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Monotone Comparative Statics!

1 Overview

Given an optimization problem indexed by some parameter 6, comparative statics
seeks a qualitative understanding of how the solution changes with 6. If, for example,
wages decrease, does a firm hire more labor?

One way to obtain results of this type is to assume (or use the Implicit Function
theorem to establish the existence of) a differentiable solution function, and then,
having substituted the solution function into the first order condition, apply the
Chain Rule to the first order condition to try to determine the sign of the derivatives
of the solution function.

These notes briefly survey an alternative approach. Relative to the calculus-
based approach, the approach described here has certain advantages. It makes
assumptions that are weaker, either necessary or close to necessary. In particular,
the results below can be applied in settings where differentiability, or even continuity,
of the solution function cannot be assumed. The approach below yields arguments
that are often remarkably concise. And those arguments are often also relatively
transparent.

Work in this area was pioneered by Topkis in the 1970s. Over the subsequent
two decades, economists gradually became persuaded that Topkis’s approach was
the right one for handling certain types of problems in economics. Key papers on
comparative statics include Topkis (1978), Milgrom and Roberts (1990a), Milgrom
and Shannon (1994), Athey (2002), and Quah and Strulovici (2009). Topkis (1998)
is the standard general reference. There is a related literature analyzing equilibria,
especially equilibria in games. Key papers there include Topkis (1979), Vives (1990),
Milgrom and Roberts (1990b), and Milgrom and Roberts (1994). Finally, the lattice
machinery that is characteristic of these literatures has proved important in some
applications in competitive general equilibrium theory; see Aliprantis and Brown
(1982) and Mas-Colell (1986).

2 The Basic Montonicity Result

The material in this section and the next owes to Topkis. Topkis (1998) provides a
comprehensive overview of the state of the art at the time of its publication.
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To simplify notation, I take function domains to be all of some RX. But the
definitions and theorems below extend immediately to functions whose domains are
“nice” subsets of RX. Rf_( is an example of a nice subset.

To begin with, let K = 2 and express z € R? in the form z = (z,6), where
xz,0 € R. Think of = as a decision variable and 6 as a parameter. Given a function
f:R? 5 R, say that f is supermodular iff, whenever z° < z* and 6° < 6*,

f(CC*,Q*) - f(.’L’O,H*) > f($*790) - f(xoveo)'
That is, fixing x° < x*, the function
g<0) = f($*79> - f(x070)7

which measures the benefit (which could be negative) of switching from z° to z*,
is weakly increasing in 6. Informally, supermodularity expresses complementarity
between x and 6: an increase in 6 increases the benefit of increasing x. f is sub-
modular iff —f is supermodular. In these notes, I focus primarily on supermodular
functions.

It is frequently the case in applications that f is differentiable. In this case,
there is an easy characterization, due to Topkis, of supermodularity in terms of
derivatives.

Theorem 1. Let f : R2 — R be C2. Then the following are equivalent.

1. f is supermodular.

2. D, f(z*,0%) is weakly increasing in 0, for every x*.

3. Dgf(x*,0%) is weakly increasing in x, for every 6*.

4. ngxf(x*,e*) > 0 for every (z*,0%).
Proof. It is routine that (4) implies (2) and (3). To see that (2) implies (1), note
that if 6* > 0° and «* > z° then (2) implies

F(a*67) — f(a°,67) = / Dy f(y.6%) d

/ D, f(y,0°) d

— F(a",6°) — f(a°,6°)

Finally, to see that (1) implies (4), set * = 2° +J, 6 > 0. Then the definition of
supermodularity implies, dividing both sides by ¢ and taking the limit as § | 0, that
D, f(2°,0%) > D, f(2°,0°). Thus D, f is weakly increasing in 6, for all # € R, which
implies (4). W



Example 1. Suppose f : R?H — R is defined by
f@,0) = (a8 +67)1/7

where p € R, p # 0. Then you can check that f is supermodular if p < 1 and
submodular if p > 1. O

Theorem 2 below states that if f is supermodular then the solution ¢() to the
problem

maxzec f(,0)

is weakly increasing in #. To make sense of this in the case where the solution ¢(6)
is a set, I need a way to order sets.

Given two sets S*,5° C R, write S* > S° iff for any z° € S° and any =* € S*,
if ° > 2* then z° € S* and z* € S°. This order on subsets of R is the strong set
order. In the strong set order, if S* > S° then the union of S° and S* consists of
three sets (some of which could be empty): (a) points in S* that are larger than
any point in S°, (b) points in both sets, and (c) points in S° that are smaller than
any point in S*. In the special case that S° and S* are singletons, S° = {s°} and
S* = {s*}, then S* > S° iff s* > s°.

Theorem 2. Let f: R? =+ R, let C C R, and for each § € R, let ¢(0) be the set of
solutions, assumed non-empty, to the problem

maxzec f(z,0).

If f is supermodular then ¢ is weakly increasing: for any 0*,0°, if 6% > 6° then
d(0%) > ¢(0°) in the strong set order.

Proof. The following proof is not the simplest possible but has the advantage that
it generalizes easily; it is the template for the proofs to follow. Take any 6° < 6*.
Let z° € ¢(0°), * € ¢(0*). If x* > z° then there is nothing to show. Suppose that
x° > x*. 1 must show that z° € ¢(6*) and z* € ¢(0°).

To see that x° € ¢(0*), note that, by definition of ¢, f(x°,60°) > f(z*,0°), hence,

f(x°,60°) — f(z*,6°) > 0.
Since 2° > z*, 0* > 6°, and f is supermodular,
F(2°,0%) — f(x*,0%) > f(2°,0°) — f(a*,0°).
Combining, f(z°,0%) — f(z*,6*) > 0, or
f(@°,0%) > f(z*,0%),

hence z° € ¢(0*) as was to be shown.



The proof that z* € ¢(0°) is similar. By definition of ¢, f(x*,60%) > f(x°,6%),
hence

0> f(a°,0%) — f(z*,0%).

Since z° > x*, 0" > 6°, and f is supermodular,
f(@®,07) — f(27,0%) = f(2°,0°) — f(2",0°).
Combining, 0 > f(x°,0°) — f(x*,6°), or
f(z*,0%) > f(2°,6°),

which implies z* € ¢(6°), as was to be shown. H

If C is compact and f is continuous then one can show that ¢(f) is a compact
subset of C| so that, in particular, ¢(0) has a largest and smallest element. In this
case, Theorem 2 implies that the largest and smallest elements of ¢(f) are both
weakly increasing in 6.

Ezxample 2. Consider a monopoly facing an inverse demand function P : Ry — R
giving price as a function of quantity. If the firm has constant marginal cost ¢ > 0
(and no fixed cost), then its profit is

m(x,c) = P(x)r — cx.

Define 6§ = —c and define
f(z,0) = P(x)x + 0x

Then f is supermodular (even if P is not differentiable).
By Theorem 2, the set of profit maximizing = is weakly increasing in 6, hence
weakly decreasing in c¢: a decrease in marginal cost implies an increase in output.
The traditional calculus approach goes as follows. The first order condition for
the maximization problem is
0= Dym(z,c).

Let ¢(c) denote the solution for c¢. Assume this is single valued and differentiable.
Then for any ¢

0 = Dym(¢(c),c).
By the Chain Rule, 0 = D2 7 (x,c)Dé(c) + D2 x(x,c), hence

Dg}cﬂ'(m,c) 1
- DZ7(x,c)  DZm(w,c)

Do(c) =

This will be negative (a decrease in marginal cost implies an increase in output),
provided D2, 7(x,0) < 0, that is, provided = is differentially strictly concave in z.
O



In Example 2, the concavity assumption on 7 is obnoxious because it is equivalent
to a concavity assumption on P, and there is no general reason to think that inverse
demand will be concave. In contrast, Theorem 2 makes no mention of concavity.
The two approaches to comparative statics are not, however, quite as far apart as
they might seem in this respect. If z* = ¢(c*), then 7(x,c*) cannot be locally
strictly convex in x near x*, since then x* would be a local minimum. Thus, there is
some sense in which 7 cannot be too far from being concave near (z*, ¢*), and in this
sense Theorem 2 implicitly builds in a local concavity-like condition at z* simply
by assuming that z* is a solution. That said, the assumption that D2 _m(z,c) < 0
is clearly strong relative to what is used by Theorem 2.

3 A Generalized Monotonicity Result

The goal is to extend Theorem 2 to functions f : RN*tM — R, with the decision
variable z € RY and the parameter § € RM,

If N > 2 then we face the following issue: if z* € ¢(6*) and z° € ¢(6°) then
there is no general reason to expect either x* > z° or * < x°, even in extremely well
behaved problems. Here, as usual, z* > z° means that =} > x; for each coordinate
n. The two vectors could be like (1,0) and (0, 1), which are non-comparable in the
standard partial order on RY.

We deal with this problem as follows. For any z* and x° in RY, write

¥V 2 = (max{z],z{},. .., max{zy, 2N })

and
¥ ANz = (min{z], 27}, ..., min{xy, 2y })

In particular, * V 2° > 2* and 2° and 2* A 2° < z* and x°. Say that a set S is a
sublattice of RN iff for any 2*,2° € S, 2*V2° € S and z* Az° € S.
For K > 2, a function f : RX — R is supermodular iff for any z*, 2° € RX,

25V 2%) = f(27) = f(2°) = f(z" A 2°).

f is submodular if —f is supermodular.

If K = 2 then this version of supermodularity is equivalent to the previous
one. Explicitly, let © = z; and let § = 2z5. Suppose that x* > x° and 6* > 0°.
If 2% = (2°,0%), 2° = (2%,6°) then 2" V 2° = (2%,0*) and z* A 2° = (2°,60°) and
supermodularity requires,

f(z*,0%) — f(z°,0%) > f(z*,6°) — f(2°,0°),

which is exactly the condition from before. (If z* = (z°,0%), z° = (z*,6°), then
one gets the equivalent inequality, f(x*,0%) — f(x*,0°) > f(x°,0%) — f(x°,0°). If
z* = (z*,0%), 2° = (z°,60°) then supermodularity just says 0 > O )



One can show, although I will not do so explicitly, that Theorem 1 extends to
this case. Explicitly, if f is C? then f is supermodular iff for every z, all cross partials
are non-negative: for k # k',

D, f(z)>0

2Kz

It turns out that the full strength of supermodularity is not needed for Theorem
3, which is the generalization of Theorem 2. Writing z = (,6), with € RY,
6 € RM, and K = N + M, Theorem 3 assumes that f is supermodular in z (i.e.,
supermodular holding the 6 coordinates fixed) and exhibits increasing differences
in (z,0), where the latter means that for any z*,2° € RY and any 6*,60° € RM if
z* > z° and 6* > 0°, then

f(*,0%) — f(z°,0%) > f(z*,60°) — f(2°,0°).

If N =1 then any f is supermodular in z.

Ezxample 3. Suppose f : R§r+ — R is defined by
f(xv 91’ 02) = ﬂf(ef + 9210)1/;7’

where p € R, p # 0. Then f is supermodular in z (x is one dimensional) and satisfies
increasing differences in (x,6) (D2, > 0), but if p > 1 then it is not supermodular
in6g. O

Finally, given two sets S*,8° C RY write S* > §° iff for any z° € S° and any
¥ € §* z*Va° € §* and 2* A 2° € S°. This order on subsets of RY is the strong

set order. When N = 1, this definition of the strong set order is equivalent to the
one given earlier.

Theorem 3. Let f : RNtM 5 R et C be a sublattice of RY, and for each § € RM,
let @(0) be the set of solutions, assumed non-empty, to the problem

maxgec f(z,0).

If f is supermodular in x and exhibits increasing differences in (x,0) then ¢ is weakly
increasing: for any 6*,6°, if 0% > 0° then ¢(6*) > ¢(0°) in the strong set order.

Proof. Consider any 6*,0° € RM with * > #°. Consider any z* € ¢(#*) and
z° € ¢(0°). Note that, since C is a sublattice of RY, 2* v 2°,2* A 2° € C. I must
show that z* V z° € ¢(0*) and x* A z° € ¢(6°).

To see that x* V x° € ¢(6*), note that by definition of ¢,

f(@®,0%) = f(a® Az, 6°),

hence
f(z°,0°) — f(=° Ax*,0°) > 0.



By increasing differences, since x° > x° A * and 6* > 6°,

f(ﬂ?o,e*) - f(xo A .Z'*,e*) > f(xo790) - f(xo A x*’eo).
Since f is supermodular in z,

fa®va®,0%) — f(2",07) > f(2°,07) — f(a® Aa™,0%).
Combining all this,

f(CC* \ xo’e*) - f($*79*) Z 07
or
flx* vz 6%) > f(a*,0%).

Therefore, since z* € ¢(6%), * V z° € ¢(6*), as was to be shown.
To see that x* A z° € ¢(6°), note that by definition of ¢,

f(a®,0%) = f(a" v a®,0%),
hence
0> f(x*Vva®,0%) — f(a*,0%).
By increasing differences, since * V 2° > «* and 6* > §°,
f@*Vva®,0%) — f(a",0%) = f(a" Vv a©,60°) — f(z",0°).
Since f is supermodular in z,
fla®va®,0%) — f(2",0°) = f(2°,6°) — f(z" N a®,0°).
Combining all this,
0> f(2°,0°) — f(a* Aa®,0%),
or
fl@* ANz 6°) > f(x°,0°).
Since z° € ¢(6°), this implies x* A z° € ¢(6°) as was to be shown. W

A lattice S C RV is a complete sublattice of RN iff for every B C S, sup B
and inf B exist in RY and are contained in S. One can prove that if S C RY is
a complete sublattice of RV then it is compact.? One can then prove that if the
constraint set C' is a complete sublattice of RY and f is continuous then ¢(6) is
a complete sublattice of C' (and hence of RY) and in particular has a largest and
smallest element. Theorem 3 implies that the largest and smallest elements of ¢(6)
are both weakly increasing in 6.

2The condition that S is a complete sublattice of RY is stronger than the condition that S is
a complete lattice. For example, S = [0,1) U {2} is a complete lattice, but it is not complete as a
sublattice of R. In particular, the sup of B =[0,1) in S is 2, but the sup of B in R is 1, which is
not in S. This example shows that a complete lattice in RY, unlike a complete sublattice, need not
be compact.



4 An Application: the Le Chatelier Principle

This section follows Milgrom and Roberts (1996). The Le Chatelier Principle com-
pares the effects of a parameter change on a decision variable in two settings, one
where other decision variables are fixed and another where those variable are free
to adjust. The name “Le Chatelier Principle” was coined in Samuelson (1947) and
alludes to Le Chatelier’s Principle in chemistry.

Consider the effect of the change in the wage on a competitive firm. In this
setting, the claim is that a decrease in the wage causes the firm to increase employ-
ment, and the effect is larger in the long-run, when the firm can also change capital,
than in the short-run, when capital is fixed. The goal in this section is to prove this
claim.

Let f : R3 — R, with the decision variable € R? and the parameter § € R.
Assume that f is supermodular. The interpretation will be that x; is labor, x5 is
capital, 6 indexes wages, and f measures profit. I'll be more explicit about € and f
in a moment. Let

¢s(w2,0) = argmax,, f(z1,x2,0)
and let
¢ (0) = argmax,, ., f(x1,22,0).

I assume that these solutions exist; if there are multiple solutions, set ¢; and ¢o
equal to the largest solutions (which I assume exist; see also the comment following
the proof of Theorem 3). ¢g is the short-run response to #: x; adjusts but xy is
held fixed. ¢y, is the long-run response to §: both x; and x2 adjust.

Take any 6* > 0°. Let (29,28) = ¢1(0°), (x7,25) = ¢r(6%). Since f is super-
modular, Theorem 3 (and the discussion following it) implies that

(z1,25) = (27, 73),

and in particular that =5 > x5.
Define
T = ¢g(x5,0%).
and notice that x§ = ¢g(x$,6°) and 7 = ¢g(x3,6%). Then, since f is supermodular,
Theorem 3 implies that

¢s(23,0%) < ¢s(x3,0%) < ps(3,0%),

or
x] <& < xj.

In words, following an increase in 6, x1 initially increases, and then z; increases by
even more once x2 adjusts as well.
As an application, consider a competitive firm with profit

m(x1, 22, w) = pg(1,22) — W1 — T2,



where p is output price, g is a production function, w is the wage, z; is labor, r is
a capital rental price, and x5 is capital.

Suppose that g is supermodular. Asin Example 2, 7 is not supermodular because
D wm = —1 < 0. Therefore, set § = —w and let

f(x1,22,0) = pg(z1,22) + 021 — T22.

Then f is supermodular in (x1,x2,0). By the above inequalities, an increase in
f, and hence a decrease in w, causes the firm to hire more labor in the short run
(with capital fixed at ) and even more so in the long run when capital increases to
x5. Intuitively, supermodularity of g captures complementarity between labor and
capital. The decrease in w induces the firm to hire more labor initially, which raises
the productivity of capital (since labor and capital are complements) which leads
the firm to hire more capital, which raises the productivity of labor (again since
labor and capital are complements) which leads the firm to hire even more labor.

5 Extensions and Generalizations

5.1 Overview.

In Theorem 3, supermodularity is sufficient but not necessary and in fact cannot be
necessary. It is a basic feature of optimization problems that the solution remains
the same if the objective function is transformed by an increasing function. One can
easily use such transformations to destroy supermodularity. This raises the question
of whether one can find conditions that are in the same spirit as supermodularity
but that are weaker and in particular ordinal, hence immune to the problem just
noted. The question is of interest both as a purely mathematical exercise and
also because there are circumstances in which weaker conditions might apply but
supermodularity does not.

5.2 Single Crossing.

The best known generalization of Theorem 3 appears in Milgrom and Shannon
(1994), which replaces supermodularity with an ordinal analog called quasisuper-
modularity and replaces increasing differences with an ordinal analog called the
single crossing property.
Explicitly, f : RN*M — R is quasisupermodularin = € RN iff for any 2*, 2° € RN
and any 6 € RM | then
f(@®,0) = f(z" Aa®,0) 20,

implies
f@*Vva®,0) - f(a*,6) =0,



with a strict inequality in the first implying a strict inequality in the second. It is
immediate that supermodularity in x implies quasisupermodularity in z. If N =1
then any f is quasisupermodular in z.

The function f: RY x RM — R satisfies the single crossing property in (z,0) iff
for any z*,2° € RY and any 6*,0° € RM  if 2* > 2° and 6* > 6°, then

f(.%'*,90> - f(xo790) Z 07

implies

f(a®,0%) = f(a°,0%) = 0,

with a strict inequality in the first implying a strict inequality in the second. Qua-
sisupermodularity in (z,6) (not just in x) implies single crossing.

It is immediate that increasing differences implies the single crossing property.
Single crossing can be strictly weaker than increasing differences, as illustrated by
the following example.

Example 4. Suppose that M = N = 1, that #* > 6°, and that f(z,6°) = —2? and
f(z,0%) = —(x — 1/10)%. (For example, f(x,0) = —(z — (§ — 1)/10)??, with 6° =1
and 6* = 2.) One can verify that f satisfies single crossing for these 6, and that
$(0%) = 1/10 > ¢(6°) = 0, so that the comparative statics do indeed go in the
expected direction. But f fails increasing differences. The problem is that, near its
maximum, f(-,0*) is flatter than f(-,0°), and increasing differences requires that
f(-,0%) be steeper whenever both functions are increasing. [

The name “single crossing property” refers to the fact that (when M = 1), for
any fixed x*, z°, the function g(6) defined by

9(0) = f(z7,0) — f(a°,0),

which measures the benefit of switching from z° to x*, crosses 0 at most once, and
from below. The single crossing condition here is related to the Spence-Mirlees
single crossing condition, which is important in signaling and optimal taxation,
among other economic applications. The link between the two versions of single
crossing is discussed in Milgrom and Shannon (1994).

Theorem 4. Let f : RNTM L R et C be a sublattice of RY, and for each § € RM,
let ¢(0) be the set of solutions, assumed non-empty, to the problem

maXgeC f(x7 9)
If f is quasisupermodular in x and satisfies the single crossing property in (z,0)

then ¢ is weakly increasing: for any 0*,0°, if 6* > 0° then ¢(0*) > ¢(0°) in the
strong set order.

10



Proof. Consider any 6*,0° € R™ with * > #°. Consider any z* € ¢(#*) and
x° € ¢(0°). I must show that x* V z° € ¢(0*) and =* A 2° € ¢(0°).
To see that x* V x° € ¢(6*), note that by definition of ¢,

f(z°,0°) > f(x° Nx*,0°).

By single crossing, since z° > x° A x* and 0* > 0°, this implies
f(z°,0%) > f(ax° Na™,0%).

By quasisupermodularity,
flx*vaz® 6%) > f(a*,0%).

Therefore, since z* € ¢(6%), * V z° € ¢(6*), as was to be shown.
To see that x* A z° € ¢(6°), note that by definition of ¢,

F(@*,0%) > f(a* vV z°,0%).

Since x* V z° > x* and 6* > 6°, the contrapositive of the single crossing property,
in its strict inequality form, says that since it is not true that

f@™va®,0%) > f(z%,6%),

then it is not true that
flz*Vva© 0% > f(z*,0°).

The contrapositive of quasisupermodularity, again in its strict inequality form, then
implies that it is not true that

F(2°,0°) > f(z* A z°,6°).

That is,
fla* Aa®,0°) > f(2°,6°).

Since z° € ¢(6°), this implies x* A z° € ¢(6°) as was to be shown. B

Again, one can prove that if the constraint set C' is a complete sublattice of R
and f is continuous then ¢(0) is a complete sublattice of C' and in particular has
a largest and smallest element. Theorem 4 implies that the largest and smallest
elements of ¢(f) are both weakly increasing in 6.

The version of Theorem 4 stated in Milgrom and Shannon (1994) is stronger in
two respects. First, in Milgrom and Shannon (1994), the solution ¢ depends explic-
itly on the constraint set C'. The statement is then that if f is quasisupermodular
in x and satisfies the single crossing property in (x,0) then ¢ is weakly increasing
in both 0 and C, where C* > C° refers to the strong set order. The proof of the

11



strengthened version of Theorem 4 is essentially identical to the one just given. See
Quah (2007) for an extension that uses a weaker set order on C.

Second, the result in Milgrom and Shannon (1994) is stated in “if and only if”
form: f is quasisupermodular in x and satisfies the single crossing property in (x, 6)
iff ¢ is weakly increasing in (z,C).

Consider single crossing. Take any z*,z° € RY with 2* > 2° and any 6*,6° €
RM with 0* > 0°. Let C = {z*,2°}. Then it is immediate from the definitions that
if ¢ is weakly increasing in 6 then f must satisfy single crossing for these particular
(x,0). On the other hand, consider quasisupermodularity. Take any z*,z° € RY
and any 0 € RM. Let C* = {z* Vv 2°,2*}, and C° = {z* A 2*,2°}. Note that
C* > C°. Then it is immediate from the definitions that if ¢ is weakly increasing
in C, for these particular C', then f must be quasisupermodular in x, for these
particular x.

5.3 Interval Order Dominance.

As just discussed, Milgrom and Shannon (1994) show that quasisupermodularity
in x and single crossing in (z,0) is jointly necessary as well as sufficient for the
conclusion that ¢ is weakly increasing in (0, C'). Nevertheless, these conditions are
stronger than necessary in many applications. The reason is that the necessity
argument exploits the fact that the set of possible constraint sets is unrestricted.
If, as is often the case in applications, C' must take a particular form, then weaker
conditions on f may suffice to ensure that ¢ is weakly increasing.

To keep things simple, and to focus on the new idea, let N = M = 1. My
discussion follows Quah and Strulovici (2009). The condition below is somewhat
stronger than, but roughly in the same spirit as, checking single crossing only over
intervals where the function f(-,6°) is increasing.

Formally, f satisfies interval order dominance iff for any 6*,60° € R, 6* > 6°, and
any x*,2° € R, o* > 2°, if f(2*,0°) > f(x,0°) for every x € [x°, z*] then

f(x*,@*) - f(xo79*) > 07
with a strict inequality if f(z*,6°) > f(x,6°). Quah and Strulovici (2009) provides
examples in which interval order dominance is strictly weaker than single crossing.
Theorem 5. Let f : R? = R, let C C R be an interval, and for each 6 € R, let
(0) be the set of solutions, assumed non-empty, to the problem

max,ec f(z,0).

If f satisfies interval order dominace then ¢ is weakly increasing: for any 0*,0°, if
0* > 6° then ¢(0*) > ¢(0°) in the strong set order.

Proof. Suppose 6* > 6° and let z* € ¢(0*), 2° € ¢(6°). I need to show that if
x° > z* then 2° € ¢(0%) and z* € ¢(0°). If * = x° then the result is immediate.
So suppose z° > z*.

12



To see that z° € ¢(0*), note that since z° € ¢(6°) and z° > z*, f(x°,6°) >
f(z,0°) for every x € [z*, 2°]. Interval order dominance then implies that f(z°,6*) >
f(x*,0%). Since x* € ¢(0*), this implies z° € ¢(0*), as was to be shown.

To see that z* € ¢(0°), note that, as above, f(z°,6°) > f(x,6°) for all z €
[*,2°]. But, since z* € ¢(0%), f(z*,0%) > f(x°,0%), hence it is not true that
f(x°,0%) > f(x*,0"). Therefore, the contrapositive of interval order dominance, in
its strict inequality form, implies that it is not true that f(x°,60°) > f(z*,0°), which
implies that f(x*,0°) > f(2°,0°), hence z* € ¢(0°) as was to be shown. H

The theorem in Quah and Strulovici (2009) differs from the one just provided in
three respects. First, Quah and Strulovici (2009) use a generalized notion of interval
and thus their result applies to a richer set of possible constraint sets. Second,
Quah and Strulovici (2009) allows C' to vary as well as 6. The proof of the result
is essentially unchanged. Finally, Quah and Strulovici (2009) establishes necessity,
as well as sufficiency for monotone comparative statics when the constraint sets are
(generalized) intervals.
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