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The theories of rational attention and adap-
tive coding describe different but related 
adaptive behaviors. Both models consider a 
state of nature which is determined randomly, 
according to a probability that we call the 
environment.

The two theories describe how the response 
of a decision maker adapts optimally to the 
environment, to maximize discrimination 
among the signals that are likely to be received. 
The theory of rational attention is developed 
in economics (Sims 1998, 2003, with the 
name of “rational inattention”), and describes 
the problem of a decision maker who cannot 
observe precisely the realized state of nature, 
has a utility that depends on the action taken 
and the state realized, and has to choose an 
action on the basis of the available information. 
To maximize utility he wants to introduce 
correlation between action and state, so that 
the appropriate action is more likely to be 
taken in every state. But he faces a cost, which 
is higher if he chooses a higher correlation. In 
his choice of correlation he takes into account 
the statistical properties of the environment, 
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and thus he adapts to it. Similarly, adaptive 
coding describes the dynamic adaptation of 
the response of neurons to the environment. 
It is a widespread property of the brain, and 
appears in several systems including the visual 
system (Laughlin 1981) as well as in brain 
regions encoding reward prediction errors, 
subjective values, and choices (Tremblay and 
Schultz 1999; Tobler, Fiorillo, and Schultz 
2005; Padoa-Schioppa 2009; Kobayashi et al. 
2010; Louie, Grattan, and Glimcher 2011; Cai 
and Padoa-Schioppa 2012). Its effect is an 
improved discrimination among signals under 
the constraint that the dynamic range of its 
response has to be non-negative and smaller 
than some maximum value. It can thus be 
considered the neural correspondent of rational 
attention. In both cases, the decision process 
is considered as an information processing 
problem. Differently from rational attention 
theory, adaptive coding uses the insights 
and accepts the discipline provided by our 
knowledge of the functioning of the neural 
process underlying decision.

There is strong evidence supporting exis-
tence of widespread adaptive coding. Adaptive 
coding, however, introduces the potential of a 
dependence of choice on the environment: If 
choice between two goods is taken by com-
paring the firing rates of different neuronal 
populations, and if firing rates adapt to the 
environment to increase the discriminatory 
power of the responses, then the neural coding 
of an option depends on the statistical proper-
ties of the environment. So the probability of a 
choice over two given options could be altered 
by changing the environment, leaving the two 
options unchanged. Experimental evidence 
shows that this bias does not occur, thus posing 
the question of how the potential bias is elimi-
nated. In this paper we define formally how 
the potential bias may occur, and how it can be 
corrected.
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I.  Adaptive Coding: Experimental Evidence

The first experimental evidence of adaptive 
coding in the neuronal representation of value 
can be found in Tremblay and Schultz (1999). 
In their experiment, monkeys were delivered 
one of three possible rewards (A, B, and C in 
decreasing order of preference). Trials were run 
in blocks and two rewards were used in each 
block (A:B block, B:C block). The response of 
neurons in the orbitofrontal cortex (OFC) to a 
given reward varied from block to block. In par-
ticular, neuronal responses to B were higher in 
the B:C block compared to the A:B block.

A quantitative account of adaptive cod-
ing is provided by Padoa-Schioppa (2009), 
who analyzed neuronal data collected during 
simple economic choices. In the experiment 
(Padoa-Schioppa and Assad 2006), monkeys 
chose between x drops of juice A and y drops 
of juice B. In a given session, x was chosen in 
the range [0, Δ  A], and y ∈ [0, ΔB]. Δ  A and 
ΔB varied from session to session. A popula-
tion of neurons in the OFC (called offer value 
neurons) encoded the value of individual juices 
(A or B) in a linear way; that is, there was a lin-
ear relationship between the activity of the cell 
and the quantity of juice J offered in that trial. 
Padoa-Schioppa (2009) showed that this repre-
sentation of value is range adapting. Specifically, 
the activity of offer value cells encoding the 
value of juice J can be written as:

(1)	 ϕ  = ​ ϕ​0​  +  Δϕ(V/ΔV),

where ϕ is the firing rate of the cell in the trial, ​
ϕ​0​ is a baseline activity, Δϕ is an activity range, 
V is the quantity of J offered in the trial, and ΔV 
is the range of values of J offered in the session. ​
ϕ​0​ and Δϕ do not depend on V or ΔV.

A. A Puzzle

Range adaptation poses the following prob-
lem. If decisions between juices A and B were 
made by comparing the firing rates of two neu-
ronal populations encoding the offer value of 
juice A and juice B, respectively, then the indif-
ference function (describing how much of juice 
A is needed for indifference with a quantity of 
juice B) would depend on the range of values 
offered in any given condition. Specifically, if 
we assume that the indifference function is linear 

with relative value ρ such that P(1, ρ) = 1/2, 
decisions made by comparing firing rates 
implies that ρ is proportional to ΔB/Δ  A. This 
point is illustrated graphically in Figure 1.

Conen, Cai, and Padoa-Schioppa1 tested this 
prediction as follows. In each session, monkeys 
chose between two juices A and B. Each ses-
sion included two blocks of trials. In the first 
block, juices A and B were offered in ranges 
Δ  A and ΔB, respectively. In the second block, 
one value range was left unchanged while the 
other value range (Δ  A or ΔB ) was changed 
by a factor 2 (halved or doubled, in a 2 × 2 
design).2 In the analysis, the authors assumed 
linear indifference functions and compared 
the relative value measured in the block where 
ΔB/ΔA = X with that measured in the block 
where ΔB/ΔA = 2 × X. Across more than 
100 sessions, the relative values measured in the 
two blocks were statistically indistinguishable. 
This result suggests that decisions are not sim-
ply made by comparing firing rates.

B. Possible Solutions

One possible solution to the challenge posed 
by range adaptation might be if both offer value 
A and offer value B cells adapt to the same range 
of values. In particular, both groups of neu-
rons could be adapting to the maximum value 
range such that the right-hand side of equa-
tion (1) is: ​ϕ​0​ + Δϕ(V/max(ΔV )). We tested 
this hypothesis as follows. For each offer value 
cell, we refer to the juice encoded by the neu-
rons as juice E and for the other juice as juice 
O. In the dataset of Padoa-Schioppa (2009), 
there are 937 neuronal responses encoding the 
offer value. Of these, 498 were cases in which 
the juice with maximum value range was juice 
E (i.e., ΔE > ΔO), while 439 were cases in 
which the juice with maximum value range was 
juice O (i.e., ΔE < ΔO). (Value ranges were 
compared taking into account the relative value 
of the juices.) We examined these two groups 

1  Conen, Cai, and Padoa-Schioppa (unpublished obser-
vations in preparation).

2 Importantly, the experiment was designed to avoid con-
founding factors due to juice-specific satiation or choice 
hysteresis. The initial 50 trials at the beginning of the sec-
ond block were excluded from the analysis (previous data 
indicate that this is amply sufficient to obtain full range 
adaptation). 
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of responses separately. For each response we 
calculated the activity range Δϕ. The hypothesis 
under consideration leads to the prediction 
that the measure of Δϕ should be larger when 
ΔE > ΔO compared to when ΔE < ΔO. 
Contrary to this prediction, we found no sta-
tistical difference between the activity range 
measured for these two populations ( p = 0.37, 
Kruskal-Wallis test). Note that the two groups 
of cells are large, so it appears unlikely that this 
result simply reflects a lack of statistical power.

A second alternative solution to the challenge 
posed by range adaptation would be if the num-
ber of cells encoding the offer value of one par-
ticular juice depended on the value range for that 
juice. Specifically, one could imagine that more 
neurons are added to the population encoding 
the value of one particular juice when the range 
of that juice is increased. This increase could in 
principle balance the effect of range adaptation 
to keep behavioral preferences stable. To test 
this hypothesis we considered again the dataset 
of Padoa-Schioppa (2009). Recordings were 
generally obtained from multiple neurons in par-
allel. Offer value responses (937 in total) were 
recorded in 240 sessions. For each session, we 
determined the juice with the maximum value 
range. (Value ranges were compared taking into 

account the relative value of the juices.) We also 
counted the number of responses encoding the 
offer value of A or B. Across the population, we 
constructed a 2 × 2 contingency table represent-
ing the number of responses encoding the offer 
value of A and B (rows) recorded in sessions 
in which Δ  A > ΔB or Δ  A < ΔB (columns). 
Contrary to the hypothesis under consideration, 
we found that the two classifications were sta-
tistical independent ( p = 0.51, chi-square test).

To conclude, our analysis indicates that deci-
sions are not simply made by comparing the 
firing rates of different groups of offer value 
cells. To the contrary, the neuronal network that 
generates the decision must essentially “undo” 
range adaptation in such a way that indifference 
functions do not depend strongly on the value 
range.

II.  Model of Choice

To formulate precisely how choices depend 
on the firing rate of the offer neurons, we pres-
ent a model of choice. The heart of the model 
is a system of equations describing time evolu-
tion of the gating variables (fraction of NMDA 
(N-methyl-D-aspartate) receptors that are open 
at time t, see Wong and Wang 2006 for details). 

Figure 1. Challenge Posed by Range Adaptation

Notes: Panel A: Range adaptation in orbitofrontal cortex. Each line represents the average neuronal response (baseline-sub-
tracted) plotted against the offer value. Different lines indicate different value ranges. Panel B: In this simplified model, 
choices result from the activity of two neurons encoding offer value A (left) and offer value B (right). When the range of juice 
B increases (lighter line), the offer value B cell adapts. The indifference point, for which the two cells have equal firing rate, 
shifts. If decisions were made by comparing firing rates, the same quantity of juice B would be chosen less frequently.

Source: Panel A reproduced from Padoa-Schioppa (2009)
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We use here the reduced form model, 3 described 
for i = A, B by:

(2) ​  d​S​ i​ _ 
dt

 ​ (t)  =  − ​ 
​S ​i​(t)
 _ τ ​   +  (1 − ​S ​i​(t))H(​X ​i​ ),

where ​S​  i​(t) ∈ [0, 1] are the gating variables, 
​S​  i​(0) = 0, ​X  ​i​ ≡ α ​S  ​i​(t) − β ​S ​j​(t) + ​I ​i​(t), i = A, B, 
j ≠ i, and ​I ​i​(t) is the input for the option i at t. 
Input goes from offer value neurons to taste neu-
rons, whose firing rate eventually determines the 
choice. The quantities τ, α, β > 0 are dimen-
sional parameters. The function H describes 
the neuronal response to the current input.4 We 
assume:

  H: �The function H is continuous, positive, 
strictly increasing.

If the values of the variables ​S ​i​ tend to a limit 
where ​S​ A​(t) is larger than ​S​B​(t) then good A is 
chosen. The input I(t) is a stochastic process; to 
understand the choice process is useful first to 
consider the case where ​I ​i​(t) is a deterministic 
constant. In this case the dynamic process can 
be studied with the phase diagram illustrated in 
Figure 2.

III.  Hebbian Learning

The input ​I​ A​(t) is proportional to the firing 
rate of the offer neurons. As we have seen in the 
review of the experimental evidence presented 

3 See Wong and Wang (2006, Appendix, p. 1327). 
4 The function H can be derived from the first passage 

time formula derived from the theory of leaky integrate and 
fire neurons. A convenient specification is the approximation 
suggested by Abbott and Chance (2005):

(3)          H(x)  ≡ ​   ax − b __  
1 − ​e​−d(ax−b)​

 ​.

The basic properties of the system we study only depend 
on the assumption H, so the use of an approximation is 
not a concern. Note that the function G(r) ≡ ​  r _ 

1 − ​e​ −dr​
 ​, 

for r ∈ R, is continuous, positive everywhere (in particu-
lar it is 1/d at 0) and strictly increasing everywhere. Thus 
H has the same properties and satisfies the assumption H. 
In addition G is asymptotically linear with slope 1, that is 
li​m​ r→∞​    ​ G(r)/r = 1, so H is asymptotically linear with slope 
a > 0. If we denote by h the inverse function of H, a contin-
uous strictly increasing function, h is asymptotically linear 
with slope 1/a. 

in Section I, the firing rate of the offer neuron for 
A in environment μ for good A when the quan-
tity x is offered is fully adapted to μ, and equal 
to the rank of the quantity x, defined as

(4)	​ F​μ​(x)  ≡  μ{ y : y ≤ x}.

If no correction is provided, the choice between 
two quantities x and y would depend on the 
environment, but experimental evidence rejects 
this hypothesis. So we assume that the mean of 
the input for i is a product of the fully adapted 
input 4 and the strength of the synaptic efficacy 
between offer and taste neurons:

(5)	 E​I​ A​(t)  = ​ w​  A​(n)​F​μ​(x),

where ​w​  A​(n) is the strength of the synaptic effi-
cacy at trials n. The process (Fusi 2002) adjusts 
the synaptic strength (​w  ​A​, ​w​  B​) by an amount pro-
portional to the difference between the reward 
obtained if the choice was A, times the firing rate 
of the offer neurons of type A, minus the current 
strength. Let R(n) be the reward received at trial 
n, irrespective of whether the choice was A or 
B; let C(n) ∈ {A, B} be the choice at trial n, ​I​A​
(C ) = 1 if C = A and zero otherwise. Weight ​
w  ​A​ adjusts according to:

(6)  ​  w ​  A​(n + 1)  = ​ w​  A​(n)  + ​ 
γ
 _ n ​ Ad​j​ A​(n),

with

	 Ad​j​   A​(n)  ≡  R(t​)​α​ ​δ​A​(C(n))​F​μ​(x(n)) − ​w​  A​(n),

(​δ​A​(C) = 1 if C = A, zero otherwise). We study 
the dynamics of the system of equation (6) and 
the corresponding equation for the B good by 
studying the associated ODE, which for the A 
good is

(7)	​​    w​​   A​(s) = γ  E​( ​R​α​ ​δ​A​(C)​F​μ​(x) − ​w​  A​(s) )​,

where the expectation is taken with respect to 
the probability over the choice C and the realiza-
tion of the quantities x and y in the trial.
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In equation (6) we take the two distributions 
as the uniform distributions between 0 and ​b​i​,  
i = A, B. Then:

PROPOSITION 3.1: The system described by 
equation (7) (and corresponding equation for 
B) has a unique, globally asymptotically stable 
steady state.

Hebbian learning will compensate for the 
potential bias introduced by adaptive coding if 
the weights tend to values proportional to the 
range. Let us call (​W  ​A​(​b​A​, ​b​B​), (​W ​B​(​b​A​, ​b​B​)) 
the steady state at (​b​A​, ​b​B​), and consider how the 
steady states of equation (7), and so the limit 
of the process, depends on the values (​b​A​, ​b​B​). 
Figure 3 shows that Hebbian learning compen-
sates adaptive coding. This conclusion is sup-
ported by numerical simulations of the entire 
system described by equations (2), (5), and (6), 

producing the probability of choice according to 
the model described in Section I.

Reward enters nonlinearly in the adjustment. 
The following proposition gives a lower bound 
of the weight for A as the upper boundary is 
multiplied by a constant.

PROPOSITION 3.2: For R > 1 and b > 0, 
​W ​A​(Rb, b) > ​R​α​​ W​ A​(b, b).

When α = 1 then the weight is super-linear 
in the R value. In fact the steady state values 
in panel A of the figure illustrate well how the 
ratio among the steady state values is consid-
erably higher than 2. Considering that weights 
represent synaptic efficacy, which has a physi-
ological upper bound, Proposition 3.2 shows 
that if reward entered linearly into the adjust-
ment, Hebbian learning could only be effective 
in compensating adaptive coding locally.
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Figure 2. Dynamics of Gating Variables and Choice Process (Axes indicate the variables S)

Notes: Arrows describe the direction of flow of the differential equation (2) and its correspondent for the B good, when the 
input ​I​ i​(t) is constant over time for both goods. The two lines describe the zeros of the vector field; their intersection the steady 
states, thus the possible limit values of the two gating variables. Two of the steady states are stable and one (the intermediate) 
unstable. In panel A, the input for the two goods is the same, so with noise the two goods are chosen with equal probability. In 
panel B, the input of good A is higher; the set of zeroes for the ​S​ A​ variables shifts upward. Now a process starting at the initial 
condition ​S​ i​ = 0 for both goods is more likely to converge to the bottom-right steady state. So the probability of choosing A is 
higher than 1/2. With a further increase of the input for A, only one steady state will remain, and good A will be chosen for sure.
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IV.  Conclusions

Rational attention is an as if theory, based on 
special assumptions on the function specifying 
the cost of attention. Here we have provided 
an as is theory of choice. Within this frame-
work adaptive coding is defined precisely: the 
neural response of the offer neurons is propor-
tional to the rank, defined in equation (4). The 
mechanism producing choice is fully specified 
(by equations (2), (3), (4), and (5)). Choice is 
stochastic, and the model predicts precisely the 
extent of the variability. The model is mechanis-
tic, with no free variables: each variable in it can 
be experimentally measured. Adaptive coding 
according to equation (4) produces the poten-
tial of a bias (identified in behavioral econom-
ics literature as a reference point bias), which 
however does not appear in behavior. The fully 
specified Hebbian learning adjustment (equa-
tion (6)) provides a possible explanation of why 
bias does not occur. The system learns the basic 
statistical properties of the environment, and the 
bias that is introduced in the initial trails is com-
pensated after a limited number of trials.

Further research is under way. An extension 
to human decision making is essential, includ-
ing factors like provision of attentional effort 
in decision making (Dickhaut, Rustichini, and 
Smith 2009). A natural question arises: why 
should adaptive coding be adopted, and then 
compensated by a complex, error prone process? 
The answer to this question requires a more 
detailed understanding of the neural transmis-
sion process, and is the topic of current research.
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