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Multivariate Differentiation1

1 Preliminaries.

I assume that you are already familiar with standard concepts and results from
univariate calculus; in particular, the Mean Value Theorem appears in two of the
proofs here.

To avoid notational complication, I take the domain of functions to be all of RN .
Everything generalizes immediately to functions whose domain is an open subset of
RN . One can also generalize this machinery to “nice” non-open sets, such as RN+ ,
but I will not provide a formal development.2

In my notation, a point in RN , which I also refer to as a vector (vector and point
mean exactly the same thing for me), is written

x = (x1, . . . , xN ) =
def

 x1
...
xN

 .
Thus, a vector in RN always corresponds to an N×1 (column) matrix. This ensures
that the matrix multiplication below makes sense (the matrices conform).

If f : RN → RM then f can be written in terms of M coordinate functions
fm : RN → R,

f(x) =
def

(f1(x), . . . , fM (x)).

Again, f(x), being a point in RM , can also be written as anM×1 matrix. IfM = 1
then f is real-valued.

2 Partial Derivatives and the Jacobian.

Let en be the unit vector for coordinate n: en = (0, . . . , 0, 1, 0, . . . , 0), with the 1
appearing in coordinate n. For any γ ∈ R, x∗ + γen is identical to x∗ except for
coordinate n, which changes from x∗n to x∗n + γ.

1cbna. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License.

2Recall that if a, b ∈ RN , then a ≥ b means an ≥ bn for every n. a > b means a ≥ b and
an > bn for at least one n. a ≫ b means an > bn for every n. RN

+ = {x ∈ RN : x ≥ 0}.
RN

++ = {x ∈ RN : x ≫ 0}.
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Given a function f : RN → RM and a point x∗ ∈ RN , if the limit

lim
γ→0

fm(x
∗ + γen)− fm(x

∗)

γ

exists, then it is called the partial derivative of f , evaluated at x∗, for coordinate
function fm with respect to variable xn; I usually denote this partial derivative as
Dnfm(x

∗).3 Standard alternative notation for the partial derivative is

∂fm
∂xn

(x∗).

I tend to use Dnfm(x
∗) instead of ∂fm(x

∗)/∂xn because I find Dnfm(x
∗) more

legible. I reserve the notation,
dfm
dx

(x∗)

for situations in which N = 1.
If you can take derivatives in the one-dimensional case, you can just as easily

take partial derivatives in the multivariate case. When taking the partial derivative
with respect to xn, just treat the other variables like constants.

Example 1. f : R2
+ → R is defined by f(x1, x2) =

√
x1 + 3x2. Then at the point

x∗ = (1, 1),

D1f(x
∗) =

1

2

1√
x∗1 + 3x∗2

=
1

4
,

D2f(x
∗) =

1

2

1√
x∗1 + 3x∗2

3 =
3

4
.

□

TheM×N matrix of partial derivatives is called the Jacobian of f at x∗, denoted
Jf(x∗).

Jf(x∗) =
def

 D1f1(x
∗) . . . DNf1(x

∗)
...

. . .
...

D1fM (x∗) . . . DNfM (x∗)

 .
Remark 1. Different authors use the word “Jacobian” in different ways. For exam-
ple, in Rudin (1976), the Jacobian refers to the determinant of Jf(x∗) when N =M .
Here, however, Jacobian refers to the matrix of partial derivatives, even if N ̸=M .
□

3Recall from the Continuity notes that this limit notation means that for any sequence (γt) in
R such that γt ̸= 0 for all t and γt → 0, the quotient

fm(x∗ + γte
n)− fm(x∗)

γt

converges to Dnfm(x∗).
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Example 2. In the previous example,

Jf(x∗) =
[
1/4 3/4

]
.

□

If the partial derivatives Dnfm(x
∗) are defined for all x∗ in the domain of f then

one can define a function Dnfm : RN → R.
Example 3. If, as above, f : R2

+ → R is defined by f(x1, x2) =
√
x1 + 3x2 then the

functions Dnf are defined by

D1f(x) =
1

2
√
x1 + 3x2

,

D2f(x) =
3

2
√
x1 + 3x2

.

□

And one can ask whether the Dnfm are continuous and one can compute partial
derivatives of the Dnfm, which would be second order partials of f . And so on.

3 Directional Derivatives.

Informally, imagine that you are standing on the side of a hill and considering
walking in some compass direction. Taking the partial derivatives is like measuring
the slope of the hill in just two directions, due north (0 degrees on a compass) and
due east (90 degrees). But you might be interested in measuring the slope in some
other direction, and it is not hard to imagine a hill that is so irregular that knowing
the slope when walking north or east doesn’t give any information about the slope
when walking, say, north-east (45 degrees).

A direction in RN is a vector v ∈ RN such that v ̸= 0. Given a function
f : RN → RM , if

lim
γ→0

fm(x
∗ + γv)− fm(x

∗)

γ
,

exists then it is called the directional derivative of f , evaluated at the point x∗, for
coordinate function fm in the direction v. I denote this directional derivative as
Dvfm(x

∗). If M > 1, then it is also convenient to write,

Dvf(x
∗) =

def

 Dvf1(x
∗)

...
DvfM (x∗)

 .
Many texts assume that ∥v∥ = 1, but I do not.
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As before, let en be the unit vector for coordinate n. Then en is a direction and
one can verify from the definitions that, for any m,

Denfm(x
∗) = Dnfm(x

∗).

That is, a partial derivative is a special case of a directional derivative.

4 The Derivative.

Consider the following example.

Example 4. Let f : R2 → R be defined by f(x1, x2) = 3x1+x1x2 and let x∗ = (1, 1)
and let v = (1, 1). Then, applying the definition of directional derivative,

Dvf(x
∗) = lim

γ→0

(3(x∗1 + γ) + (x∗1 + γ)(x∗2 + γ))− (3x∗1 + x∗1x
∗
2)

γ

= lim
γ→0

(4 + 5γ + γ2)− 4

γ

= lim
γ→0

5 + γ

= 5.

Note also that
Jf(x∗) =

[
4 1

]
.

Therefore, Jf(x∗)v = 5. That is, Dvf(x
∗) = Jf(x∗)v. □

In fact, it will follow from results below that for the function in Example 4, for
any x∗ and v ̸= 0, Dvf(x

∗) = Jf(x∗)v. That is, one can think of the Jacobian as
a machine for computing directional derivatives. Putting the same point slightly
differently, once one has computed the partial derivatives for this function, one can
easily compute all the (other) directional derivatives.

Unfortunately, there are some real-valued functions for whichDvf(x
∗) ̸= Jf(x∗)v,

even though both Dvf(x
∗) and Jf(x∗) are well defined. Consider the following.

Example 5. Consider the function f : R2 → R given by

f(x) =

{
x31

x21+x
2
2

if x ̸= 0

0 if x = 0

The graph of f looks like a wrinkled sheet of paper. By direct application of the
definition of partial derivative, one can compute that

Jf(0, 0) =
[
1 0

]
.

Let v = (1, 1). Then Jf(0, 0)v = 1. On the other hand, one can compute that
Dvf(0, 0) = 1/2. So Jf(0, 0)v ̸= Dvf(0, 0). Thus, for this function, the partial
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derivatives, which give the slope of f in the direction of each axis, do not provide
accurate information about the slope of f along the 45 degree line between the two
axes. □

In the preceding example, Jf(x∗)v ̸= Dvf(x
∗) at x∗ = (0, 0) because f is not

differentiable at x∗ in the following sense. Recall first that in the univariate case,
Df(x∗) is the derivative of f at x∗ iff

Df(x∗) = lim
w→0

f(x∗ + w)− f(x∗)

w
.

This holds iff,

lim
w→0

∣∣∣∣f(x∗ + w)− f(x∗)

w
−Df(x∗)

∣∣∣∣ = 0,

iff,

lim
w→0

∣∣∣∣f(x∗ + w)− f(x∗)−Df(x∗)w

w

∣∣∣∣ = 0,

iff,

lim
w→0

|f(x∗ + w)− f(x∗)−Df(x∗)w|
|w|

= 0.

This last characterization generalizes easily to the multivariate case.

Definition 1. f : RN → RM is differentiable at x∗ if and only if there is an M ×N
matrix Df(x∗), called the derivative of f at x∗, such that,

lim
w→0

∥f(x∗ + w)− f(x∗)−Df(x∗)w∥
∥w∥

= 0.

f is differentiable iff it is differentiable at every point in RN .4

It is not hard to show that the derivative, if it exists, is unique. It is also almost
immediate that if f is differentiable then it is continuous. One can show that
the sum of differentiable functions is differentiable, as is the product or quotient
of real-valued differentiable functions (provided the function in the denominator
does not take the value 0), as is the inner product of vector-valued differentiable
functions. The following theorem, called the Chain Rule, shows that compositions
of differentiable functions are differentiable.

Theorem 1 (Chain Rule). Let g : RN → RM , let f : RM → RL, and define
h : RN → RL by h(x) = f(g(x)). If g is differentiable at x∗ and f is differentiable
at y∗ = g(x∗) then h is differentiable at x∗ and

Dh(x∗) = Df(y∗)Dg(x∗).
4Strictly speaking, the formal definition of the derivative is more abstract than this, and what I

am calling the derivative is actually the matrix representation of the derivative. Now that I’ve said
this, you can forget it for the purposes of these notes.
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Proof. The proof is just a marshalling of definitions, but it is tedious and nota-
tionally dense, so I have relegated it to Section 6. Example 7 provides an explicit
example of the Chain Rule. ■

Theorem 4 below shows that if f is differentiable in the above sense then
Df(x∗) = Jf(x∗). Theorem 3 shows that Dvf(x

∗) = Df(x∗)v, which then im-
plies Dvf(x

∗) = Jf(x∗)v. A corollary is that the function in Example 5 is not
differentiable. I discuss this issue further after Theorem 4.

As a first step, I record that f is differentiable iff its constituent coordinate
functions are differentiable. This enables me to simplify arguments by restricting
attention to the case M = 1.

Theorem 2. Let f : RN → RM . f is differentiable at x∗ iff for every m, fm is
differentiable at x∗, in which case,

Df(x∗) =

 Df1(x
∗)

...
DfM (x∗)

 .
Proof. This follows from the fact that Euclidean convergence in RM is equivalent
to convergence in each coordinate (see the section on pointwise convergence in the
notes on RN Completeness and Compactness). ■

Theorem 3. If f : RN → RM is differentiable at x∗ then for any m and any
v ∈ RN , v ̸= 0, the directional derivative Dvfm(x

∗) exists and

Dvfm(x
∗) = Dfm(x

∗)v,

hence
Dvf(x

∗) = Df(x∗)v.

Proof. By Theorem 2, it suffices to consider the case M = 1. Fix v ̸= 0 and let
w = γv. Then the definition of derivative requires that,

lim
γ→0

∥f(x∗ + γv)− f(x∗)−Df(x∗)(γv)∥
∥γv∥

= 0,

which holds (see also the discussion immediately preceding Definition 1) iff,

lim
γ→0

f(x∗ + γv)− f(x∗)

γ
= Df(x∗)v.

But the left-hand side is simply Dvf(x
∗). ■

An almost immediate corollary is that Df(x∗), if it exists, equals Jf(x∗).
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Theorem 4. Let f : RN → RM . If f is differentiable at x∗ ∈ RN then all partial
derivatives exist at x∗ and Df(x∗) = Jf(x∗).

Proof. If f is differentiable then by Theorem 3, all partial derivatives exist and for
any m and any n

∂fm
∂xn

(x∗) = Denfm(x
∗) = Dfm(x

∗)en,

but, by Theorem 2, the last term is the (m,n) element of Df(x∗). ■

If N = 1 then fm is univariate, Dfm(x
∗) is the ordinary univariate derivative,

and the expression in Theorem 2 is equivalent to Df(x∗) = Jf(x∗). Thus, if N = 1,
existence of the partial derivatives is sufficient as well as necessary for differentia-
bility of f .

If N > 1 things are different. For simplicity of notation, suppose M = 1. The
fundamental issue is then the following. Suppose that for each v ̸= 0 the directional
derivative Dvf(x

∗) exists. Then for each v ̸= 0 there is a 1×N matrix, call it Av,
such that Dvf(x

∗) = Avv (indeed, for N > 1, there are typically infinitely many
matrices Av that satisfy this expression). The problem is that this allows different
matrices Av for different v. Differentiability requires using the same matrix for all
v. This is precisely what goes wrong in Example 5: all the directional derivatives
exist but there is no single 1×N matrix A such that for all v ̸= 0, Dvf(x

∗) = Av.
This raises the question of what functions are differentiable.

Theorem 5 below gives a sufficient condition for existence of Df(x∗). To state
the theorem, I first need to define what it means for a multivariate function to be
continuously differentiable. If f is differentiable then one can consider the function
Df that gives the derivative for every point in the domain of f . By Theorem 4, if f
is differentiable then for every x∗ ∈ RN the partial derivatives all exist and Df(x∗)
is the matrix of partial derivatives at x∗. Therefore, if Df exists, define Df to be
continuous iff the partial derivatives of f are continuous.5 Say that f is continuously
differentiable, written f is C1, iff f is differentiable and Df is continuous.

Theorem 5. f : RN → RM is C1 iff Dnfm exists and is continuous for every n and
m.

Proof. Somewhat messy in terms of notation and therefore relegated to Section
6. The hard step in the proof is showing that if Dnfm exists and is continuous for
every n and m then Df exists. ■

5This definition of continuity for Df can be shown to be consistent with defining continuity of
Df using the norm on M ×N matrices given by ∥Df(x∗)∥µ = supw∈S ∥Df(x∗)w∥, where S is the
unit sphere, centered on the origin, in RN . This norm is also used in the proof, which appears in
Section 6, of the Chain Rule (Theorem 1).
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Example 6. In Example 5, with f(x1, x2) = x31/(x
2
1 + x22) for (x1, x2) ̸= (0, 0),

f(0, 0) = 0, the partial derivatives are not continuous at 0.

Jf(x) =


[
1 0

]
if x = 0,

[
x21(x

2
1+3x22)

(x21+x
2
2)

2

−2x31x2
(x21+x

2
2)

2

]
otherwise.

One can check that for any t ̸= 0, Jf(t, t) = [ 1 −1/2 ]. So neither of the partial
derivatives is continuous at 0. The partial derivatives are, however, continuous at
every x ̸= 0 and so f is C1 except at x = 0. □

In practice, I either assume (for abstract functions) that the functions are C1 or
choose explicit functional forms that are C1.

Example 7. g : R → R2, g(x) = (x, x2), f : R2 → R, f(y1, y2) = y21 + y2, hence

Jg(x) =

[
1
2x

]
and

Jf(x) =
[
2y1 1

]
.

The partials are continuous (they are linear) and hence g and f are C1 and Dg(x) =
Jg(x), Df(x) = Jf(x).

To illustrated the Chain Rule (Theorem 1), let h : R → R, h = f ◦ g. Then
h(x) = f(g(x)) = 2x2 and Dh(x) = 4x. On the other hand, by the Chain Rule,
since g(x) = (x, x2),

Dh(x) = Df(x, x2)Dg(x)

=
[
2x 1

] [ 1
2x

]
= 4x.

□

If f is differentiable then it is possible to define the derivative of Df at x,
written D2f(x), but I will not do so explicitly. If this derivative exists, it is the
second derivative of f . If Df is differentiable then one can consider the function
D2f that gives the second derivative for every point in the domain of f . One can
define continuity of D2f , although I will not do so. Say that f is twice continuously
differentiable, or f is C2, iff the function D2f is well defined and continuous. And so
on. An extension of Theorem 5 says that f is Cr iff its rth order partial derivatives
all exist and are continuous. If Drf exists for every positive integer r, say that f is
C∞ or smooth.
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Remark 2. One sometimes runs across notation of the following form. Suppose that
f : R2 → R. Then some authors write,

df

dx1
=

∂f

∂x1

dx1
dx1

+
∂f

∂x2

dx2
dx1

=
∂f

∂x1
+

∂f

∂x2

dx2
dx1

,

where the second equality follows from dx1/dx1 = 1. Some authors refer to the
above expression as the total derivative (other authors, including Rudin (1976), call
Df the total derivative). The usual interpretation is that the total change in f
from a change in x1 is the sum of the direct change (the first term) and an indirect
change, through x2 (the second term).

One can justify the total derivative expression as follows. Suppose that x2 can be
written as a differentiable function, call it ψ, of x1: x2 = ψ(x1); the total derivative
implicitly assumes existence of the function ψ; I am being explicit. Then we are
interested in f(x1, ψ(x1)). This is not quite the correct form for the Chain Rule.
Define the auxiliary g : R → R2 by g(x1) = (x1, ψ(x1)). Then we are interested in
the composite function h : R → R given by h(x1) = f(g(x1)) = f(x1, ψ(x1)). By
the Chain Rule, at a point x∗ = (x∗1, x

∗
2),

Dh(x∗1) = Df(x∗)Dg(x∗1)

=
[

∂f
∂x1

(x∗) ∂f
∂x2

(x∗)
] [ 1

dψ
dx1

(x∗1)

]
=

∂f

∂x1
(x∗) +

∂f

∂x2
(x∗)

dψ

dx1
(x∗1).

This is the total derivative given above, provided you interpret df/dx1 to mean
Dh = dh/dx1 and interpret dx2/dx1 to mean dψ/dx1.

The total derivative thus “works;” it is an implication of the Chain Rule. As
notation, however, I find it problematic and encourage you to avoid it. It uses the
same notation, f , for two different mathematical objects, the original function f and
the composite function h. And it uses the same notation, x2, both for a variable
and for the function ψ, disguising the fact that one must assume the existence of ψ.
□

5 Real-Valued Functions.

5.1 The tangent plane.

If f : RN → R is differentiable at x∗ then one can define the tangent plane to be the
graph of the function,

B(x) = Df(x∗)[x− x∗] + f(x∗).
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If N = 1 then the tangent plane is a line that (a) has a slope equal to that of the
function f at x∗ and (b) touches the graph of f at (x∗, f(x∗)). For N > 1, the
tangent plane is an N dimensional flat surface.

The tangent plane can be thought of as the line or plane that best approximates
the graph of f near the point (x∗, f(x∗)).

5.2 The gradient.

Consider f : RN → R. Then

Df(x∗) =
[
D1f(x

∗) · · · DNf(x
∗)

]
,

which is a row matrix. Its transpose is a column matrix, which can also be inter-
preted as a vector in RN . This vector is called the gradient of f at x∗, written
∇f(x∗):

∇f(x∗) =
def
Df(x∗)′ =

 D1f(x
∗)

...
DNf(x

∗)

 .
The gradient has the following important interpretation. Let θ be the angle

between ∇f(x∗) and v ̸= 0. Then

Df(x∗)v = ∇f(x∗) · v
= cos(θ)∥∇f(x∗)∥∥v∥.

(On the cosine formula for inner product, see the notes on Vector Spaces and Norms.)
Assuming that ∇f(x∗) ̸= 0, this implies that f is increasing the fastest when

cos(θ) = 1. (If ∇f(x∗) = 0 then f is not increasing in any direction.) But cos(θ) = 1
when θ = 0 and if θ = 0 then it must be that the v for which f is increasing the
fastest are the v that are positively collinear with ∇f(x∗): the gradient points in
the direction of fastest increase of f .

5.3 The Hessian.

Let f : RN → R and suppose that all second-order partial derivatives exist. Then it
is common practice to arrange these partial derivatives into an N ×N matrix called
the Hessian of f at x∗, which I denote Hf(x∗):

Hf(x∗) =
def

 D2
11f(x

∗) · · · D2
1Nf(x

∗)
...

...
D2
N1f(x

∗) · · · D2
NNf(x

∗)

 ,
where

D2
ijf(x

∗) =
def
Di(Djf)(x

∗) =
def

∂2f

∂xi∂xj
(x∗).

(The term Hessian is sometimes also used for the determinant of this matrix.)
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Example 8. Suppose f : R2 → R is given by f(x) = ln(x1) ln(x2). Then

Df(x) =
[

ln(x2)
x1

ln(x1)
x2

]
,

and

D2(x) =

 − ln(x2)
x21

1
x1x2

1
x1x2

− ln(x1)
x22

 .
Thus

D2(1, 1) =

[
0 1
1 0

]
.

□

In this example, the mixed partials are equal: D2
12f = D2

21f . This is true
whenever f is C2, as formalized by Theorem 6. The result goes by a number of
different names; in economics it is typically referred to as Young’s Theorem.

Theorem 6 (Young’s Theorem.). Let f : RN → R be C2. Then the Hessian of f is
symmetric: D2

ijf(x
∗) = D2

jif(x
∗) for i and j.

Proof. The proof is in Section 6; see also Remark 3 in that section. ■

In the next example, symmetry fails even though the function is twice differen-
tiable, but not C2.

Example 9. Suppose f : R2 → R is given by

f(x) =

{
x1x2(x21−x22)

x21+x
2
2

if x ̸= 0,

0 if x = 0.

One can show that f is twice differentiable but it is not C2 at the origin: neither
D2

12f nor D2
21f is continuous at the origin. Direct calculation shows that D12f(0) =

1 ̸= −1 = D21f(0). □

If f is twice differentiable then ∇f , which is a function from RN to RN , is
differentiable. The derivative of ∇f is (strictly speaking) the transpose of Hf(x∗).
By Young’s Theorem, if f is C2, then

D(∇f)(x∗) = Hf(x∗).

One can think of Hf(x∗) as a machine for computing second derivatives along
lines in the domain. Explicitly, fix any x∗ ∈ RN and any direction v ∈ RN . Let
g(γ) = x∗ + γv. Let F : R → R, F (γ) = f(g(γ)). D2F (0) is thus the second
derivative of f , evaluated at the point x∗, along the line through x∗ given by g. One
can compute that D2F (0), which is the second derivative of a univariate function,
satisfies

D2F (0) = v′Hf(x∗)v.
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6 Proofs for Theorems 1, 5, and 6.

Proof of Theorem 1 (Chain Rule). To ease notation at least somewhat, let
A = Df(y∗), B = Dg(x∗). I need to show that

lim
w→0

∥h(x∗ + w)− h(x∗)−ABw∥
∥w∥

= 0.

For any w, define

ζ(w) = g(x∗ + w)− g(x∗)−Bw,

and, for w ̸= 0,

η(w) =
∥ζ(w)∥
∥w∥

.

By definition of B, limw→0 η(w) = 0.
For any w, let

v(w) = g(x∗ + w)− g(x∗).

Note that limw→0 v(w) = 0. Note also that

ζ(w) = v(w)−Bw.

Define
ϕ(w) = f(y∗ + v(w))− f(y∗)−Av(w),

and, provided v(w) ̸= 0,

ε(w) =
∥ϕ(w)∥
∥v(w)∥

.

(If ε(w) = 0 then g(x∗ + w) = g(x∗). If this holds for every w then g is constant,
hence h is constant, hence both Dg(x∗) and Dh(x∗) are matrices of zeroes.) By
definition of A = Df(x∗), limw→0 ε(w) = 0.

Now,
∥v(w)∥ = ∥ζ(w) +Bw∥ ≤ ∥ζ(w)∥+ ∥Bw∥.

From above, ∥ζ(w)∥ = η(w)∥w∥.
As for ∥Bw∥, let S = {x ∈ RN : ∥x∥ = 1} be the solid unit sphere centered on

the origin and define
∥B∥µ = max

x∈S
∥Bx∥.

∥B∥µ is well defined since S is compact and ∥Bx∥ is continuous as a function of x
(see the notes on Continuity).

For any w ̸= 0, w/∥w∥ ∈ S and therefore ∥Bw∥ = ∥B(w/∥w∥)(∥w∥)∥ ≤
∥B∥µ∥w∥. Therefore,

∥v(w)∥ ≤ [η(w) + ∥B∥µ] ∥w∥. (1)
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Also, noting that f(y∗+v(w))−f(y∗) = ϕ(w)+Av(w) and recalling that v(w)−Bw =
ζ(w),

h(x∗ + w)− h(x∗)−ABw = f(y∗ + v(w))− f(y∗)−ABw

= ϕ(w) +Av(w)−ABw

= ϕ(w) +A [v(w)−Bw]

= ϕ(w) +Aζ(w).

Combining this with inequality (1), defining ∥A∥µ in a manner analogous to ∥B∥µ,
and recalling from above that ∥ϕ(w)∥ = ε(w)∥v(w)∥ and ∥ζ(w)∥ = η(w)∥w∥, yields,
for w ̸= 0,

∥h(x∗ + w)− h(x∗)−ABw∥
∥w∥

=
∥ϕ(w) +Aζ(w)∥

∥w∥

≤ ∥ϕ(w)∥
∥w∥

+
∥Aζ(w)∥

∥w∥

≤ ε(w)∥v(w)∥
∥w∥

+
∥A∥µ∥ζ(w)∥

∥w∥

≤ ε(w) [η(w) + ∥B∥µ] ∥w∥
∥w∥

+
∥A∥µ [η(w)∥w∥]

∥w∥
= ε(w) [η(w) + ∥B∥µ] + ∥A∥µη(w).

As w → 0, the right-hand side goes to 0, since η(w) → 0 and ε(w) → 0. ■

Proof of Theorem 5. ⇒. By Theorem 4, if Df is differentiable then, for any
x∗ ∈ RN , Jf(x∗) exists and Df(x∗) = Jf(x∗). Therefore, by the definition of
continuity of Df at x∗, the partial derivatives that constitute Jf(x∗) are continuous
at x∗.

⇐. By Theorem 2, it suffices, for showing that f is differentiable, to focus on
the case M = 1. Continuity of Df then follows from the definition and the fact
that, for any x∗ ∈ RN , Df(x∗) = Jf(x∗).

It remains to prove that f is differentiable. Fix x∗. I will show that

Jf(x∗) = [ D1f(x
∗) · · · DNf(x

∗) ]

satisfies the definition of derivative. Consider any sequence (wt) in RN such that
for all t, wt ̸= 0 and ∥wt∥max < 1/t.

The notation below gets somewhat messy but the basic idea of the argument is
to decompose the derivative ratio,

|f(x∗ + wt)− f(x∗)− Jf(x∗)wt|
∥wt∥

,
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into a sum of N expressions, each involving the change of only a single coordinate,
then apply the Mean Value Theorem to transform these N expressions into differ-
ences in partial derivatives, and finally appeal to continuity of the partial derivatives
to argue that the overall expression must converge to zero, which implies the result.

Explicitly, the expression f(x∗ + wt)− f(x∗) can be decomposed as the sum of
N terms, each reflecting a change in a single coordinate, starting with

f(x∗1 + wt1, . . . , x
∗
N + wtN )− f(x∗1, x

∗
2 + wt2, . . . , x

∗
N + wtN )

then

f(x∗1, x
∗
2 + wt2, . . . , x

∗
N + wtN )− f(x∗1, x

∗
2, x

∗
3 + wt3, . . . , x

∗
N + wtN )

and ending with,
f(x∗1, . . . , x

∗
N−1, x

∗
N + wtN )− f(x∗).

By the Mean Value Theorem, for each of these univariate changes, there is a θn
in the interval N|wtn|(x

∗
n) (I allow wtn < 0) such such that the change in the value

of f equals the derivative, evaluated with θn in coordinate n, times the change in
xn, namely wtn. For example, for n = 1, there is a θ1 such that

f(x∗ + wt)− f(x∗1, x
∗
2 + wt2, . . . , x

∗
N + wtN ) = Df(θ1, x

∗
2 + wt2, . . . , x

∗
N + wtN )wt1.

To simplify notation, let

c1t = (θ1, x
∗
2 + wt2, . . . , x

∗
N + wtN ),

c2t = (x∗1, θ2, x
∗
3 + wt3, . . . , x

∗
N + wtN ),

down through
cNt = (x∗1, . . . , x

∗
N−1, θN ).

Thus, for example,

f(x∗ + wt)− f(x∗1, x
∗
2 + wt2, . . . , x

∗
N + wtN ) = Df(c1t )wt1.

Note that each cnt is in the 1/t ball (or cube) around x∗ in the max metric, and thus
the cnt all converge to x∗.

It follows that

|f(x∗ + wt)− f(x∗)− Jf(x∗)wt|
∥wt∥

=
|(
∑N

n=1Dnf(c
n
t )wtn)− Jf(x∗)wt|
∥wt∥

=
|
∑N

n=1(Dnf(c
n
t )wtn −Dnf(x

∗)wtn)|
∥wt∥

≤
N∑
n=1

|Dnf(c
n
t )−Dnf(x

∗)| |wtn|
∥wt∥

≤
N∑
n=1

|Dnf(c
n
t )−Dnf(x

∗)|,
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where the last inequality comes from the fact that |wtn| ≤ ∥wt∥max ≤ ∥wt∥. Since
cnt → x∗ and Dnf is continuous, it follows that the right-hand side converges to zero
and hence Jf(x∗) satisfies the definition for Df(x∗). ■

Proof of Theorem 6 (Young’s Theorem). For notational simplicity, I assume
that N = 2; this is without loss of generality, since only two coordinates are involved.

For any γ = (γ1, γ2) ≫ 0, define

∆(γ) = f(x∗ + γ)− f(x∗1 + γ1, x
∗
2)− f(x∗1, x

∗
2 + γ2) + f(x∗1, x

∗
2).

The underlying idea of the proof is that if f is C2 then ∆(γ)/(γ1γ2) is a discrete
approximation to both D2

21f(x
∗) and to D2

12f(x
∗), which implies, for γ sufficiently

small, that these two derivatives must be close to each other.
For any γ ≫ 0, I claim that there is an x in the rectangle (x∗1, x

∗
1+γ1)× (x∗2, x

∗
2+

γ2) such that
∆(γ)

γ1γ2
= D2

21f(x).

One can view this is an N = 2 version of the Mean Value Theorem. To see this,
define g : R → R by

g(x1) = f(x1, x
∗
2 + γ1)− f(x1, x

∗
2).

g is differentiable since f is. Then,

∆(γ) = g(x∗1 + γ1)− g(x∗1).

By the Mean Value Theorem, there is an x1 ∈ (x∗1, x
∗
1 + γ1) such that

g(x∗1 + γ1)− g(x∗1) = Dg(x1)γ1,

hence

∆(γ) = Dg(x1)γ1

= D1f(x1, x
∗
2 + γ2)γ1 −D1f(x1, x

∗
2)γ1.

Applying the Mean Value Theorem again, this time with respect to the second
coordinate, there is an x2 ∈ (x∗2, x

∗
2 + γ2) such that, setting x = (x1, x2),

D1f(x1, x
∗
2 + γ2)γ1 −D1f(x1, x

∗
2)γ1 = D2

21f(x)γ1γ2

implying ∆(γ) = D2
21f(x)γ1γ2, which proves the above claim.

Fix ε > 0. By continuity of D2
21f , for γ sufficiently small, and hence x sufficiently

close to x∗, ∣∣D2
21f(x)−D2

21f(x
∗)
∣∣ < ε/2,

and hence, by the above claim,∣∣∣∣∆(γ)

γ1γ2
−D2

21f(x
∗)

∣∣∣∣ < ε/2.
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A similar argument, this time exploiting continuity of D2
12f , yields, again for γ

sufficently small, ∣∣∣∣∆(γ)

γ1γ2
−D2

12f(x
∗)

∣∣∣∣ < ε/2.

Hence, by the triangle inequality,∣∣D2
12f(x

∗)−D2
21f(x

∗)
∣∣ < ε,

Since this must hold for all ε > 0, the result follows. ■

Remark 3. A variant of the above proof requires that only one of the second-order
cross partials be continuous; hence the requirement that f be C2 is stronger than
necessary. See Rudin (1976). I have chosen to prove a weaker result (using a
stronger assumption) because I find this proof more transparent and in applications
the weaker result is almost invariably good enough. □
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