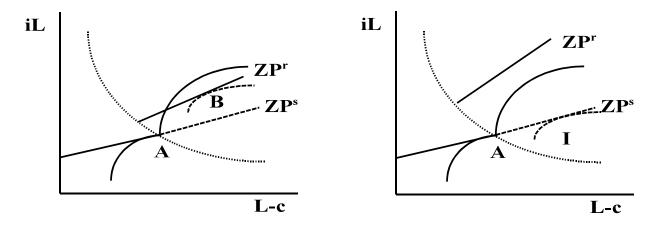
- The idea can be best illustrated by a figure in (L-c, iL) space:
 - iL = costs of borrowing
 - L-c = net benefit of borrowing (limited liability)
 - (1) IC upward-sloping: benefit $\uparrow \Rightarrow cost \uparrow$ to keep V constant iL
 - (2) V^{\uparrow} towards southeast
 - (3) c↓(or L-c↑) matters more to investment in r
 ⇒ need iL↑ more to compensate c↓
 ⇒ IC steeper for r
 - (4) $c^{\uparrow}(L-c^{\downarrow}) \Rightarrow$ risk averters prefer s \Rightarrow upper envelope of IC^{j}
 - (5) V^s = V^r ⇒ φ (the locus is convex under CRRA utility)



(6) Key: non-convexity in IC \Rightarrow multiple equilibrium

- **Banks' zero profit conditions:** $(1 - p_j)i_tL - p^j(L - c) = \rho_tL$
 - upward sloping lines
 - risky type with higher failure rate p^j
 steeper ZP with higher intercept
- **b.** Temporary Equilibrium (given ρ, W)



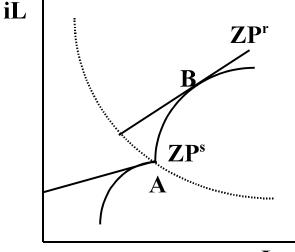


- A: constrained equilibrium due to moral hazard
- B: unconstrained; I: infeasible (negative profit)

- c. Full Dynamic General Equilibrium (DGE)
- In DGE, ρ and W can adjust freely s.t.
 - $O \qquad WE + F_k K = F$

$$\circ \quad F_k = 1 + \rho$$

- While W only affects expected utility V,
 ρ affects both V and ZP
- Adjustment: Look at the benchmark case with B more preferred to A
 - all choose B and risk higher
 - so expected profit goes down
 - funds must be constrained and ZP must shift up
 - the full dynamic equilibrium is reached with (ρ, W) adjusted accordingly (lower K, higher ρ and lower W)



- d. Main Findings
- Moral hazard \Rightarrow credit rationing \Rightarrow equilibrium at A:
 - low human capital
 - $\circ \quad \text{low MPK (or } \boldsymbol{\rho})$
 - low-growth trap
- Policy Prescription:
 - provision of education loans with better monitoring or law enforcement
 - this will reduce moral hazard problems, thus promoting investment in high risk but high return higher education
 - as a result, it enhances economic growth, avoiding the low human capital-low growth trap

- G. Finance, Investment, and Growth: Aghion-Bolton (1997)
- The Aghion-Bolton model can be regarded as an extension of Baneree-Newman (1993) by allowing full dynamics of wealth evolution with:
 - (i) endogenous occupational choice
 - (ii) credit market imperfections
 - (iii) nonstationary distribution (cf. Hopenhyne-Prescott)

- a. The Model
- 1-period lived agents of with unit mass with bequest motive, one unit of time endowment, and heterogeneous initial wealth w ~ G_t(w)

Occupational choice:

- Home production: return n > 0 (small)
- Entrepreneurial activity:

 $F(k,1) = \begin{cases} r & \text{for } k \ge 1 \text{(fixed cost), with prob.} = p \\ 0 & \text{for } k \ge 1 \text{, with prob.} = 1 - p \\ 0 & \text{for } k < 1 \end{cases}$

where p = effort with effort cost $C(p) = \frac{rp^2}{2a}$, $a \in (0, 1]$

- Mutual fund deposit: safe return A_tw_t (no labor input)
- Preferences: Leontief in consumption and bequest $U = [\delta(1-\delta)]^{-1} \min\{(1-\delta)c, \delta b\} - C(p)$
- Budget Constraint: c + b = w

•	Timing	₩ _t -		W _{t+}	
h	Ontimization	t ⁻ occupational choice and investment/ effort decision	return realized	t ⁺ consumption and bequest decision	

b. Optimization

• Consumption and bequest:

$$(1-\delta)c = \delta b$$
 and BC $\Rightarrow b = (1-\delta)w$, $c = \delta w$
 $\Rightarrow w_{t+1^-} = b_{t+1} = (1-\delta)w_{t^+}$

• Assumptions:

• (A1) (mean wealth)
$$\int w dG_0(w) < 1$$

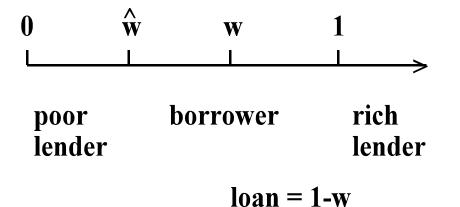
• (A2) (repayment) $\forall w < 1$

$$R(w) = \begin{cases} (1-w)\rho(w) & \text{with prob.}=p\\ 0 & \text{with prob.}=1-p \end{cases}$$

- Occupational choice and investment decision:
 - Potential borrower (w <1): $\max_p pr-p(1-w)\rho(w)-C(p)$,

implying
$$p(w)=a[1-(\frac{1-w}{r})\rho(w)]$$

• Rich lender $(w \ge 1)$: max_p pr-C(p), implying p(w)=a



- c. Atemporal Equilibrium
- Rate of return equalization to lenders:

$$p(w)\rho = A \quad \Longrightarrow \quad \rho(w) = \frac{r}{2(1-w)} \left[1 - \sqrt{1 - \frac{4(1-w)A}{ar}}\right] \quad \forall \ w \in [w, 1]$$

where
$$\underline{w}=1-ar/(4A)$$
 with $\rho' > 0$ $(p' > 0)$
 $a\rho[1-(1-w)\rho/r]$
A

 $w \in [0, \underline{w}) \Rightarrow$ no loan supply \Rightarrow unable to borrow

• Rate of return equalization to borrowers

 $p(w_c)r - p(w_c)\rho(w_c)(1-w_c) - C(p(w_c)) - 1 = Aw_c + n$

=> willing to borrow if $w > w_c$ or A < (3/8)ar - n - 1

- Condition CR: $\exists w > 0$ and $w > w_c$, or, ar/4 < A < (3/8)ar n 1
- Under condition CR, we have: $\forall w \in (w_C, \underline{w})$, they are willing to borrow but unable to obtain loan => equilibrium credit rationing
- d. Full Equilibrium

• Wealth evolution:
$$w_{t+1} = \begin{cases} (1-\delta)(Aw_t + n) & \text{for } w_t \in [0, \hat{w}_t] \\ g_t(w_t, \theta_t) & \text{for } w_t \in [\hat{w}_t, \infty) \end{cases}$$

where $w_t = \max{\{\underline{w}, w_C\}}$, $\theta_t =$ indicator function for success, and

$$g(w,1) = \begin{cases} (1-\delta)[r-(1-w)\rho(w)] & w < 1\\ (1-\delta)[r+(w-1)A] & w \ge 1 \end{cases}$$

$$g(w,0) = \begin{cases} 0 & w < 1\\ (1-\delta)(w-1)A & w \ge 1 \end{cases}$$

$$prob.(\theta = 1|w) = h(w) = \begin{cases} p(w) & w < 1\\ a & w \ge 1 \end{cases}$$

38

- Distribution converges in weak^{*} topology in Polish space
- Additional assumptions:

• (A3) (incentive to lend)
$$\frac{ar}{4}(1-\delta) > 1$$

• (A4) (rapid accumulation)
$$\frac{3}{8}ar(1-\delta) > 1+n$$

• Safe rate of return:

• $A_t \leq \frac{1}{1-\delta} \quad \forall t \geq T$ (ow, unbounded wealth=>excess fund supply)

- under (A3), CR does not exist for $A_t \in [1, 1/(1-\delta)]$
- under (A3) and (A4), $A_t \rightarrow 1$ in finite time
- Trickle-down:
 - CR exists in early stage of development when A_t is high
 - As $w_t \uparrow$ over time, A_t falls in $[1, 1/(1-\delta)] \rightarrow 1 \implies$ no CR
 - Intuition: the rich trickle down increasing supply of loan and enabling the poor to borrow and invest by lowing capital cost A_{i}