CSE416a Analysis of Network Data

This course examines complex systems through the eyes of a data scientist. We will use the representative power of graphs to model networks of social, technological, or biological interactions. Network analysis provides many computational, algorithmic, and modeling challenges. We begin by studying graph theory, allowing us to quantify the structure and interactions of social and other networks. We will then explore how to practically analyze network data and how to reason about it through mathematical models of network structure and evolution. Another main objective will be to investigate algorithms that extract basic properties of networks in order to find communities and infer node properties. Finally, we will study a range of applications including robustness and fragility of networks such as the internet, spreading processes used to study epidemiology or viral marketing, and the ranking of webpages based on the structure of the webgraph. This course combines concepts from computer science and applied mathematics (matrix algebra and optimization) to study networked systems using data mining.

Prerequisites: CSE 247, ESE 326, MATH 309, and programming experience (note: we will parse data and analyze networks using Python)Python courses/tutorials to meet the programming prerequisite:

Fall 2019