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Economic choice behavior entails the computation and comparison of subjective values. A central contribu-
tion of neuroeconomics has been to show that subjective values are represented explicitly at the neuronal
level. With this result at hand, the field has increasingly focused on the difficult question of where in the brain
and how exactly subjective values are compared tomake a decision. Here, we review a broad range of exper-
imental and theoretical results suggesting that good-based decisions are generated in a neural circuit within
the orbitofrontal cortex (OFC). The main lines of evidence supporting this proposal include the fact that goal-
directed behavior is specifically disrupted by OFC lesions, the fact that different groups of neurons in this
area encode the input and the output of the decision process, the fact that activity fluctuations in each of
these cell groups correlate with choice variability, and the fact that these groups of neurons are computation-
ally sufficient to generate decisions. Results from other brain regions are consistent with the idea that good-
based decisions take place in OFC and indicate that value signals inform a variety of mental functions.
We also contrast the present proposal with other leading models for the neural mechanisms of economic
decisions. Finally, we indicate open questions and suggest possible directions for future research.
Neuroeconomics has been a lively area of research since the

early 2000s. The ultimate goal of this field is to understand the

brain mechanisms underlying economic choices. A core idea

rooted in economic theory is that choosing entails two mental

stages—values are first assigned to the available options and a

decision is then made by comparing values. Thus, for the first

generation of studies, the central question was whether the

construct of value is valid at the neural level. The most important

result of that season was to demonstrate that subjective values

are explicitly represented in the brain during choice behavior

(Bartra et al., 2013; Clithero and Rangel, 2014; O’Doherty,

2014; Padoa-Schioppa, 2011; Wallis, 2011). With this funda-

mental result at hand, the field increasingly turned to the question

of how subjective values are compared to make a decision.

In the past few years, different research groups have pursued

different working hypotheses on the neural mechanisms gener-

ating the decision and on the brain regions participating in this

process. Research foci have included the posterior parietal cor-

tex (Glimcher et al., 2005; Louie et al., 2013), the hippocampus

(Shadlen and Shohamy, 2016), and the role of visual attention

(Hare et al., 2011; Krajbich et al., 2010). While these lines of

investigation remain active, a series of recent breakthroughs

links good-based decisions specifically to the activity of different

neuronal populations in the orbitofrontal cortex (OFC). The most

notable findings have come from experiments in non-human

primates and from computational modeling. Lesion studies

dissociated the contribution of the OFC from that of neighboring

ventromedial prefrontal cortex (vmPFC), while neurophysiology

studies established strong links between the activity of neurons
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in the OFC and the generation of economic decisions. Comple-

menting these results, computational models suggested that the

groups of neurons identified in this area are necessary and

sufficient to generate decisions. Taken together, these lines of

evidence suggest that good-based decisions emerge from a

neural circuit within the OFC. The purpose of this article is to

review this growing literature, to discuss the proposed role of

OFC in relation to other models of economic decision-making,

and to indicate open questions for future research.

The article is organized as follows. The first three sections

review the notion of value in neuroeconomics, discuss anatomy

and lesion studies implicating OFC in economic choices, and

describe the neuronal representation of goods and values in this

area. The next three sections describe the evidence supporting

the proposal that good-based decisions (i.e., value comparisons)

are generated within the OFC. One section reviews the possible

contributions of other brain regions. Two other sections review

other models of economic decisions, namely, the distributed

consensus model and the attentional drift-diffusion model. The

concluding section summarizes the main points of the article

and suggests directions for further investigation.

The Notion of Value in Neuroeconomics
In the past decade, a large number of studies have provided

direct or indirect evidence for an explicit neuronal representation

of subjective values during economic choice behavior. Value

signals have been found in numerous brain regions,most notably

OFC and vmPFC (reviewed in Bartra et al., 2013; Clithero and

Rangel, 2014; O’Doherty, 2014; Padoa-Schioppa, 2011;
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Wallis, 2011). Without revisiting that literature in detail, we limit

this section to a few considerations that are particularly relevant

for the rest of this article.

Work on the neuronal representation of economic value has

antecedents in economics and psychology. Classic economists

such as Adam Smith and Jeremy Bentham rooted their economic

theories in psychological concepts of pleasure and pain.

Subsequent generations of economists, however, gradually

emancipated their models from psychological constructs—a

process that culminated with the formulation of neoclassic, or

standard, economic theory (Niehans, 1990). Standard economics

is (almost) completely divorced from psychology: the theory is

entirely constructed on ‘‘revealed preferences,’’ and it is agnostic

aboutwhether values (orutilities)are realpsychologicalorneuronal

entities. The standard theory limits itself to noting that, under well-

defined conditions, choices are made ‘‘as if’’ based on assigned

values (Kreps,1990). In thisconception, thenotionofvalue is rather

weak. Yet economic theory offers a powerful framework to which

behavioral and physiological facts can be securely anchored.

Other antecedents can be found in learning theory, an area of

psychology focused on associative learning. Modern learning

scholars distinguish between two concepts of value. The first,

sometimes termed ‘‘cached value’’ (McDannald et al., 2014),

drives relatively simple learning processes such as those

described in classic behaviorism. Resulting behaviors, referred

to as ‘‘habitual,’’ are well accounted for by mathematical models

of reinforcement learning that define the ‘‘value’’ of a state as the

total amount of reward the agent can expect to accumulate

starting from that state (Rescorla and Wagner, 1972; Sutton

and Barto, 1998). Importantly, cached values are learned as

such and thus fixed. Hence, cached values cannot account for

flexible behavior such as that observed in reinforcer devaluation

experiments. In these experiments, subjects initially learn to

perform a task to obtain a particular reward (e.g., a particular

food). Prior to testing, experimental subjects undergo a devalu-

ation procedure, for example through selective satiation of that

food. As a result, during testing, the performance of experimental

subjects is degraded compared to that of control subjects

(Balleine and Dickinson, 1998; Colwill and Rescorla, 1985). The

drop in performance following reinforcer devaluation implies

that subjects compute the value of the reward on the fly at the

time of testing. This value is not learned as such; it depends on

the environmental conditions, including the motivational state

of the animal. Behaviors affected by reinforcer devaluation are

referred to as ‘‘goal-directed’’ (Balleine and Dickinson, 1998;

Daw et al., 2005; McDannald et al., 2014).

The notion of value in neuroeconomics is rooted in economic

concepts and is closely related to that defined for goal-directed

behaviors. The focus of neuroeconomics is choice behavior

(not learning). While a large number of natural behaviors can be

construed as entailing a choice, scholars in neuroeconomics

generally restrict the domain of interest to a class of choices

defined somewhat intuitively. Specifically, it is generally under-

stood that economic choices depend on subjective preferences

(i.e., there is no intrinsically correct choice) and normally require

some trade-off between desirable dimensions (e.g., quantity

and probability). Furthermore, it is generally understood that

economic choices entail two distinct mental processes: values
are first assigned to the available options (offers) and a decision

is then made by comparing these values (Kable and Glimcher,

2009; Padoa-Schioppa, 2007; Rangel et al., 2008). With these

premises, neuroeconomics experiments typically let subjects

choose between different goods. In many cases, two offers

vary on two dimensions. An operational measure for the relative

subjective value of the goods is derived from the observed choice

pattern, and specifically from the indifference point. For example,

if a subject offered one apple versus two bananas chooses either

good equally often, it can be said (assuming linearity) that the

value of the apple equals two times the value of the banana.

This measure of value is then used to interpret neural activity.

Neuroeconomics studies typically define multiple variables that

neurons or neural populations might conceivably encode, such

as the value of individual offers (offer value), the value of the cho-

sen offer (chosen value), the value of other offer (other value), the

value difference (chosen value – other value), etc. These variables

are used as regressors. If a particular value variable explains the

neural activity better than other variables (including non-value

variables), it can be concluded that the neural activity ‘‘encodes’’

or ‘‘represents’’ that value variable (Kable and Glimcher, 2007;

Padoa-Schioppa and Assad, 2006; Plassmann et al., 2007; for

further discussion, see Padoa-Schioppa, 2011).

The relation between the notions of value in neuroeconomics

and in goal-directed behavior emerges from an additional—and

crucial—layer of analysis. If a neuron or a brain area really

encodes economic value, then its activity should reflect the sub-

jective nature of value. In particular, subjective values generally

vary depending on the environmental conditions, including the

motivational state of the agent. This variability should also be

present in the neural signal. Hence, the most compelling

evidence for a neural representation of subjective values comes

from studies that derived a neural measure for value and showed

that the neural measure and the behavioral measure co-varied

(Kable and Glimcher, 2007; Padoa-Schioppa and Assad, 2006;

Raghuraman and Padoa-Schioppa, 2014; Valentin et al., 2007).

This condition—the identity between neural and behavioral

measures of value in the face of individual and contextual

variability—highlights the close relation between values driving

economic choices and values driving goal-directed behaviors

(for further discussion on this issue, see O’Doherty, 2014;

Padoa-Schioppa and Schoenbaum, 2015).

Anatomy and Lesion Studies
A clear link between economic choices and the OFC has histor-

ically been established by anatomy and lesion studies. The

orbital surface of the frontal lobe includes a network of distinct

but densely interconnected areas termed the ‘‘orbital network.’’

In this article, ‘‘OFC’’ refers to the central part of the orbital

network, namely, areas 13 m/l and 11l (Ong€ur and Price, 2000).

Anatomically, OFC receives input from visual, somatosensory,

olfactory, and gustatory regions, from limbic regions, and from

the dorsal raphe (Ong€ur and Price, 2000; Way et al., 2007).

This pattern of connectivity seems ideally suited to compute

subjective values, which require integrating sensory and motiva-

tional signals. Concurrently, OFC sends output to the lateral

prefrontal cortex (Petrides and Pandya, 2006; Saleem et al.,

2014), which projects widely to motor and premotor areas
Neuron 96, November 15, 2017 737
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Figure 1. Long-Distance Anatomical Connections Underlying
Economic Choice Behavior
Top and bottom panels represent the lateral and ventral view of a monkey brain,
and the front of the brain is on the right. The figure summarizes the anatomical
connections deemed the most relevant to the formation and implementation of
economic decisions. Subjective values are computed by integrating input from
sensory regionsand limbicregions.Valuecomparison (thedecision) takesplace in
OFC, where goods and values are represented independently of the spatial
contingencies of the choice task (good-based representation). Ultimately, many
decisions leadtosomeaction.OFCprojects to the lateralprefrontalcortex (LPFC),
where neurons reflect a good-to-action transformation. In turn, LPFCprojects toa
variety of premotor and motor regions, where suitable movements are planned
and controlled. The figure does not show other anatomical connections through
which value signals computed in OFC likely inform other mental functions such
as autonomic responses (connections with the medial network), emotion
(projections to theamygdala), associative learning (projections todopaminecells),
perceptual attention (reciprocal projections to sensory regions), etc.
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Figure 2. Effects of Brain Lesions on Goal-Directed Behavior
Performance in reinforcer devaluation tasks is disrupted following lesions of
orbitofrontal cortex (OFC, area 13/11) and/or amygdala (AMY). In contrast,
goal-directed behavior is not affected by lesions of ventromedial prefrontal
cortex (vmPFC, area 14), lateral prefrontal cortex (LPFCd/v, area 46d/v),
prelimbic cortex (PLC, area 32), or the hippocampus (HC). Top, center, and
bottom panels represent the lateral, ventral, and medial view of a monkey
brain, respectively.
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(Lu et al., 1994; Takada et al., 2004; Takahara et al., 2012). Thus,

OFC can influence a variety of mental functions including action

planning and execution (Figure 1).

Starting with the classic case of Phineas Gage (Damasio et al.,

1994), an extensive literature found that OFC dysfunction in

human patients is associated with choice deficits in various

domains (Cavedini et al., 2006; Heyman, 2009; Hodges, 2001;

Rahman et al., 1999; Strauss et al., 2014; Volkow and Li, 2004).

Notably, deficits following OFC lesions include increased viola-

tions of preference transitivity (Camille et al., 2011; Fellows and

Farah, 2007). In non-human primates and rodents, numerous

studies found that OFC lesions impaired performance in goal-

directed behaviors. More specifically, the effects of reinforcer

devaluation were significantly reduced following OFC lesions

(Gallagher et al., 1999; Gremel and Costa, 2013; Izquierdo et al.,

2004; West et al., 2011). These results indicate that, absent the

OFC, animals fail to compute subjective values on the fly.
738 Neuron 96, November 15, 2017
Building on this background, lesion studies conducted in

recent years shed light on two key points. First, earlier work

had not clarified whether the area most relevant to value compu-

tation is OFC proper or neighboring vmPFC. More recently, how-

ever, it was shown that goal-directed behavior is specifically

impaired after lesions of OFC (Rudebeck and Murray, 2011) or

the amygdala (Baxter et al., 2000; Wellman et al., 2005; West

et al., 2012). In contrast, goal-directed behavior is not affected

by lesions of vmPFC (area 14) (Rudebeck and Murray, 2011),

lateral prefrontal cortex (Baxter et al., 2008, 2009), prelimbic

cortex (Rhodes and Murray, 2013), or the hippocampus

(Chudasama et al., 2008) (Figure 2). Second, earlier work had
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Figure 3. Cell Groups in Orbitofrontal Cortex
(A) Task design. In each session, monkeys chose between two juices (labeled
A andB, with A preferred) offered in variable amounts. Offers were represented
by colored squares on a computer monitor, and monkeys indicated their
choice with a saccade.
(B–F) Cell groups. The five panels represent the activity of five neurons
(recorded in different sessions). In each panel, different offer types are
ranked on the x axis by the ratio #B / #A, where #X is the quantity of juice X
offered to the animal. Black dots represent the percent of trials in which the
animal chose juice B (the choice pattern). A sigmoid fit provided a measure
for the relative value of the juices. Red symbols represent the neuronal
activity, with diamonds and circles indicating trials in which the animal chose
juice A and juice B, respectively. Neurons on the top encode (B) the offer
value A and (C) the offer value B. These variables capture the input of the
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also indicated that OFC lesions disrupt performance in reversal

learning tasks (McDannald et al., 2014), which seem conceptu-

ally different from value-based behaviors. However, recent

studies using excitotoxic agents (as opposed to aspiration)

found that OFC lesions alone do not affect reversal learning,

and that performance drops observed previously were likely

due to the fact that lesions procured through aspiration

damaged fibers of passage (white matter) located above the

OFC (Rudebeck et al., 2013).

In summary, lesion studies indicate thatOFCand the amygdala

are the only regions strictly necessary for goal-directed behavior.

At the same time, lesion studies do not clarify whether

economic decisions (i.e., value comparisons) take place in either

of these areas.

The Representation of Goods and Values in OFC:
Flexible but Stable
This section summarizes current notions on the neuronal

encoding of goods and values in OFC, including ways in which

this representation adapts and does not adapt to the behavioral

context of choice.

Early neurophysiology work on the primate OFC had found

neurons responding to the delivery of particular foods or juices

in a way that depended on the motivational state of the animal

or on the behavioral context (Rolls et al., 1989; Thorpe et al.,

1983; Tremblay and Schultz, 1999). Other experiments found

that the activity of the same neurons was modulated both by

the quantity of juice and by the delay, in a way qualitatively

consistent with time-discounted values (Roesch and Olson,

2005). Along similar lines, studies in other brain regions had

found neuronal activity modulated by the type, quantity, or prob-

ability of reward (Barraclough et al., 2004; Kawagoe et al., 1998;

McCoy and Platt, 2005; Platt and Glimcher, 1999). The first clear

evidence for neurons encoding subjective values came from a

study in which monkeys chose between different juices offered

in variable amounts (Padoa-Schioppa and Assad, 2006). Choice

patterns presented a quality/quantity trade-off, and the relative

value of the two juices was inferred from the indifference point.

The study identified three groups of neurons in the OFC: ‘‘offer

value’’ cells encoding the value of one of the two juices, ‘‘chosen

juice’’ cells encoding the binary choice outcome, and ‘‘chosen

value’’ cells encoding the value of the chosen offer (Figure 3).

This neuronal representation was found to be ‘‘good based,’’

meaning that individual neurons were associated with different

juice types and firing rates did not depend on the spatial

contingencies of the choice task. Subsequent work built on

these seminal findings.

As one contemplates economic choices made in different

behavioral contexts, it becomes apparent that the neural circuit

underlying this behavior must satisfy two competing demands.

On the one hand, the same subject might be faced with a
decision process. Neurons on the bottom encode (D) the chosen juice A, (E)
the chosen juice B and (F) the chosen value. These variables capture the
decision outcome. The fact that different neurons in OFC encode the input
and the output of the decision suggests that economic decisions may be
generated within a neural circuit formed by these groups of cells. This is
adapted from Padoa-Schioppa and Assad (2006) and Padoa-Schioppa
(2013) with permission.
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potentially infinite variety of goods at different times, with values

varying by many orders of magnitude. Hence, the neural circuit

underlying economic choices must be flexible and adapt to the

current circumstances. On the other hand, moving from one

context to another, preferences should be (somewhat) consis-

tent. Furthermore, the architecture of the neural circuit cannot

change arbitrarily on a short timescale. Hence, the neural circuit

underlying economic choices must be stable in the face of

contextual variability. A number of studies in the past few years

revealed several ways in which the neuronal representation of

goods and values in OFC meets these two demands.

Two traits of offer value cells—menu invariance and range

adaptation—make these neurons particularly well suited to

support economic choices. Menu invariance is the property of

neurons encoding the value of a particular good independently

of the identity or value of the other good offered in alternative. It

was observed in a study where monkeys chose between three

juices (A, B, C) offered pairwise. Trials with the three juice pairs

(A:B, B:C, C:A) were interleaved. The activity of OFC neurons

associated with a particular juice (e.g., offer value B cells) did not

depend on the other juice offered concurrently (Padoa-Schioppa

and Assad, 2008). Menu invariance is closely related to a

fundamental property of economic behavior, namely, preference

transitivity. By definition, preferences are transitive if for any three

goods A, B and C, A > B and B > C imply A > C, where ‘‘>’’ means

‘‘is preferred to.’’ To appreciate the importanceof preference tran-

sitivity, consider an individual who initially owns C and pays $1 to

get B, then pays $1 to get A once he has B, then pays $1 to get C

once he has A. After the last transaction, the individual owns C as

he did initially but has lost $3 in the process. Furthermore, the

individual could lose any amount of money if he continued to

repeat this catastrophic sequence of choices. Hence, a decision

circuit that ensures preference transitivity fulfills a fundamental

ecological demand. Importantly, if the value assigned to a good

does not depend on the good offered in alternative, preferences

are necessarily transitive (Grace, 1993; Tversky and Simonson,

1993). Thus, if economic decisions are based on the activity of

offer value cells in OFC, preference transitivity follows from the

fact that this representation is menu invariant.

Range adaptation refers to the fact that the gain of

value-encoding cells is inversely related to the range of values

contextually available (Cox and Kable, 2014; Kobayashi et al.,

2010; Padoa-Schioppa, 2009; Saez et al., 2017). Neuronal

adaptation is a ubiquitous phenomenon observed in sensory,

cognitive, and motor regions. In OFC, range adaptation was

observed in the juice choice experiments described above

(Figure 3). In each session, the value offered for each juice varied

from trial to trial within a fixed range, and value ranges varied

across sessions. The tuning of offer value and chosen value cells

was always linear. However, a population analysis revealed that

tuning slopes were inversely proportional to the range of values

available in any given session. Thus, the same range of firing rates

represented different value ranges in different sessions (Padoa-

Schioppa, 2009). Prima facie, range adaptation seems to provide

an efficient neuronal representation. However, uncorrected

adaptation in offer value cells would induce arbitrary choice

biases (Padoa-Schioppa and Rustichini, 2014). Subsequent

experiments indicated that the decision circuit corrects for the
740 Neuron 96, November 15, 2017
effects of range adaptation, raising the question of whether adap-

tation is at all advantageous to the decision (Rustichini et al.,

2017). To address this fundamental question, Rustichini et al.

(2017) recently developed a new theory of optimal coding in

economic decisions. The core idea is that the representation of

offer values is optimal if it ensuresmaximal expected payoff. Their

study shows that for linear tuning functions corrected range

adaptation is indeed optimal. Interestingly, linearity in itself was

not optimal given the sets of offers presented in the experiments,

indicating that linearity is a rigid, non-adapting property of offer

value coding. However, it was shown that the benefits of range

adaptation outweigh the cost of functional rigidity. In other words,

a linear but range adapting representation of offer values ensures

close-to-optimal behavioral performance.

In addition to menu invariance and range adaptation, there are

other ways in which the representation of goods and values in

OFC adapts and does not adapt to the behavioral context of

choice. First, as noted above, choices may involve a large variety

of different goods. To examine how the neuronal representation

in OFC adjusts to this aspect of context variability, a recent study

let monkeys choose between different pairs of juices in two

blocks of trials (A:B, C:D design). The functional role of each

neuron (offer value, chosen juice, chosen value) was assessed

separately in each trial block. Neurons encoding the identity

or the subjective value of particular goods in a given context

‘‘remapped’’ and became associated with different goods

when the context changed. Concurrently, the functional role of

individual cells and the overall organization of the decision circuit

remained stable across contexts. In other words, offer value cells

remained offer value cells, and two neurons supporting the same

choice in one context also supported the same choice in

different contexts (Xie and Padoa-Schioppa, 2016).

Second, it has often been noted that neurons in the OFC

represent options and values in a good-based reference frame

(Grattan and Glimcher, 2014; Padoa-Schioppa and Assad,

2006; Roesch and Olson, 2005). For example, neurons in the

juice choice study described above (Figure 3) were associated

with different juice types. Possible alternative reference frames

included those in which cells are associated with different loca-

tions in space (location based), with different actions (action

based), or with different numbers (number based). All of these

representations would have been equally valid, but for reasons

that are not well understood the actual reference frame was juice

based. However, the reference frame in which OFC neurons

represent options and values might in fact be flexible. Such a

possibility first emerged from studies in which options were

defined spatially and neuronal responses appeared to be spatial

in nature (Abe and Lee, 2011; Tsujimoto et al., 2009; for discus-

sion, see Padoa-Schioppa and Cai, 2011). More recently, Blan-

chard et al. (2015) used a choice task in which animals traded

off some amount of juice to obtain earlier information about the

trial outcome. Options were presented sequentially, and the au-

thors analyzed data in an order-based reference frame. Yet,

some aspects of their data suggest that the neuronal might

have been information based (or color based). (This scenario

would partly explain their negative results on value coding.) In

any case, the study points to the possibility that reference frames

are flexible.
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(Wang, 2002). The model is biophysically realistic in the sense that neurons are either excitatory (80% of cells) or inhibitory (20% of cells) and all the parameters
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mation reduces the network to a dynamic system of 11 variables (Wong and Wang, 2006). The model recapitulates the groups of cells identified in OFC and
reproduces second-order phenomena such as choice hysteresis, the ‘‘predictive activity’’ of chosen juice cells and the ‘‘activity overshooting’’ of chosen value
cells (Rustichini and Padoa-Schioppa, 2015).
(B) Recurrent neural network (Song et al., 2017). The network includes twomodules organized in an actor-critic architecture, namely, a decisionmodule trained to
select actions that maximize reward and a value module that predicts future reward and guides learning. The authors trained the network to perform binary
economic choices providing teaching signals similar to the choice patterns observed behaviorally (Figure 3). After training, the activity of units in the value module
recapitulated the three groups of cells identified in OFC. This is reproduced from Song et al. (2017) with permission.
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Neuronal remapping and changes of reference frames

can be thought of as ‘‘discrete’’ forms of context adaptation

(in contrast, range adaptation is ‘‘continuous’’). The presence

of such discrete forms of adaptation resonates with a recent

proposal in learning theory, according to which OFC plays a

role in building a representation of task ‘‘states.’’ This represen-

tation, or cognitive map, would support the actual learning,

which is thought to take place in other brain regions. By this

account, OFC would be especially important when task states

are only partly observable, as is the case in reinforcer devalua-

tion experiments (Lopatina et al., 2017; Schuck et al., 2016;

Wilson et al., 2014). The notion of state in learning theory is

germane to that of reference frame discussed here in the sense

that adopting a particular frame of reference to describe an

economic choice is analogous to adopting a particular set of

states to describe a learning task. In this respect, the experi-

mental results described above support the cognitive map

hypothesis. At the same time, the role played by OFC in

economic choice seems broader than that discussed in relation

to task states (Wilson et al., 2014). According to the present

proposal, neurons in OFC do not merely build a reference

frame to represent goods and values; different groups of cells

in OFC, organized in a neural circuit, execute a decision

process that takes as input the values of individual offers and

returns the choice outcome. The next three sections describe

the evidence supporting this view.
A Neural Circuit for Economic Decisions
The proposal that good-based decisions (i.e., value comparisons)

take place within OFC originates from a simple observation: the

three groups of neurons identified in this area (Figure 3) capture

both the input (offer value) and the output (chosen juice, chosen

value) of the decision process. This fact suggests that

these groups of cells form a neural circuit in which decisions are

generated. This working hypothesis has motivated a substantial

research effort in the past few years. This and the following two

sections review themost notable results emerging from this work.

An important proof of concept supporting the idea that

good-based decisions are generated within the OFC came

from computational modeling. Specifically, Rustichini and

Padoa-Schioppa (2015) showed that a biophysically realistic

neural network comprised of the three groups of cells identified

in OFC can generate binary economic decisions (Figure 4A).

The model was adapted from a neural network previously used

to describe the activity of parietal neurons during motion

perception (Wang, 2002; Wong and Wang, 2006). The model is

biophysically realistic in the sense that neurons are either excit-

atory or inhibitory and all the parameters (synaptic weights, time

constants, etc.) have values derived from or compatible with

experimental measures (Brunel and Wang, 2001). Remarkably,

in addition to recapitulating the groups of cells identified in

OFC, the model reproduces various experimental observations,

including the behavioral phenomenon of choice hysteresis, the
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‘‘predictive activity’’ of chosen juice cells, and the ‘‘activity

overshooting’’ of chosen value cells (see below). Corroborating

results were also obtained using a reduced version of the model

(Hunt et al., 2012; Jocham et al., 2012).

The study described above, where monkeys chose between

different juice pairs in subsequent trial blocks (Xie and Padoa-

Schioppa, 2016) provided empirical support for a neural decision

circuit within OFC. As already noted, neurons maintained their

functional role but became associated to one of the juices

available in each behavioral context (remapping). Perhaps

most importantly, the composition of neuronal pools persisted

across trial blocks. In other words, two neurons supporting the

same (opposite) choice in one block also supported the same

(opposite) choice in the other block. These observations validate

the understanding that different groups of neurons in OFC form a

stable decision circuit.

Neuronal Fluctuations and Choice Variability
The most important lines of evidence linking the activity of

neurons in OFC to economic decisions come from the analysis

of firing rates in relation to choice variability. Consider in a juice

choice task offer types for which choices are split (e.g., 3B:1A

in Figure 3C). What makes it so that the monkey chooses one

particular juice on a given trial? Several phenomena link the

choice made by the animal to trial-by-trial fluctuations in the

activity of specific groups of cells.

First, taking an approach frequently used for perceptual

decisions (Britten et al., 1992), the relation between fluctuations

in the activity of offer value cells and the choice outcome can be

quantified with an ROC analysis, which returns a ‘‘choice proba-

bility’’ (CP). In essence, CP is the probability with which an ideal
Figure 5. Neuronal Fluctuations and Choice Variability
The figure illustrates four phenomena relating fluctuations in neuronal activity to ch
illustrates experimental data, while two cartoons in the center and right panels dep
are those for which the animal consistently chose the same juice; ‘‘split’’ decisions
(A–C) Trial-by-trial activity fluctuations in offer value cells. (A) illustrates the averag
split trials were included in the figure. The two traces refer to trials in which the anim
animal chose the other juice (juice O, red). In the post-offer time window, the blu
tuning of offer value B cells, and (C) depicts two idealized choice patterns. In d
depressed (red). This neuronal variability induces (or correlates with) a choice
displaced to the left.
(D–F) Range adaptation of offer value cells. In the juice choice experiments, the
illustrates the average of a large number of offer value responses recorded with
recorded in two sessions, in which the range of offer values is small (blue) or large
variability. Neuronal adaptation to larger ranges of offer values induces higher cho
noisy. Furthermore, due to range adaptation, the same fluctuation in firing rate (
range is large (red) compared to when it is small (blue). Finally, larger trial-by-tr
variability.
(G–I) Predictive activity of chosen juice cells. (G) illustrates the average baseline
neuron, trials were divided in four groups depending on whether the animal chose
and on whether decisions were easy (dark traces) or split (light traces). In split t
decision of the animal (i.e., the light blue trace was elevated compared to the light
time window. Cells are not tuned, but in different trials the neuronal activity might
choice bias (I).
(J–L) Overshooting of chosen value cells. (J) illustrates the average baseline-subtra
only trials in which the animal chose 1A (fixed chosen value). Trials were divided in
indicates the quantity of juice B offered and ‘‘r’’ indicates the relative value (i.e., th
blue, green, and yellow traces refer, respectively to trials for which n < r (easy d
450 ms after the offer), the activity of offer value cells presented an overshooting
idealized tuning of chosen value cells and the corresponding choice pattern. Each
the animal chose juice A, and dots on the top dotted line are trials in which the a
different quantities of juice B. In (K), the corresponding colors indicate firing rate
(A), (G), and (J) are adapted from Padoa-Schioppa (2013) with permission; (D) is
observer would infer the choice outcome from the activity of one

neuron. Interestingly, the CPs of offer value cells were found to

be rather small (Figures 5A–5C) (Conen and Padoa-Schioppa,

2015; Padoa-Schioppa, 2013) and substantially lower than the

CPs typically measured for sensory neurons during perceptual

decisions (Britten et al., 1992, 1996; Cohen and Newsome,

2009; Liu et al., 2013; Nienborg and Cumming, 2006, 2014;

Romo et al., 2002). Importantly, the CP of any given neuron

reflects not only the cell’s contribution to the choice (readout

weight), but also the structure and intensity of correlated

variability across the neuronal population (noise correlation)

(Haefner et al., 2013; Shadlen et al., 1996). Thus, a follow-up

study examined correlations in neuronal variability in OFC

(Conen and Padoa-Schioppa, 2015). It was found that noise

correlations in this area are much lower than typically measured

in sensory areas during perceptual decisions (Cohen and Kohn,

2011; Nienborg and Cumming, 2006; Smith and Kohn, 2008;

Smith and Sommer, 2013; Zohary et al., 1994; but see Ecker

et al., 2010, 2014). Furthermore, computer simulations showed

that noise correlations measured in OFC, combined with a

plausible readout of offer value cells, reproduce the experimental

measures of CPs. In other words, measures of noise correlations

andmeasures of CPs taken together support the hypothesis that

economic decisions are primarily based on the activity of offer

value cells (Conen and Padoa-Schioppa, 2015).

Second, evidence linking activity fluctuations in offer value

cells and choice variability also emerges from a recent study

on optimal coding (Rustichini et al., 2017). Consider the session

in Figure 3B. The choice pattern may be described by a sigmoid

function and the payoff is defined as the chosen value averaged

across trials. Given a set of offers, the expected payoff is an
oice variability. Each row refers to one phenomenon. In each row, the left panel
ict the phenomenon in a conceptual way. In any given session, ‘‘easy’’ decisions
are those for which the animal alternated its choices between the two juices.

e baseline-subtracted activity profile of a large number of offer value cells. Only
al chose the juice encoded by the neurons (juice E, blue) and trials in which the
e trace is mildly elevated compared to the red trace. (B) depicts the idealized
ifferent trials, the neuronal activity might be slightly elevated (blue) or slightly
bias—when the activity of offer value cells is elevated, the choice pattern is

ranges of offer values varied from session to session. Each trace shown in (D)
a specific value range. (E) depicts the idealized tuning of offer value B cells

(red). (F) depicts two choice patterns presenting low (blue) and high (red) choice
ice variability. Intuitively, this follows from the fact that neuronal firing rates are
dr) corresponds to a larger fluctuation in subjective value (dV) when the value
ial fluctuations in the subjective value of any given offer induce higher choice

-subtracted activity profile of a large number of chosen juice cells. For each
the juice encoded by the cell (E, blue traces) or the other juice (O, red traces),

rials, the activity measured prior to the offer was correlated with the eventual
red trace). (H) depicts the idealized tuning of chosen juiceB cells in the pre-offer
be slightly elevated (blue) or slightly depressed (red). This variability induces a

cted activity profile of a large number of chosen value cells. The figure includes
three groups depending on the quantity of the other, non-chosen juice. Here ‘‘n’’
e quantity of juice B such that the animal is indifferent between 1A and rB). The
ecisions), n < r (split decisions), and n R r. During the decision window (200–
when n was larger (i.e., the decision was more difficult). (K) and (L) depict the
dot represents a trial type. In (L), dots on the bottom solid lines are trials in which
nimal chose juice B. Colored dots are trials in which the animal chose 1A over
s.
adapted from Padoa-Schioppa (2009) with permission.

Neuron 96, November 15, 2017 743



Neuron

Review
increasing function of the sigmoid steepness or, equivalently, a

decreasing function of choice variability. The theory developed

by Rustichini et al. (2017) links the choice outcome to the activity

of offer value cells. In this construct, choice variability is due to a

combination of neuronal noise, finite maximum firing rates,

and non-zero value ranges. The theory describes the conditions

that maximize the expected payoff, and thus makes two

predictions. First, offer value cells should undergo range

adaptation. Second, choice variability should increase as a

function of the offer values ranges. Data from two experiments

confirmed this prediction (Figures 5D–5F).

Third, the choice made by the animal in split trials is correlated

with the activity of chosen juice cells in the timewindowpreceding

the offer presentation (‘‘predictive activity’’) (Padoa-Schioppa,

2013). This phenomenon is interpreted with the understanding

that the pre-offer activity of chosen juice cells represents the state

of the neural circuit prior to the offer. If one of the two offer values

dominates, the animal chooses it independently of the initial state.

However, if the two offers are close in value, the initial state effec-

tively imposes a choice bias (Figures 5G and 5I). Importantly, the

predictive activity of chosen juice cells is closely related to the

behavioral phenomenon of choice hysteresis—the fact that, other

things equal, monkeys tend to choose on any given trial the same

juice chosen in the previous trial (Padoa-Schioppa, 2013). The

two phenomena are closely related, because the predictive activ-

ity of chosen juice cells is almost entirely accounted for once the

outcome of the previous trial is controlled for. In other words, the

predictive activity of chosen juice cells is largely a tail activity from

the previous trial. This last observation suggests that the predic-

tive activity of chosen juice cells may be the cause underlying

choice hysteresis, although this hypothesis awaits testing. As

already noted, choice hysteresis and the predictive activity of

chosen juice cells are naturally reproduced by the neural network

model illustrated in Figure 4A (Bonaiuto et al., 2016; Rustichini and

Padoa-Schioppa, 2015).

The fact that choice variability is accounted for partly by

activity fluctuations in offer value cells and partly by activity

fluctuations in chosen juice cells suggests that both of

these populations are part of the neural circuit generating

economic decisions. Another phenomenon, termed ‘‘activity

overshooting,’’ suggests that the decision circuit also includes

chosen value cells. This phenomenon is observed by examining

the activity of these neurons for given chosen value as a

function of the other, non-chosen value. During the decision

time window, firing rates present a transient overshooting

reflecting the decision difficulty (Figures 5J–5L) (Padoa-

Schioppa, 2013). If chosen value cells did not participate in

the decision process (e.g., if their firing rates simply reflected

the logical product of offer value and chosen juice), their activity

would presumably depend only on the chosen value and not on

the decision difficulty. Conversely, the activity overshooting

may be accounted for if chosen value cells are within the

decision circuit, as demonstrated by the neural network model

in Figure 4A (Rustichini and Padoa-Schioppa, 2015).

Finally, a powerful way to assess the relation between neuronal

activity and the decision process is to examine ensembles of

many neurons over the course of individual trials. A significant

step in this direction was recently taken by Rich and Wallis
744 Neuron 96, November 15, 2017
(2016). In their experiments, juice was made available to

monkeys in four value levels. In training trials, only one value level

was offered; in choice trials, the animals chose between

two value levels. The authors recorded simultaneously from

ensembles of �10 neurons in OFC. In the analysis, they trained

a linear classifier to decode the value level (the ‘‘state’’) in training

trials. Then they used the classifier to decode the state of the

neuronal ensemble in choice trials. They thus obtained several

interesting results. First, the decoded state alternated between

the chosen and the unchosen value over the course of each trial,

as though the neuronal ensemble reflected an internal delibera-

tion (Figures 6A and 6B). Second, behavioral response times

correlated with the relative time spent by the neuronal ensemble

in the unchosen versus chosen state (Figure 6C). Third, control-

ling for the offer value levels and for the choice outcome, the

authors compared trials in which the decision was quick versus

deliberative, as revealed by the pattern of eye movements

(Figures 6D and 6E). Averaging decoded states across trials,

they also obtained an estimate for how strongly the chosen value

was represented compared to the unchosen value. They thus

found that the strength of that representation was significantly

higher in easy compared to difficult decisions (Figure 6F).

Notably, this analysis did not attempt to classify cells in different

groups. Nonetheless, the results support the understanding that

decisions are formed within the OFC.

Computational Models of Goal-Directed Behavior
The neural network model described above (Figure 4A) indicates

that the three groups of cells identified in OFC are computation-

ally sufficient to generate economic decisions. Other modeling

work suggests that these groups of cells may also be necessary.

In one study, Solway and Botvinick (2012) introduced a neuro-

computational theory of goal-directed behavior. In their concep-

tion, each task is represented by a computational structure, the

elements of which are states, actions, policies, and rewards. Re-

wards are stochastic variables and the computational structure

amounts to a probabilistic generative model for the reward. In

this formulation, goal-directed behavior involves the inversion

of the generative model (i.e., an inverse probabilistic inference).

The authors implemented their theory with a neural network.

They then examined the activity of network units and the

emerging performance in various tasks. For binary economic

choices, the activity of network units closely resembled the firing

rates of offer value and chosen value cells found in the OFC.

Furthermore, the network reproduced the sigmoid shape of

choice patterns and the relation between reaction time and value

ratio (i.e., decision difficulty) measured in a food choice study in

capuchin monkeys (Padoa-Schioppa et al., 2006).

Friedrich and Lengyel (2016) obtained similar results with a

different approach. First, they showed that a biologically

plausible neural network of spiking neurons can implement

goal-directed behavior by solving Bellman’s optimality equation.

In their network, synaptic weights are learned given an internal

model of the task. As a result, the network can calculate the

optimal value of each option online. The authors trained the

network in several tasks, including sequential decision tasks.

They specifically examined the neuronal tuning curves and the

performance of the network in a binary choice task and found
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Figure 6. Dynamics of Economic Decisions
in OFC
The figure summarizes the results of Rich and
Wallis (2016).
(A) Reconstruction of the internal state. Each panel
refers to one trial and illustrates the posterior
probability of the decoded state (y axis) as a
function of time (x axis).
(B) Relation between choice and internal state. In
the top panel, b coefficients were obtained by
regressing the decoded state onto the chosen/
unchosen value. In the bottom panel, the decoded
state was regressed onto the value presented on
the left/right.
(C) Relation between reaction times and internal
state during the decision. In the top-left panel, b
coefficients were obtained by regressing reaction
times onto the probability that the network was in
the chosen or unchosen state. The bottom-left
panel depicts the coefficient of partial determina-
tion (CPD). The right panels illustrate the equiva-
lent results obtained by regressing reaction times
onto the probability that the network was in the
chosen or other (non-present) state.
(D) Quick versus deliberative decisions. Quick
decisions were defined as those in which the
animal made only one saccade.
(E) The fraction of quick decisions increased as a
function of the value difference.
(F) Relation between choice and internal state as a
function of the decision difficulty.
The figure was reproduced from Rich and Wallis
(2016) with permission.
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striking similarities with the experimental measures. Specifically,

the tuning of neurons in the network closely resembled that of

offer value and chosen value cells in OFC. Furthermore, neuronal

activity profiles depended on the offered values in subtle ways as

indeed observed in experimental data (Padoa-Schioppa, 2013).

Finally, the network reproduced the sigmoid shape of choice

patterns and the relation between reaction times and value ratio

observed at the behavioral level.

More recently, Song et al. (2017) took a very different route but

ultimately reached similar conclusions. In essence, they trained a

recurrent neural network (RNN) to perform various cognitive and

value-based tasks. Importantly, the structure of their network

was general and not designed to match any particular task

(Figure 4B). The RNN consisted of two modules organized in an

actor-critic architecture, namely, a decision module trained to

select actions that maximized reward and a value module that

predicted future rewards and guided learning. Most relevant

here, the authors trained the RNN to perform binary economic

choices, providing as teaching signals choice patterns similar
to those of Figure 3. Remarkably, they

found that after training theactivity of units

in the value module recapitulated the

three groups of neurons identified in the

primate OFC, namely, offer value, chosen

value, and chosen juice. Similar results

were also obtained by Zhang et al. (2017).

Of course, each of the models dis-

cussed here builds on a particular set of

assumptions. However, multiple compu-
tational models based on very different premises all recapitulate

the findings illustrated in Figure 3 and other experimental results,

suggesting that the three groups of neurons identified in OFC

might be necessary—and not just sufficient—to generate

good-based economic decisions.

Contributions of Other Brain Regions
The previous sections emphasize the role of OFC but do not

address whether or how other brain regions might participate

in value computation, economic choice, and choice-guided

behavior. As often noted, value signals inform a variety of

cognitive functions beyond economic choice, including

emotion, autonomic responses, associative learning, perceptual

attention, andmotor control. Thus, not surprisingly, value signals

have been identified in a large number of cortical and

sub-cortical regions (for review, see O’Doherty, 2014; Padoa-

Schioppa, 2011; Schultz, 2015). In this section, we will focus

specifically on recent results that shed light on the neural

mechanisms underlying economic choices.
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Outside OFC, the brain region most likely to host neural

processes necessary for economic decisions is arguably the

amygdala. Indeed, the amygdala is the only other brain area

where lesions affect performance in reinforcer devaluation

tasks—an effect observed in monkeys (Málková et al., 1997;

Rhodes and Murray, 2013; Wellman et al., 2005) and rodents

(Ostlund and Balleine, 2008; Pickens et al., 2003; West et al.,

2012). More specifically, Baxter et al. (2000) found that

performance in a reinforcer devaluation task depends on the

interaction between OFC and the amygdala. Other studies found

that amygdala lesions were effective before, but not after,

devaluation, while OFC lesions were effective either before or

after devaluation (Johnson et al., 2009; Ostlund and Balleine,

2008; Pickens et al., 2003; Wellman et al., 2005; West et al.,

2011, 2012). Notably, amygdala and OFC are anatomically

connected (Carmichael and Price, 1995a; Ghashghaei et al.,

2007). Several neurophysiology studies in monkeys (Belova

et al., 2007; Bermudez and Schultz, 2010; Grabenhorst et al.,

2012; Paton et al., 2006; Sugase-Miyamoto and Richmond,

2005) and rodents (Roesch et al., 2010; Schoenbaum et al.,

1998) found neuronal activity broadly consistent with a neuronal

representation of goods and subjective values in the amygdala.

However, these studies did not analyze the large number of

value- and choice-related variables tested in studies of OFC

(Padoa-Schioppa and Assad, 2006) and thus did not establish

whether amygdala neurons encode the same variables identified

in OFC and/or other variables. Also, the relation between

neuronal activity in the amygdala and choice variability has not

yet been examined at the level of granularity discussed above

for the OFC. In conclusion, further work is necessary to ascertain

how neurons in the amygdala contribute to economic decisions.

Another strong candidate is the vmPFC. In this case, however,

the evidence suggesting participation in economic decisions is

not unanimous. On the one hand, the majority of functional

imaging studies in humans have found subjective value signals

in the vmPFC as opposed to the OFC (Bartra et al., 2013; Clithero

andRangel, 2014). In fact, some imaging studies found in this area

neural signal correlated with the value difference (Boorman et al.,

2009; Lim et al., 2011), which in the framework of drift-diffusion

models is the variable driving the decision (more on this below).

On the other hand, single-cell recordings in non-human primates

indicate that the fraction of value-encoding neurons and the

intensity of value modulations are lower in vmPFC than in OFC

(Bouret and Richmond, 2010; Monosov and Hikosaka, 2012;

Rich and Wallis, 2014; Strait et al., 2014). Furthermore, as

discussed above, vmPFC lesions do not affect performance in

goal-directed behavior (Rudebeck and Murray, 2011). The

discrepancy between human imaging and primate neurophysi-

ology studies is particularly striking because vmPFC and OFC

are part of separate brain networks, with very different patterns

of anatomical connectivity and scarce direct interconnections

(Ong€ur et al., 2003). Possible explanations have been discussed

elsewhere and include differences between species, differences

in behavioral tasks, susceptibility artifacts in fMRI, and the hetero-

geneous nature of neuronal responses in OFC (Wallis, 2011). In

addition to these considerations, it is worth noting that several

imaging studies did in fact find value signals in the OFC (Arana

et al., 2003; Chaudhry et al., 2009; Gottfried et al., 2003; Hare
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et al., 2008). These include in particular recent studies that

focused on signals associated with individual goods or options

(Howard et al., 2015; Howard and Kahnt, 2017; Klein-Fl€ugge

et al., 2013). Furthermore, a distinction recently drawnbySanGalli

et al. (2016) seems potentially revealing. In their experiments,

monkeys had to squeeze a bar (three effort levels) to obtain a juice

reward (three quantity levels). On any given trial, the animal could

choose to perform or not perform the task. Unsurprisingly, the

willingness to work varied as a function of the reward level, the

effort level, and the trial number (a proxy for fatigue and satiety).

Above and beyond these parameters, the animal’s willingness

to work also presented slow fluctuations across trials (e.g., the

animal might be unwilling to work for 20 trials before re-engaging

in the task). The activity of neurons in vmPFC was weakly corre-

lated with reward and effort levels and more strongly correlated

with the trial number. Most strikingly, firing rates were highly

correlated with the willingness to work. In other words, neuronal

activity in vmPFC seemed best explained in terms of the overall

engagement in the task, as opposed to the values available for

choice on any given trial (San Galli et al., 2016). Corroborating

this perspective, vmPFC activity has also been linked to affective

regulation (Delgado et al., 2016), and vmPFC dysfunction has

been implicated in mood disorders including major depression

(Price and Drevets, 2010; Ressler and Mayberg, 2007). In

summary, it remains unclear whether and how neurons in vmPFC

contribute to economic decisions.

Parietal regions including the lateral intraparietal (LIP) area

have long been hypothesized to play a central role in economic

choices (Glimcher et al., 2005; Kable and Glimcher, 2009). How-

ever, it has also long been noted that parietal lesions do not

affect economic choices per se, and that value modulations

measured in these areas might be attributed to perceptual

attention and/or motor planning, as opposed to economic

decision-making (Leathers and Olson, 2012; Maunsell, 2004;

Padoa-Schioppa, 2011). These issues have not been resolved.

Neurophysiology studies in monkeys have found neurons

encoding the chosen value in anterior cingulate cortex (ACC)

(Cai andPadoa-Schioppa,2012;Hosokawaetal., 2013;Kennerley

andWallis, 2009a), dorsal striatum, and ventral striatum (Cai et al.,

2011). However, these neurons become active later than neurons

encoding the same variable in OFC, suggesting that these areas

do not directly contribute to good-based decisions per se. Other

work indicates that ACC lesions disrupt performance in tasks

that include a learning component and where options are defined

by actions (Kennerley et al., 2006; Rudebeck et al., 2008).

Importantly, these observations may be explained, at least partly,

with animals becoming less motivated to undertake physical

effort, as opposed to lacking the capability to compare values

(Walton et al., 2002, 2007).

Value signals were also found in ventro- and dorso-lateral pre-

frontal cortex (LPFCv and LPFCd) (Hosokawa et al., 2013;

Kennerley and Wallis, 2009b; Kim et al., 2008, 2009, 2012).

Notably, the fact that most decisions ultimately lead to some ac-

tion implies that choice outcomes must be transformed from the

space of goods to the space of actions. OFC is not directly con-

nected with motor regions (Carmichael and Price, 1995b), but

there are anatomical projections from OFC to LPFCv to LPFCd

to motor areas (Petrides and Pandya, 2006; Saleem et al., 2014;
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Takahara et al., 2012). A recent study showed that neurons in

LPFCv and LPFCd reflect the good-to-action transformation.

Furthermore, response latencies indicated that information about

the choice outcomeflowed fromOFC toLPFCv to LPFCd (Cai and

Padoa-Schioppa, 2014). Thus, economic decisions taking place

in the OFC might be implemented through this circuit (Figure 1).

In summary, our understanding of other brain regions is

consistent with good-based decisions taking place within the

OFC. At the same time, current notions do not exclude additional

or alternative scenarios, and research on the role played by other

cortical and sub-cortical areas remains active.

The Distributed-Consensus Model
The results reviewed so far suggest that economic decisions

are generated in a neural circuit within the OFC. In the final

section of the article, we will indicate aspects of this working

hypothesis that await experimental testing. Before doing so,

however, we shall discuss other models of economic decisions

put forth in recent years. Two of them, viewed as the most

serious contenders, are the distributed-consensus model

(DCM, discussed in this section) and the attentional drift-diffusion

model (discussed in the next section).

Early models held that all decisions take place in premotor or

motor regions through processes of action selection (Cisek,

2007; Glimcher et al., 2005). Subsequent work noted that

neurons in areas involved in economic choices—most notably

the OFC—represent options and values in a good-based

reference frame. This observation led to the proposal that

economic decisions take place in a good-based representation

(Padoa-Schioppa, 2011). The notion of good-based decisions

has been widely embraced, in the sense that most scholars

agree that economic decisions can be dissociated from action

planning (Cai and Padoa-Schioppa, 2014; Cisek, 2012;

Glimcher, 2011; Rushworth et al., 2012; Wunderlich et al.,

2010). At the same time, several authors have argued that

motor systems likely participate in some types of value-based

decision (Cisek, 2012; Glimcher, 2011; Klein-Fl€ugge and

Bestmann, 2012; Rushworth et al., 2012). The DCM is essentially

a unifyingmodel that includes good-based decisions and action-

based decisions as special cases. Several variants of this idea

have been put forth (Hunt et al., 2014, Hunt and Hayden, 2017;

Pezzulo and Cisek, 2016). Here, we discuss in particular the

original proposal elaborated by Cisek (2012).

In his lucid analysis, Cisek starts by pointing out that many

decisions ‘‘have nothing to do with actions.’’ He then summarizes

three arguments suggesting the existence of action-based

decisions. These include (1) the fact that neurons in sensorimotor

regions represent multiple target locations before the decision is

completed, (2) the fact that many decisions are influenced by

action costs, and (3) the fact that decision variables—in particular,

subjective values—often modulate neuronal activity in motor

regions. Cisek recognizes that these arguments do not

necessarily invalidate good-based decisions. In particular, motor

systems might well contribute to the computation of action costs

and/or action preparation, without participating in value compar-

ison (i.e., in the decision itself). Put more bluntly, current empirical

evidence does not rule out that economic decisions are always

made in an abstract (i.e., good-based) representation. However,
Cisek argues that dissociating between abstract and motor

representations is not desirable from an ecological perspective.

He presents two lines of reasoning to support this contention.

First, he notes that, while experimental tasks typically present

offers simultaneously, foraging in nature often involves decisions

between exploiting a known and easily accessible resource and

exploring unknown and more distant options. Second, he points

out that many natural settings require fast decisions between

options that vary over time (non-static), that depend on the

behavioral context, and that are partly defined by their spatial

configuration. He concludes that ‘‘the challenges of a continu-

ously changing environment demanded the evolution of a

functional architecture in which the mechanisms specifying

possible actions and those which evaluate how to select between

them can operate in parallel’’ (Cisek, 2012).

These considerations motivate a unifying model, the DCM, in

which the decision process takes place at multiple levels in

parallel. In this view, neurons in lower levels represent specific

actions (leftward saccade, rightward saccade, etc.); neurons in

higher levels represent goods (one apple, two bananas, etc.).

The competition happens at each level, but different levels are

reciprocally interconnected and thus influence each other’s

dynamics. In some cases, for example, when choosing between

different actions that yield the same good, the competition

entirely takes place at lower levels. In other cases, for example,

when choosing between different dishes on a restaurant

menu, the competition entirely takes place at higher levels.

More generally, the competition may take place at multiple levels

at once. A decision outcome eventually emerges through a

distributed consensus dominated by connections within and

across levels (Cisek, 2012; Pezzulo and Cisek, 2016).

One obviousmerit of the DCM is that it reconciles the evidence

for good-based decisions with the popular belief that motor

systems participate in the decision process. Furthermore, the

DCM captures the intuition that brains are highly connected

machines and that no brain area operates in complete isolation.

With these premises, two sets of comments are in order.

First, the lines of reasoning offered by Cisek (2012) to motivate

the DCM are not quite conclusive. Specifically, the fact that

natural foraging often involves exploration/exploitation decisions

does not exclude that these decisions might take place in an

abstract representation. Furthermore, while it is true that natural

conditions often require making rapid decisions in non-static

environments, the timescale of neuronal computations is short.

Even for a case such as that discussed by Cisek—a lion chasing

a dazzle of zebras that splits while fleeing—decisions could

plausibly be made with a modular architecture. (In that particular

case, behavior might also be driven by simple ad hoc heuristics.)

More generally, different evolutionary considerations support

different conclusions. For example, it is true that our brains are

the product of evolution and that abstract representations

seem less prevalent in lower species. However, it is also true

that modular organizations are computationally more efficient

(Pinker, 1997; Simon, 1962). Consequently, evolution likely

favored modular organizations. Furthermore, for all the evolu-

tionary continuity, species do vary from each other, and there

are qualitative differences between primates and other species.

For all these reasons, it seems difficult to derive any neuronal
Neuron 96, November 15, 2017 747
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model of economic decision-making on the basis of evolutionary

considerations alone.

Second and most important, the proposal discussed in this

article is in fact compatible with the DCM. Indeed, decisions

taking place in OFC are good based. The DCM, which includes

good-based decisions as a particular case, is consistent with

the hypothesis that such decisions are generated within OFC.

If one accepts the DCM framework, it becomes interesting to

ascertain under what circumstances exactly decisions are

good based, action based, or distributed. As emphasized by

several authors, addressing this question is not easy because

the fact that neural activity in a brain region is modulated by

decision variables does not imply its participation in the decision

process (Cisek, 2012; Klein-Fl€ugge and Bestmann, 2012).

Furthermore, in tasks that dissociate offer presentation from

the indication of the action associated with each offer, subjects

make their decision shortly after the offer, and thus in goods

space (Cai and Padoa-Schioppa, 2014; Wunderlich et al.,

2010). Hence, gathering unequivocal evidence for a direct partic-

ipation of motor systems in economic decisions has proved

difficult so far. Looking forward, one promising direction might

be to design tasks that dissociate offer presentation and action

indication while also varying action costs. Indeed, choices under

variable action costs are viewed asmost likely to directly engage

the motor systems (Klein-Fl€ugge et al., 2016; Rangel and Hare,

2010; Rushworth et al., 2012). Another way to test the DCM

would be to use optogenetics to selectively excite or inhibit

neurons associated to a particular action. If motor regions and

the OFC are truly part of a distributed decision network, then

manipulating the activity of neurons in motor regions should

predictably affect the neuronal responses in the OFC, and also

predictably affect behavioral measures.

In summary, it is uncontroversial that many economic deci-

sions are good based and dissociated from action planning.

Conversely, the decision processes underlying action selection

undoubtedly engage motor systems. The DCM is a unifying

model that includes good-based decisions and pure action

selection as special cases. In general, the DCM predicates that

decisions take place at multiple levels in parallel. In this respect,

the DCM reconciles a broad range of viewpoints. However, it is

not easy to assess exactly under what conditions motor systems

do or do not participate in the decision process. Most impor-

tantly for the present purposes, the DCM is consistent with the

proposal that good-based decisions take place within the OFC.

The Attentional Drift-Diffusion Model
According to the attentional drift-diffusion model (ADDM), eco-

nomic decisions take place through a drift-diffusion process

guided by visual attention. During the decision, subjects switch

the gaze or the attention focus back and forth between the op-

tions and, at any given time, a comparator increments a decision

variable in favor of the attended option (Krajbich et al., 2010). The

comparator is thought to reside in the dorso-medial prefrontal

cortex (dmPFC) (Hare et al., 2011). The decision ends when

the decision variable reaches some threshold.

The ADDM is attractive for several reasons. First, it captures

the simple intuition that choosing any particular option requires

some degree of mental focus on that option. For example, an
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individual seeking a means of transportation in the city is unlikely

to choose an Uber car over a taxi if she is not aware of (or

not thinking about) the existence of Uber cars. Second, drift-

diffusion models generate joint distributions of accuracy and

reaction times. If the model is sufficiently parameterized, the

correspondence with empirical measures can be very good

(Milosavljevic et al., 2010). Third, the ADDM formally unifies

economic decisions with perceptual decisions, which have

been often modeled as drift-diffusion processes (Bogacz et al.,

2006; Brunton et al., 2013; Gold and Shadlen, 2001; Mazurek

et al., 2003). However, a careful evaluation reveals that the

empirical evidence supporting the ADDM is not conclusive and

that several of the results presented in support of the model

afford alternative interpretations.

At the behavioral level, the main argument for the ADDM

comes from studies showing that aspects of the fixation data

recorded in free viewing choice tasks—e.g., the fact that

subjects tend to spend more time looking at the option they

eventually choose—are well explained by the ADDM (Krajbich

et al., 2010; Krajbich and Rangel, 2011). However, as the authors

emphasize in their discussion, those data do not demonstrate a

causal link between fixation and choice. In fact, causality might

well be in the opposite direction, in the sense that subjects in

any trial might tend to look longer at the good they are leaning

toward. In one study, the same authors sought to address the

issue of causality by forcing subjects to fixate specific goods

at specific times (Lim et al., 2011). However, once gaze direction

was mandated, the relation between fixation times and choices

vanished almost completely. Thus, a simple interpretation of

their original results (Krajbich et al., 2010) is that the decision

takes place through yet unknown mechanisms, and that fixation

only introduces a relatively small bias.

Other behavioral observations seem to undermine the ADDM.

In particular, considering decisions made in the absence of gaze

shifts, it is hard to reconcile the ADDM with established notions

on visual attention. Current views concur that visual attention

can be entirely focused on one item or divided between two

or more items, depending on the behavioral circumstances

and the task demands. In the ADDM, subjects are assumed to

focus their attention entirely on one item at any given time,

and to switch the focus of attention multiple times in the course

of a decision. Indeed, the ADDM is a random walk where each

step corresponds to an endogenously driven attentional switch.

Thus, the serial sampling assumption is not accessory in the

model; it is a foundational aspect of the ADDM. The problem

becomes apparent if one considers measures of decision times.

An extensive literature in experimental psychology examined

the dynamics of focused attention. Robust evidence indicates

that whenever attention is shifted endogenously, shifts are

slow, with dwell times typically in the order of 250–500 ms

(Buschman and Kastner, 2015; Duncan et al., 1994; Fiebelkorn

et al., 2013; M€uller et al., 1998; Theeuwes et al., 2004; Ward

et al., 1996). Thus, the ADDM should predict relatively slow

decision times—it seems reasonable to estimate that the fastest

decisions made through an ADDM would take 500 ms or more.

In contrast, behavioral and physiological measures indicate

that economic decisions can be significantly faster. For

example, Milosavljevic et al. (2010) found that subjects
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could reliably choose the preferred option with reaction times

ranging 401–433 ms depending on the decision difficulty (note

that these reaction times also included the time necessary for

saccade initiation). Neuronal data from juice choice

experiments are consistent with these findings (Figure 5G)

(Padoa-Schioppa, 2013). These measures are at odds with

serial sampling and suggest that subjects in these experiments

divided their attention between the offers on display.

At the neuronal level, a case for the ADDM was made by Hare

et al. (2011), who used a juice choice task nearly identical to that

used in primate experiments (Figure 3A). In this study, the

authors defined a neural network version of the ADDM (referred

to as ADDMn), fitted its parameters based on the behavioral

choices, derived an integrated measure for the total activity in

the network (Mout), and used Mout as a regressor to interpret

the blood-oxygen-level-dependent (BOLD) signal. They found

that neural activity in dorso-medial prefrontal cortex (dmPFC)

and intraparietal sulcus (IPS) correlated with Mout, and they

concluded that value comparisons take place in these regions

through ADDM-like mechanisms. One weakness of this argu-

ment is that the correlation between aggregate measures does

not necessarily imply a correspondence between the underlying

elements. In other words, the fact that an aggregate measure

derived from the model (Mout) provides good explanatory power

for the aggregate neural activity in a particular region (the BOLD

signal) does not imply that neurons in that region encoded the

variables defined in the underlying model. Drawing such implica-

tion is particularly problematic if neuronal responses in the brain

areas of interest are heterogeneous. Furthermore, Hare et al.

(2011) indicate that their dmPFC corresponds in the macaque

brain to the region recorded from by Kennerley et al. (2009),

namely, the dorsal bank of the cingulate sulcus (ACCd). One pri-

mate neurophysiology experiment focused on this very area

(Cai and Padoa-Schioppa, 2012), and, since the tasks were

nearly identical, the data provide an ideal opportunity to test

the claims of Hare et al. (2011) at the neuronal level. The analysis

of firing rates examined a large number of variables that neurons

in the ACCd could potentially encode, including all the variables

defined in the ADDMn. The results clearly demonstrated that

neurons in the ACCd do not encode the variables defined in

the ADDMn (in particular, neither action values nor value differ-

enceswere encoded at the neuronal level). Moreover, the activity

of neurons in the ACCd encoding the choice outcome (chosen

value, chosen juice) emerged too late to contribute to the deci-

sion (Cai and Padoa-Schioppa, 2012). These same signals,

measured in the same task, emerged in the OFC much earlier

than in ACCd. Thus, the results seem to rule out that decisions

in juice choice tasks are made through ADDM-like mechanisms

taking place in dmPFC/ACCd.

Another argument put forth by Hare et al. (2011) is based on

measures of effective connectivity (i.e., correlation). Specifically,

they found increased effective connectivity between dmPFC and

vmPFC during stimulus presentation and between dmPFC and

motor cortex during the delay preceding the motor response.

Interestingly, these effects are well explained by the neuronal

results from ACCd (Cai and Padoa-Schioppa, 2012). Indeed, in

the early part of the trial (1 s following the offer), the dominant

variables encoded by neurons in the ACCd was the chosen
value, which was also encoded in the OFC. This explains the

increased correlation between these two areas at that time. Later

in the trial, especially in the time window preceding the

movement onset, many neurons in ACCd encoded the direction

of the upcoming movement. This explains the correlation

between ACCd andmotor cortex at that time. Thus, the effective

connectivity patterns found by Hare et al. (2011) most likely

capture real correlations in neuronal activity. However, these

correlations do not imply that decisions are made in dmPFC/

ACCd and they do not support the ADDM against alternative

hypotheses.

It may be noted that the ADDM is primarily an algorithmic

model. Thus, one might wonder whether good-based decisions

might take place within OFC but according to the ADDM. Two

observations in the juice choice experiments described above

seem to argue against this hypothesis. First, according to the

ADDM, one population of neurons participating in the decision

should encode the difference in value between the chosen

option and the other, non-chosen option. Contrary to this pre-

diction, the variable ‘‘value difference’’ explained very few

neuronal responses in OFC (Padoa-Schioppa and Assad,

2006). Second, as noted above, chosen juice cells encoded

the binary choice outcome. If good-based decisions took place

in OFC according to the ADDM, the activity of these cells should

present a race-to-threshold profile similar to that observed in

area LIP during perceptual decisions (Roitman and Shadlen,

2002). However, experimental measures did not match this

prediction (Figure 5G) (Padoa-Schioppa, 2013).

In summary, the ADDM stipulates that economic decisions

(i.e., value comparisons) result from random walks driven by

endogenously driven shifts of visual attention or gaze. Empirical

support for this hypothesis is weak at best. Importantly, the

present considerations do not exclude that visual attention—or,

more generally, mental focus—might play a role in the construc-

tion of subjective values. Some framing effects observed in

behavioral economics are consistent with this view.

Conclusions
Economic choice behavior entails the computation and

comparison of subjective values. A fundamental contribution

of neuroeconomics has been to show that subjective values

are represented explicitly at the neuronal level. With this result

at hand, the field has increasingly focused on the question of

where in the brain and how subjective values are compared

to make a decision. This is not an easy question. For compar-

ison, the equivalent questions apropos the visual perception of

motion (perceptual decisions) have been pursued for >25 years

and remain areas of active research. In this article, we reviewed

a large number of experimental and theoretical results suggest-

ing that good-based decisions are generated in a neural circuit

within the OFC. The main arguments supporting this proposal

may be summarized as follows: (1) goal-directed behavior is

specifically disrupted by OFC lesions; (2) during economic

decisions, different groups of cells in OFC encode the input

and the output of the decision process; (3) menu invariance

and range adaptation make offer value cells particularly well

suited to support economic decisions; (4) the three groups of

neurons identified in OFC are computationally sufficient to
Neuron 96, November 15, 2017 749
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generate decisions; and (5) trial-by-trial fluctuations in the

activity of each cell group correlates with aspects of choice

variability. Importantly, value and choice signals are present

in numerous other brain regions. However, current results are

generally consistent with the idea that good-based decisions

take place within the OFC.

These arguments notwithstanding, the proposal that deci-

sions take place within the OFC remains a working hypothesis,

and several key questions should be addressed in future work.

For one, research on the roles of other brain regions remains

active. Also, crucial aspects of the neural circuit within the

OFC are poorly understood. For example, it is not known

whether the three groups of neurons identified in this area

correspond to different morphologically defined cell types,

whether they reside in different cortical layers, and whether

neurons in each group are preferentially excitatory or inhibitory.

The patterns of anatomical connectivity between different

groups of cells are also unclear. Perhaps most importantly,

causal links between neuronal activity in the OFC and the

choice made on any particular trial has not yet been estab-

lished. Of note, testing causality is technically challenging due

to the lack of columnar organization in the OFC. Other open

questions pertain to what we have termed discrete forms of

context adaptation—that is, how the neural circuit reorganizes

itself when choices involve different kinds of goods or options

defined by different traits. By examining these issues, future

research will shed further light on the neuronal mechanisms

underlying economic decisions.
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