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The Envelope Theorem1

1 Introduction.

The Envelope Theorem, as presented here, is a corollary of the Karush-Kuhn-Tucker
theorem (KKT) that characterizes changes in the value of the objective function in
response to changes in the parameters in the problem. For example, in a standard
cost minimization problem for a firm, the Envelope Theorem characterizes changes
in cost in response to changes in input prices or output quantities.

There are versions of the Envelope Theorem that apply under weaker conditions
and in more general settings. See, in particular, Milgrom and Segal (2002).

2 The Envelope Theorem with no binding constraints.

Consider the following parameterized version of a differentiable MAX problem with
no (binding) constraints,

max
x∈RN

f(x, q)

where q ∈ RL is a vector of parameters. The parametrized MIN problem is analo-
gous. Let φ(q) give the (or at least, a) optimal x for a given q. The value function
fv is defined by

fv(q) = f(φ(q), q).

The following is the Envelope Theorem for this unconstrained problem. In the
theorem statement and proof, Dxf refers to the partial derivatives of f with respect
to the x variables and Dqf refers to the partial derivatives of f with respect to the
q variables.

Theorem 1. Fix a parametrized differentiable MAX or MIN problem. For each
q ∈ RL, let φ(q) be a solution to the MAX or MIN problem. Let fv : RL → R
be defined by fv(q) = f(φ(q), q). Fix any q∗ ∈ RL and let x∗ = φ(q∗). If φ is
differentiable at x∗, then

Dfv(q∗) = Dqf(x∗, q∗).

1cbna. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License.
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Proof. By the Chain Rule2

Dfv(q∗) = Dxf(x∗, q∗)Dφ(q∗) +Dqf(x∗, q∗).

Since x∗ is optimal when q = q∗, Dxf(x∗, q∗) = 0. The result follows. �

Remark 1. Here is an alternate proof of Theorem 1 (essentially the same proof but
with less reliance on intermediate results such as the fact that Dxf(x∗, q∗) = 0).
Consider any q∗ ∈ RL and let x∗ ∈ φ(q∗). Consider any w ∈ RL, w 6= 0, and any
t > 0. Then, since x∗ may not be optimal at q = q∗ + tw,

fv(q∗ + tw) ≥ f(x∗, q∗ + tw).

Since fv(q∗) = f(x∗, q∗), it follows that,

fv(q∗ + tw)− fv(q∗) ≥ f(x∗, q∗ + tw)− f(x∗, q∗).

Dividing both sides by t and taking the limit as t ↓ 0 implies,

Dfv(q∗)w ≥ Dqf(x∗, q∗)w.

The same argument applied to −w implies Dfv(q∗)(−w) ≥ Dqf(x∗, q∗)(−w), or,

Dfv(q∗)w ≤ Dqf(x∗, q∗)w,

hence, combining,
Dfv(q∗)w = Dqf(x∗, q∗)w.

Since this holds for any w, the result follows. �

Remark 2. Theorem 1 immediately generalizes to q ∈ U , where U is an open subset
of RL. �

3 An example with no binding constraints.

Consider the cost minimization problem,

mina,b∈R a+ b

s.t.
√
ab ≥ y
a, b ≥ 0

2Formally, define r : U → RN+L by r(q) = (φ(q), q). Then fv(q) = f(r(q)). By the Chain Rule,

Dfv(q∗) = Df(x∗, q∗)Dr(q∗)

=
[
Dxf(x∗, q∗) Dqf(x∗, q∗)

] [ Dφ(q∗)
I

]
= Dxf(x∗, q∗)Dφ(q∗) +Dqf(x∗, q∗).

as claimed. Many of the other Chain Rule applications are similar.

2



To interpret, a is capital, b is labor, and y is output. I assume (for simplicity)
that the rental price of capital and the wage for labor both equal 1, so that total
cost is a + b. If y > 0, any feasible a and b must be strictly positive, hence the
non-negativity constraints do not bind at the solution. On the other hand, the
production constraint

√
ab ≥ y binds (since cost is strictly increasing in both a

and b, and since the production function is continuous), hence I can rewrite this
constraint as

b =
y2

a
> 0.

Substituting, let the (modified) objective function be

f(a, y) = a+
y2

a
.

I can thus convert the above constrained minimization problem into an uncon-
strained minimization problem

mina∈R a+ y2

a .

(With the qualification that I have to check that indeed a > 0 at any proposed
solution.) In terms of notation, here a is playing the role of “x” and y is playing
the role of “q”.

At y = y∗, the first order condition Daf(a∗, y∗) = 0 gives,

1− y∗2

a∗2
= 0,

hence y∗ = y∗ (which is strictly positive), hence φ(y) = a. For this particular
application, call the value function C` (since the value function here is what is often
called long-run cost). Then C`(y) = 2y.

Verifying the Envelope Theorem,

DC`(y∗) = Dyf(a∗, y∗),

since

Dyf(a∗, y∗) =
2y∗

a∗
= 2.

Next, note that for a fixed (I won’t try to justify here why a might be fixed), the
value,

a+
y2

a
,

is the minimum cost of producing y (this is how I constructed the unconstrained
problem in the first place). This can be interpreted as short-run cost, and accord-
ingly I write,

Cs(a, y) = a+
y2

a
.
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Short-run and long-run cost are equal when a = φ(y): C`(y) = Cs(φ(y), y). By the
Envelope Theorem, then,

DC`(y∗) = DyC
s(a∗, y∗).

For any given value of a∗, the graph of Cs is strictly above that of C` (i.e., short-
run cost is strictly higher than long-run cost) except at output level y∗, since at that
output level, the level of the fixed factor a is optimal. Moreover, when y = y∗, so
that φ(y∗) = a∗, the two graphs are tangent; their slopes are equal. One says that
the graph of C` is the (lower) envelope of the graph of Cs, hence the name Envelope
Theorem. Graphing C` and a few of the Cs will help you visualize what is going on.

All of this generalizes. If Cs is the short-run cost of producing a vector of outputs
y given input prices and a fixed subvector of inputs a∗, and if a∗ is optimal in the
long-run when y = y∗, then

DC`(y∗) = DyC
s(a∗, y∗).

4 The Envelope Theorem with Binding Constraints.

Consider the following parameterized version of a differentiable MAX problem,

max
x

f(x, q)

s.t. g1(x, q) ≤ 0,

...

gK(x, q) ≤ 0.

where q ∈ RL is a vector of parameters. For example, in a consumer maximization
problem, the parameters are usually prices and income. The parameterized MIN
problem is analogous. Again let φ(q) give the (or at least, a) optimal x for a given
q and let the value function be defined by

fv(q) = f(φ(q), q).

Theorem 2 (Envelope Theorem). Fix a differentiable parameterized MAX or MIN
problem. For each q ∈ RL let φ(q) be a solution to the MAX or MIN problem. Let
fv : RL → R be defined by fv(q) = f(φ(q), q). Let J(q) be the set of indices of
constraints that are binding at φ(q). Suppose that the KKT condition holds at φ(q)
for every q ∈ RL.

Fix any q∗ ∈ RL, let x∗ = φ(q∗), let J∗ = J(q∗), and let λ∗k ≥ 0 be the associated
KKT multipliers for k ∈ J . If φ is differentiable at x∗ then,

Dfv(q∗) = Dqf(x∗, q∗)−
∑
k∈J∗

λ∗kDqgk(x∗, q∗).
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Proof. By the Chain Rule (see the proof of Theorem 1),

Dfv(q∗) = Dxf(x∗, q∗)Dφ(q∗) +Dqf(x∗, q∗).

By KKT,

Dxf(x∗, q∗) =
∑
k∈J

λ∗kDxgk(x∗, q∗).

Substituting,

Dfv(q∗) =
∑
k∈J

λ∗kDxgk(x∗, q∗)Dφ(q∗) +Dqf(x∗, q∗).

For any k ∈ J∗, let γk(q) = gk(φ(q), q). For a MAX problem, since k is binding
at q∗, γk(q∗) = 0 while for all other q ∈ RL, γk(q) ≤ 0 (since φ(q) must be feasible
to be a solution). Therefore, q∗ maximizes γk on RL. (For a MIN problem, the
argument is almost the same but q∗ minimizes γk on RL.) Therefore Dγk(q∗) = 0,
hence, by the Chain Rule,

0 = Dγk(q∗) = Dxgk(x∗, q∗)Dφ(q∗) +Dqgk(x∗, q∗).

Hence, Dxgk(x∗, q∗)Dφ(q∗) = −Dqgk(x∗, q∗), hence, since λ∗k ≥ 0,

λ∗kDxgk(x∗, q∗)Dφ(q∗) = −λ∗kDqgk(x∗, q∗).

Substituting this expression for λ∗kDxgk(x∗, q∗)Dφ(q∗) into the above expression
for Dfv(q∗) yields the result. �

Remark 3. Theorem 2 generalizes to q ∈ U , where U is an open subset of RL. �

5 An example with constraints.

Consider the problem

max
x

1
3 ln(x1) + 2

3 ln(x2)

s.t. p · x ≤ m,
x� 0

where x, p ∈ RN
++ and m ∈ R++. Think of this as a utility maximization problem

with parameters being prices p� 0 and income m > 0.
Grinding through the Kuhn-Tucker calculation, at prices p∗ and m∗ the solution

is,

x∗ =

[
m∗/(3p∗1)

(2m∗)/(3p∗2)

]
.
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Thus, the solution function φ is given by,

φ(p,m) =

[
m/(3p1)

(2m)/(3p2)

]
.

Also J∗ = {1} and

λ∗1 =
1

m∗
.

The value function is then determined by fv(p,m) = f(φ(p,m)), hence

fv(p,m) =
1

3
ln

(
m

3p1

)
+

2

3
ln

(
2m

3p2

)
= ln(m)− 1

3
ln(p1)−

2

3
ln(p2) +

1

3
ln

(
1

3

)
+

2

3
ln

(
2

3

)
.

Note that this makes some intuitive sense; in particular fv is increasing in m and
decreasing in p1 and p2.

By direct calculation, at the point (p∗,m∗),

Dfv(p∗,m∗) =


∂fv

∂p1
(p∗,m∗)

∂fv

∂p2
(p∗,m∗)

∂fv

∂m (p∗,m∗)

 =

 −1/(3p∗1)
−2/(3p∗2)

1/m∗

 .
On the other hand, by the Envelope Theorem, since the parameters p and m

don’t appear in the objective function, and with the first constraint written in
standard form as g1(x, p,m) = p · x−m ≤ 0:

Dfv(p∗,m∗) =

 −λ∗1x∗1−λ∗1x∗2
λ∗1

 .
Substitute in the value of x∗ and λ∗ found above and you will confirm that these
two expressions for Dfv(p∗,m∗) are indeed equal.

6 The constraint term and the interpretation of the λk.

Consider a MAX problem and focus on K parameters with the following special
form. Parameter qk affects only constraint k and it does it additively:

gk(x)− qk ≤ 0.

Increasing qk weakens the constraint. Then, from the Envelope theorem, at q∗k = 0,

Dqkf
v(0) = −λ∗k(−1) = λ∗k,
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for any k ∈ J∗. That is, λ∗k is the marginal value of relaxing binding constraint k.
The argument for MIN problems is almost identical.

For k /∈ J , set λ∗k = 0. For some versions of KKT, this is actually a requirement
of KKT. For KKT as I have stated it, it is more in the nature of a convention. In
any event, the interpretation is that if constraint k is not binding then the marginal
value of relaxing constraint k is zero.
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