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Fixed Point Theorems1

1 Overview

Definition 1. Given a set X and a function f : X → X, x∗ ∈ X is a fixed point
of f iff f(x∗) = x∗.

Many existence problems in economics – for example existence of competitive
equilibrium in general equilibrium theory, existence of Nash in equilibrium in game
theory – can be formulated as fixed point problems. Because of this, theorems giving
sufficient conditions for existence of fixed points have played an important role in
economics.

My treatment is schematic, focusing on only a few representative theorems and
omitting some proofs. An excellent introduction to fixed point theory is Border
(1985). McLennan (2008) is a more recent concise survey that provides a treatment
more sophisticated than the one here. McLennan (2018) is an advanced, book-length
treatment.

The remainder of these notes is divided into three sections. Section 2 focuses on
fixed point theorems where the goal is to find restrictions on the set X strong enough
to guarantee that every continuous function on X has a fixed point. The prototype
of theorems in this class is the Brouwer Fixed Point Theorem, which states that a
fixed point exists provided X is a compact and convex subset of RN . In contrast, the
Contraction Mapping Theorem (Section 3) imposes a strong continuity condition on
f but only very weak conditions on X. Finally, the Tarski Fixed Point Theorem
(Section 4) requires that f be weakly increasing, but not necessarily continuous, and
that X be, loosely, a generalized rectangle (possibly with holes).

2 The Brouwer Fixed Point Theorem and its Relatives

2.1 The Brouwer Fixed Point Theorem in R.

Theorem 1. If X = [a, b] ⊆ R and f : X → X is continuous then f has a fixed
point.

Proof. If f(a) = a or f(b) = b then we are done. Otherwise, f(a) > a and f(b) < b.
Define g(x) = f(x) − x. Then g(a) > 0 while g(b) < 0. Moreover, g is continuous

1cbna. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License. Michael Greinecker pointed out a mistake in the statement of Eilenberg-
Montgomery in a previous version. That error is now corrected.
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since f is continuous. Therefore, by the Intermediate Value Theorem, there is an
x∗ ∈ (a, b) such that g(x∗) = 0, hence f(x∗) = x∗. �

The following are examples in which one of the sufficient conditions in Theorem 1
are violated and no fixed point exists.

Example 1. Let X = [0, 1) and f(x) = (x + 1)/2. There is no fixed point. Here, f
is continuous and X is connected, but X is not compact. �

Example 2. Let X = [0, 1] and

f(x) =

{
1 if x < 1/2,

0 if x ≥ 1/2.

There is no fixed point. Here X is connected and compact but f is not continuous.
�

Example 3. Let X = [0, 1/3]∪ [2/3, 1] and f(x) = 1/2. There is no fixed point. Here
f is continuous and X is compact, but X is not connected. �

Finally, note that the conditions in Theorem 1 are sufficient but not necessary.
The requirement that a fixed point must exist for every continuous f imposes much
stronger conditions on X than the requirement that a fixed point exist for some
given f . For given X and f , a fixed point may exist as long as X is not empty, even
if every other condition is violated.

Example 4. Let X = (0, 1/3) ∪ (2/3,∞). Let

f(x) =

{
1/4 if x = 1/4

0 otherwise.

Then X is not closed, not bounded, an not connected and f is not continuous. But
f has a fixed point, namely x∗ = 1/4. �

The question now is how to generalize Theorem 1 from a statement about X ⊆ R
to a statement about X ⊆ RN . There are two issues.

The first issue is that the line of proof in Theorem 1 does not generalize to higher
dimensions. For X = [0, 1], a fixed point occurs where the graph of f crosses the
45◦ line. Since the 45◦ line bisects the square [0, 1]2 ⊆ R2, if f is continuous then
its graph must cross this line; the proof based on the Intermediate Value theorem
formalizes exactly this intuition. In contrast, if X = [0, 1]2 ⊆ R2, then the graph of
f lies in the 4-dimensional cube [0, 1]2× [0, 1]2, and the analog of the 45◦ line is a 2-
dimensional plane in this cube. A 2-dimensional plane cannot bisect a 4-dimensional
cube (just as a 1-dimensional line cannot bisect a 3-dimensional cube). Brouwer
must, among other things, insure that the graph of f , which is 2-dimensional, does
not spiral around the 2-dimensional 45◦ plane, without ever intersecting it.
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The second issue is that it is not obvious how to generalize the condition that
X be an interval. Requiring X to be a closed rectangle is too strong. On the other
hand, requiring X to be compact and connected is too weak, as the next example
illustrates.

Example 5. Let X be a disk with a central hole cut out

X = {x ∈ R2 : ‖x‖ ∈ [ε, 1]}

where ε ∈ (0, 1). Then X is compact and connected but it is not convex. Let f be
the function that, in effect, rotates X by a half turn. More formally, represent R2 in
polar coordinates: a point (r, θ) corresponds to x1 = r cos(θ), x2 = r sin(θ). Then
f(r, θ) = (r, θ + π). This function is continuous but there is no fixed point. �

In this example, X is connected but not convex, which leads naturally to the
conjecture that a fixed point exists if X is compact and convex. This intuition is
correct, but convexity can be weakened, at essentially no cost, for a reason discussed
in the next section.

2.2 Homeomorphisms and the Fixed Point Property.

Definition 2. A non-empty metric space (X, d) has the fixed point property iff for
any continuous function f : X → X, f has a fixed point.

Definition 3. Let (X, dx) and (Y, dy) be metric spaces. X and Y are homeomorphic
iff there exists a bijection h : X → Y such that both h and h−1 are continuous.

Say that a property of sets/spaces is topological iff for any two homeomorphic
spaces, if one space has the property then so does the other. Elsewhere, I have
shown that compactness and connectedness are both topological properties. In R,
convexity is topological because, in R, convexity is equivalent to connectedness. But,
more generally, convexity is not topological. For example, in R2, a figure shaped like
a five-pointed star is not convex even though it is homeomorphic to a convex set, a
pentagon for example. On the other hand, the fixed point property is topological.

Theorem 2. Let (X, dx) and (Y, dy) be non-empty metric spaces. If X and Y are
homeomorphic and X has the fixed point property then Y also has the fixed point
property.

Proof. Suppose that X has the fixed point property, that h : X → Y is a home-
omorphism, and that g : Y → Y is continuous. I need to show that g has a fixed
point. Define f = h−1 ◦ g ◦ h. Then f : X → X is continuous, as a composition of
continuous functions. Since X has the fixed point property, there is a point x∗ ∈ X
such that f(x∗) = x∗, meaning h−1(g(h(x∗)) = x∗, or g(h(x∗)) = h(x∗), which im-
plies that h(x∗) is a fixed point of g. �
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2.3 The Brouwer Fixed Point Theorem

Let

∆N =

{
x ∈ RN+1

+ :
∑
n

xn = 1

}
.

∆N is a special case of a regular N -simplex. More generally, a regular N -simplex
is defined by N + 1 equally spaced points, the vertices of the simplex. In the case
of ∆N the vertices are (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), all of which are
distance 1 apart. A regular 1-simplex is a line segment. A regular 2-simplex is
an equilateral triangle. A regular 3-simplex is a regular tetrahedron. Any regular
N -simplex is (almost trivially) homeomorphic to ∆N .

Theorem 3. ∆N has the fixed point property.

Proof. Fix a continuous function f : ∆N → ∆N .
For each t ∈ N, t ≥ 1, there is a simplicial subdivision of ∆N , formed by intro-

ducing vertices at the points (
k1
t
, . . . ,

kN+1

t

)
,

where kn ∈ N and
∑

n kn/t = 1. Note that this set of vertices is finite and includes
the original vertices. The closest of these vertices are distance 1/t apart and any set
of N + 1 such closest vertices defines an N -simplex that is a miniature version of
∆N . Call these new simplexes sub-simplexes. For example, if N = 2 and t = 2, then
three new vertices are introduced, at {1/2, 1/2, 0}, {1/2, 0, 1/2}, and {0, 1/2, 1/2},
for a total of six vertices. These six vertices divide the original simplex into four
sub-simplexes, each with sides of length 1/2. If t = 3, the simplex is divided into
nine sub-simplexes, each with sides of length 1/3.

If for any subdivision of ∆N there is a fixed point at some vertex v ∈ ∆N then
we are done. Suppose then that for every t, no vertex is a fixed point.

By a labeling of a simplex I mean a function that assigns a number in n ∈
{1, . . . , N + 1} to each vertex. Say that a sub-simplex is completely labeled iff each
of its N + 1 vertices has a different label.

The proof now proceeds in two steps.

• Step One. For each t consider any labeling such that if the label of vertex
v is n then fn(v) < vn. Since f(v) 6= v (by assumption, no vertex is a fixed
point) and since

∑
n fn(v) = 1 =

∑
n vn, there must be at least one n for which

fn(v) < vn, hence the labeling is well defined. (There may be more than one
n for which fn(v) < vn; in such cases, any such n can be the label for v.)

Suppose that for each t, ∆N has a at least one completely labeled sub-simplex.
Step Two shows that this is true. Let the N + 1 vertices of this sub-simplex
be v1, . . . , vN+1

t , where vnt has label n.
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The point (v1t , . . . , v
N+1
t ) lies in ∆N×· · ·×∆N (N+1 times), which is compact

since each ∆N is compact. Therefore, there is a point (x1∗, . . . , x(N+1)∗) and
a subsequence along which (v1t , . . . , v

N+1
t ) converges to (x1∗, . . . , x(N+1)∗). For

each t, the vertices of any sub-simplex are exactly
√
N/t apart. Therefore, for

any ε > 0, for all t large enough, for any any n, vnt is within ε of x1∗. This
implies x1∗ = · · · = x(N+1)∗. Call this common limit x∗.

For each t and n, since the label on vnt is n,

fn(vnt ) < vntn.

Therefore, taking the limit, since f is continuous,

fn(x∗) ≤ x∗n.

If any inequality is strict, then
∑

n fn(x∗) <
∑

n x
∗
n. But f : ∆N → ∆N , hence∑

n fn(x∗) =
∑

n x
∗
n = 1. Hence fn(x∗) = x∗n for all n: x∗ is a fixed point of

f , as was to be shown.

• Step Two. Fix any ∆N and any t simplicial subdivision. Consider any
labeling of the vertices such that if the label of vertex v is n then vn > 0. Note
that this property was satisfied by the labeling in Step One. Otherwise, the
labeling is unrestricted.

Theorem 4 (Sperner’s Lemma). Given ∆N , a t simplicial subdivision, and a
labeling as above, the number of completely labeled sub-simplexes is odd.

In particular, Sperner’s Lemma implies that there is at least one completely
labeled subsimplex, which is what is needed to complete the proof of the
Brouwer Fixed Point Theorem. The proof of Sperner’s Lemma is by induction
on N .

If N = 0 then ∆N = 1. The “simplex” is just the point x = 1; for any t, the
simplicial subdivision is vacuous and the point is completely labeled (the label
is 1).

Consider now ∆N , N ≥ 1. This simplex has N + 1 faces defined by any set of
N of the vertices. Each face is itself a copy of ∆N−1. Thus, for example, ∆3,
which is a regular tetrahedron, has four faces, each of which is a copy of ∆2,
which is an equilateral triangle.

Any t simplicial subdivision of the original ∆N induces a t simplicial subdi-
vision on each face. By the induction hypothesis, any face of ∆N+1, being a
copy of ∆N , has an odd number of completely labeled (sub-) subsimplexes.

Given ∆N , consider the N -dimensional plane containing ∆N , namely {x ∈
RN+1 :

∑
n xn = 1}. For each t, one can construct a simplicial division of
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the plane that includes the t simplicial subdivision of the original ∆N . This
simplicial subdivision has vertices at(

k1
t
, . . . ,

kN
t

)
,

for kn ∈ Z,
∑

n kn/t = 1. For any face of the original ∆N , consider any sub-
simplex of this face. This sub-subsimplex is a face shared by two subsimplexes,
one a subsimplex of the original simplex and one that is not. Call this latter
subsimplex an exterior subsimplex.

For any t, label ∆N as above and consider the following sets.

– S1. The set of completely labeled subsimplexes of the original ∆N .

– S2. The set of subsimplexes of the original ∆N that have labels {1, . . . , N}
but that are missing label N + 1 (and hence have one of the other labels
repeated).

– S3. The set of exterior subsimplexes for which the face that is a (sub-)
subsimplex of the original ∆N is completely labeled with labels {1, . . . , N}
(not label N + 1).

Let S = S1 ∪ S2 ∪ S2. Let E be the set of subsimplicial faces of ∆N that are
completely labeled with labels {1, . . . , N} (not label N +1). Note that for any
e ∈ E, e is a face shared by two subsimplexes in S. And any s ∈ S has at
least one face in E.

For s ∈ S, let deg(s) equal the number of faces in E. One can verify that,
independently of N ,

– For s ∈ S1 ∪ S3, deg(s) = 1.

– For s ∈ S2, deg(s) = 2.

Then ∑
s∈S

deg(s) = 2#E,

since each e ∈ E is a face of two adjoining elements of S, and any s ∈ S1 ∪ S3
(which has degree 1) has only one face in E, while any s ∈ S2 (which has
degree 2) has two faces in E. This establishes that

∑
s∈S deg(s) is even. On

the other hand, ∑
s∈S

deg(s) = #S1 + 2#S2 + #S3.

By the induction hypothesis, the number of completely labeled (sub-)subsimplexes
on any face of ∆N is odd, hence #S3 is odd. Since

∑
s∈S deg(s) is even, 2#S2

is even, and #S3 is odd, it follows that #S1 is odd, as was to be shown.
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See Scarf (1982) for how a related proof can be turned into an algorithm for
finding fixed points.

An interesting feature of the above proof is that it establishes the existence of
an odd number of approximate fixed points (the completely labeled subsimplexes).
A natural conjecture is that the number of fixed points must, therefore, be odd, but
this is not true.

Example 6. For X = [0, 1], f(x) = x has an infinite number of fixed points. 2

Example 7. For X = [0, 1], f(x) = −6x3 + 9x2 − 3x + 4/9 = −(−1 + 6x)(−2 +
3x)2/9 + x, which has two fixed points, one at x = 1/6 and the other at x = 2/3. 2

These examples turn out to be pathological: in a sense that can be formalized,
if X is homeomorphic to a compact, convex set then “nearly every” continuous
function on X has an odd number of fixed points.

Any compact, convex set in RM is homeomorphic to ∆N for some N ≤ M .
In particular, any compact, convex set in RN with a non-empty interior is homeo-
morphic to ∆N . See, for example, Theorem 16.4 in Bredon (1993). Therefore, by
Theorem 2 and Theorem 3, any compact, convex subset of a Euclidean space has
the fixed point property. This is the form in which Brouwer is typically stated.

In general, any set that is homeomorphic to ∆N will be compact (since compact-
ness is preserved by continuous transformation). But it need not be convex. For
example, a crescent moon shaped set in R2 is homeomorphic to ∆N even though it
is not convex. Such sets also have the fixed point property.

2.4 The Kakutani Fixed Point Theorem

A correspondence on a set X is a function from X to the set of subsets of X. In
notation, f : X → P(X). There is a convention to allow ∅ as a possible value for
correspondences, in which case one must specify that the correspondence is non-
empty valued in order to rule this out.

Say that x∗ ∈ X is a fixed point of f : X → P(X) iff x∗ ∈ f(x∗).

Example 8. Let X = [0, 1] and let

f(x) =


1 if x < 1/2,

[0, 1] if x = 1/2,

0 if x > 1/2.

Then x∗ = 1/2 is a fixed point of f . �

The Kakutani Fixed Point Theorem, Kakutani (1941), which Kakutani devel-
oped with economic applications in mind, extends the Brouwer Fixed Point Theorem
to handle correspondences. For example, the proof of existence of Nash equilibrium
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in finite games can be done just using Brouwer, but that proof requires some effort
and uses an auxiliary construction. In contrast, the proof based on the Kakutani
Fixed Point Theorem is almost immediate.

To avoid additional complexity, I state the Kakutani Fixed Point Theorem in its
original convex form. As with the Brouwer Fixed Point Theorem, convexity can be
relaxed via homeomorphism.

Say that f is convex-valued iff for every x ∈ X, the set f(x) is convex. Say that
a correspondence f on X has a closed graph iff the set

graph(f) = {(x, y) ∈ X2 : y ∈ f(x)}

is closed as a subset of X2. Any continuous function f has a closed graph.

Theorem 5 (Kakutani Fixed Point Theorem). If X ⊆ RN is non-empty, compact
and convex, then every correspondence f : X → P(X) that is non-empty-valued,
convex-valued, and has a closed graph has a fixed point.

Proof. For each t ∈ {1, 2, . . . }, define the correspondence φt : X → P(X) by, for
any x̂ ∈ X, ŷ ∈ φt(x̂) iff ŷ ∈ X and there is a point (x, y) in the graph of f such
that d((x, y), (x̂, ŷ)) < 1/t. The graph of φt looks like a tube around the graph of
f . The correspondence φt is non-empty valued, convex-valued, and the set given
by the graph of φt is open relative to X ×X. By Michael’s Selection Theorem (on
which, see Border (1985)), there is a continuous function gt : X → X such that for
each x ∈ X, gt(x) ∈ φt(x). gt is called a continuous selection from φt.

By the Brouwer fixed point theorem (and in particular Theorem ??), for each
t, there is a x̂t ∈ X such that gt(x̂t) = x̂t. For each t, by construction of φt and
gt, there is an (xt, yt) in the graph of f such that d((xt, yt), (x̂t, x̂t)) < 1/t. Since
X ×X is compact, there is an x∗ ∈ X such that a subsequence of (x̂t, x̂t) converges
to (x∗, x∗). By the triangle inequality, along this same subsequence, (xt, yt) must
likewise converge to (x∗, x∗). Since the graph of f is closed, (x∗, x∗) is in the graph
of f , hence x∗ ∈ f(x∗), as was to be shown. �

The examples of non-existence of a fixed point under Brouwer provide examples
of non-existence under Kakutani when X is not compact or the graph of f is not
closed (a function is a special case of a corresondence). The important new condition
introduced by Kakutani is that f be convex-valued.

Example 9. Let X = [0, 1] and let

f(x) =


1 if x < 1/2,

{0, 1} if x = 1/2,

0 if x > 1/2.

There is no fixed point. Here, X is compact and f is non-empty valued and has a
closed graph, but it is not convex valued.
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Note that this example is similar to Example 2 in Section 2.3, but f here is a
closed graph correspondence whereas f in Example 2 was a function that did not
have a closed graph. �

Remark 1. Many treatments of Kakutani are stated in terms of f being upper hemi-
continuous and closed valued rather than f having a closed graph. Since f : X → X
and X is compact, the two formulations are equivalent. �

2.5 The Eilenberg-Montgomery Fixed Point Theorem.

The Eilenberg-Montgomery (EM) Fixed Point Theorem generalizes Theorem 3 in
two ways.

• It weakens “X is homeomorphic to a compact, convex set” to “X is an acyclic
absolute neighborhood retract.” I will not give a formal definition of these
terms; see, for example, McLennan (2008).

An example of a compact set that satisfies the EM condition but that is not
homeomorphic to a convex set is the “+” sign.

• EM holds in any metric space, including infinite-dimensional metric spaces.

A paper in which EM plays a critical role is Reny (2011).

Theorem 6 (The Eilenberg-Montgomery Fixed Point Theorem). If a non-empty
metric space X is a compact acyclic absolute neighborhood retract then it has the
fixed point property.

Proof. I don’t know of any easily accessible citations for a proof of this theorem.
The original paper is Eilenberg and Montgomery (1946). A standard citation is
Borsuk (1967). �

Remark 2. Theorem 6 has a variant for correspondences that is analogous to the
Kakutani Fixed Point Theorem (actually, the version for correspondences is the
version originally stated). �

3 The Contraction Mapping Theorem

In this section and the next, I develop two additional fixed point theorems that are
distinct from Brouwer and its relatives. This section focuses on the Contraction
Mapping Theorem, which places only an extremely weak restriction on the domain
but imposes a very strong continuity condition on f . The next, and last, section
focuses on the Tarski Fixed Point Theorem, which states that f has a fixed point if
it is weakly increasing, but not necessarily continuous, provided that the domain is,
loosely, a generalized rectangle (possibly with holes). Both results hold in infinite
dimensional spaces and both have proofs that are relatively easy.
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To motivate the Contraction Mapping Theorem, consider first the case of an
affine function on R: f : R→ R, f(x) = ax+ b where a, b ∈ R. If a 6= 1, then f has
the fixed point

x∗ =
b

1− a
.

(If a = 1 and b = 0 then every point is a fixed point. If a = 1 and b 6= 0 then there
is no fixed point.) Note that the domain of f here is not compact.

The following provides an algorithm for finding x∗. Of course, I already have a
formula for x∗, so I don’t need an algorithm. But the algorithm generalizes, whereas
the formula for x∗ does not.

Suppose first that |a| < 1. Take x0 to be any point in R. Let x1 = f(x0),
x2 = f(x1) = f(f(x0)), . . . . Then xt → x∗. This is easiest to see if b = 0, in which
case x∗ = 0. Then x1 = ax0, x2 = a2x0, . . . , xt = atx0, . . . . Since |a| < 1, at → 0,
which implies xt → 0, as was to be shown. If instead |a| > 1, then simply invert
y = ax+ b to get,

x = f−1(y) =
1

a
y − b

a
.

Take y0 to be any point in R, y1 = f−1(y0), and so on. Since |a| > 1, |1/a| < 1, and
hence yt → y∗ = x∗.

The Contraction Mapping Theorem extends this argument to non-linear func-
tions in arbitrary complete metric spaces. In the case where the domain is R and
the function is differentiable, the analog to the requirement in the affine case that
|a| < 1 is that there is a number c ∈ [0, 1) such that for every x ∈ R,

|Df(x)| ≤ c < 1.

For any x, x̂ ∈ R, the Mean Value Theorem says that there is an xm ∈ (x, x̂) such
that

f(x̂)− f(x)

x̂− x
= Df(xm)

which implies
|f(x̂)− f(x)| ≤ c |x̂− x|.

This motivates the following definition.

Definition 4. Let (X, d) be a metric space. A function f : X → X is a contraction
iff there is a number c ∈ [0, 1) such that for any x̂, x ∈ X,

d(f(x̂), f(x)) ≤ c d(x̂, x).

Theorem 7 (Contraction Mapping theorem). Let (X, d) be a non-empty complete
metric space. Then any contraction f : X → X has a unique fixed point.
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Proof. Take any x0 ∈ X and form the sequence x0, x1 = f(x0), x2 = f(x1) =
f(f(x0)), and so on. It is an easy exercise to show that if f is a contraction then
this sequence is Cauchy. Since X is complete, there is an x∗ ∈ X such that xt → x∗.
Since xt+1 = f(xt), and xt → x∗, this implies that f(xt)→ x∗. Since f is a contrac-
tion, it is (trivially) continuous. Hence f(x∗) = x∗, which establishes that x∗ is a
fixed point. Finally, if x∗ and x̂ are both fixed points then, since f is a contraction,
d(x̂, x∗) ≤ cd(x̂, x∗), which implies that d(x̂, x∗) = 0, which establishes that x∗ is
the unique fixed point. �

Remark 3. If f is invertible and f−1 is a contraction then f−1 has a fixed point,
and hence so does f . �

Example 10. Let X = [0, 1) and f(x) = (1 + x)/2. There is no fixed point. Here, f
is a contraction but X is not complete. �

Example 11. Let X = R and f(x) = x + 1/2. There is no fixed point. Here X is
complete but f is not a contraction. Moreover, although f is invertible, f−1 is not
a contraction either. �

4 The Tarski Fixed Point Theorem

In Example 2 in Section 2.3, a fixed point fails to exist because f is not continuous.
On closer inspection, the problem is that, at the discontinuity, f jumps down. On the
domain [0, 1], one can show that a fixed point must exist if f is weakly increasing,
even if f is highly discontinuous. The Tarski Fixed Point Theorem extends this
intuition to much more general domains.

Let X be a partially ordered set. The canonical example is RN , where x̂ ≥ x iff
x̂n ≥ xn for all n. Thus (3, 3) ≥ (2, 2) but neither (1, 0) ≥ (0, 1) nor (1, 0) ≤ (0, 1).

Given a set S ⊆ X, an upper bound of S in X is an element x ∈ X such that
x ≥ s for all s ∈ S. Say that x is the least upper bound of S in X iff (i) x is an upper
bound of S in X and (ii) if x̂ is an upper bound of S in X then x̂ ≥ x. The least
upper bound, if it exists, is unique since if x and x̂ are both least upper bounds then
x ≥ x̂ and x̂ ≥ x. Lower bounds and greatest lower bounds are defined analogously.

Definition 5. A partially ordered set X is a lattice iff every S ⊆ X consisting of
exactly two elements has a least upper bound and a greatest lower bound in X.

X = RN is a standard example of a lattice.

Example 12. Let,

X = {(0, 0), (0, 1), (1, 0), (1, 1)},
X̂ = {(0, 0), (1, 0), (0, 1), (2, 2)},
X̃ = {(0, 0), (1, 0), (0, 1)}.
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Both X and X̂ are lattices. In particular if S = {(0, 1), (1, 0)}, then the least upper
bound of S in X is (1, 1) while the least upper bound of S in X̂ is (2, 2). On the
other hand, X̃ is not a lattice. �

Remark 4. In the previous example, notice that X̂ is a lattice even though the least
upper bound of S = {(0, 1), (1, 0)} in R2, namely (1, 1), is not an element of X̂. If Z
is a lattice and X ⊆ Z, then X is a sublattice of Z iff for any set S ⊆ X consisting of
two elements, the least upper bound and greatest lower bound of S in Z are also in
X. Thus, in the example above, X is a sublattice of R2 while X̂ is not. Sublattices
are important in some applications but they do not play a role in the Tarski Fixed
Point Theorem. �

Definition 6. A partially ordered set X is a complete lattice iff every non-empty
S ⊆ X has a least upper bound and greatest lower bound in X.

A complete lattice is automatically a lattice. Notice that a complete lattice must
be bounded (take S = X). A complete lattice need not be complete in the metric
space sense (e.g., every Cauchy sequence converges) even when X is a metric space.

Example 13. The set X = [0, 1/2) ∪ {1} is a complete lattice. In particular, the
least upper bound of S = [0, 1/2) is 1. But X is not complete in the metric space
sense. �

Given a partially ordered set X, an interval in X is a set of the form {x ∈ X :
a ≤ x ≤ b}, where a, b ∈ X, a ≤ b. In X = RN , an interval is a rectangle (or
multidimensional analog thereof), with sides parallel to the axes. In Example 13, if
S = X then S is (trivially) an interval in X even though it is not an interval in R.

Intervals are important in part because intervals in complete lattices are them-
selves complete lattices.

Theorem 8. If X is complete lattice, then for any a, b ∈ X with a ≤ b, the interval
{x ∈ X : a ≤ x ≤ b} is a complete lattice.

Proof. Let a, b ∈ X, a ≤ b, and let R = {x ∈ X : a ≤ x ≤ b} (R for “rectangle”).
Consider any S ⊆ R. Since X is complete, S has a least upper bound s∗ ∈ X. I
will show that s∗ ∈ R. Since b is an upper bound for R, b is an upper bound for
S, and hence s∗ ≤ b. Since a is a lower bound for R, a is a lower bound for S, and
hence for any x ∈ S, a ≤ x ≤ s∗. Thus a ≤ s∗ ≤ b, hence s∗ ∈ R. And similarly,
the greatest lower bound of S is in R. Therefore, any S ⊆ R has a greatest lower
bound and a least upper bound in R, and hence R is a complete lattice. �

If X is not complete then an interval in X need not be complete.

Example 14. Suppose that X = [0, 1/2) ∪ (3/4, 1]. Then R = X is an interval in X
that is not complete, since S = [0, 1/2) has no least upper bound in R. �

Finally, a function f : X → X is weakly increasing iff x̂ ≥ x implies f(x̂) ≥ f(x).
Again, since X is only partially ordered, there may be many pairs of x and x̂ for
which this property has no bite.
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Theorem 9 (Tarski Fixed Point Theorem). Let X be a non-empty complete lattice.
If f : X → X is weakly increasing, then the set of fixed points of f is a non-empty
complete lattice.

Before proving the theorem, let me make two remarks. First, the condition that
X is a lattice is extremely general and encompasses many (perhaps most, maybe
even all) settings of economic interest.

Second, as already noted, the conclusion that the set of fixed points, call it P ,
is a complete lattice implies that P has a largest element b∗ and smallest element
a∗. As an example of what P might look like, consider the following.

Example 15. Let X = [0, 1]. Let

f =

{
x if x < 1/2,

1 if x ≥ 1/2

Then P = [0, 1/2)∪{1}. A subtlety here is that P is a complete lattice even though
it is not complete when viewed as a sublattice of [0, 1]. �

Thus, if P ⊆ R then P , even though complete in the lattice theoretic sense,
need not be closed. But the fact that P is complete implies that it must have a
largest (and smallest) element. This rules out the possibility that, for example,
P = [0, 1/2).

Proof of the Tarski Fixed Point Theorem.
Let P denote the set of fixed points. The proof is in two steps.

1. I first show that P is non-empty and has a largest element b∗ and a smallest
element a∗. For many economic applications, this is actually all of Tarski that
is actually used.

Since X is a complete lattice, it has a smallest element, a0 and a largest
element b0. Let

A = {x ∈ X : x ≤ f(x)}.

a0 ∈ A, hence A is not empty. Since X is complete, A has a least upper bound
in X. Call this least upper bound b∗. I will show that b∗ is a fixed point.

I claim first that b∗ ∈ A. To see this, note that for any x ∈ A, since x ≤ b∗

and f is weakly increasing, f(x) ≤ f(b∗). Moreover, since x ∈ A, x ≤ f(x).
Combining inequalities, x ≤ f(b∗). Since this holds for every x ∈ A, this
establishes that f(b∗) is an upper bound of A. Since b∗ is the least upper
bound,

b∗ ≤ f(b∗),

which means that b∗ satisfies the condition for inclusion in A.
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I next claim that is a ∈ A, then f(a) ∈ A. To see this, note that by definition,
if a ∈ A then a ≤ f(a). Since f is weakly increasing, f(a) ≤ f(f(a)), which is
the condition for f(a) ∈ A, which establishes the claim.

This implies, in particular, that since b∗ ∈ A, f(b∗) ∈ A. Since b∗ is an upper
bound for A, this means that

f(b∗) ≤ b∗.

Combining the inequalities in b∗ and f(b∗) yields f(b∗) = b∗: b∗ is a fixed
point.

Moreover, P ⊆ A and hence, since b∗ is an upper bound of A, it is an upper
bound of P : b∗ is the largest fixed point.

A similar argument establishes that the greatest lower bound of B = {x ∈
X : x ≥ f(x)} is also a fixed point. Explicitly, let a∗ be the greatest lower
bound of B. For any x ∈ B, a∗ ≤ x, hence (since f is weakly increasing),
f(a∗) ≤ f(x). Since x ∈ B, f(x) ≤ x, hence f(a∗) ≤ x. Since this holds for
any b ∈ B, f(a∗) is a lower bound of B. Since a∗ is the greatest lower bound,
a∗ ≥ f(a∗), which implies a∗ ∈ B. Moreover, since a∗ ≥ f(a∗) and f is weakly
increasing, f(a∗) ≥ f(f(a∗), which implies f(a∗) ∈ B. Since a∗ is a lower
bound of B, a∗ ≤ f(a∗). Putting all this together, a∗ = f(a∗), hence a∗ ∈ B.
Since P ⊆ B and a∗ is a lower bound of B, a∗ is a lower bound of P : a∗ is the
smallest fixed point.

2. It remains to show that P is, in fact, a complete lattice. Let S be any non-
empty subset of P . I need to show that S has a least upper bound and a
greatest lower bound in P .

Since X is complete, S has a least upper bound s∗ ∈ X. Since S ⊆ P , this
implies s∗ ≤ b∗. Let R = {x ∈ X : s∗ ≤ x ≤ b∗}. By Theorem 8, R is a
complete lattice. I show below that f maps R into itself. Therefore, it follows
by the first step that f has a smallest fixed point in R, call it r∗. I claim that
r∗ is the least upper bound of S in P . It is an upper bound since it is in R.
It is the least upper bound of S in P because it is less than or equal to any
other fixed point in R, and hence less than or equal to any fixed point that
is an upper bound of S. If s∗ happens to be a fixed point then r∗ = s∗. In
Example 15, if S = [0, 1/2) then s∗ = 1/2 while r∗ = 1, so s∗ < r∗.

It remains to show that f maps R into itself. Consider any x ∈ R. Since
f is weakly increasing, x ≤ b∗, and b∗ is a fixed point, f(x) ≤ f(b∗) = b∗.
Similarly, if x ∈ R then x ≥ s∗, hence x ≥ s for all s ∈ S. Therefore, since f
is weakly increasing and every s ∈ S is a fixed point, f(x) ≥ f(s) = s for all
s ∈ S. Hence f(x) is an upper bound of S. Since s∗ is the least upper bound,
f(x) ≥ s∗. Thus, s∗ ≤ f(x) ≤ b∗, hence f(x) ∈ R, as was to be shown.
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The proof that S has a greatest lower bound in P is analogous and I omit it.
Thus, S has least upper bound and greatest lower bound in P . Since S was
arbitrary, it follows that P is a complete lattice.

�

Example 16. Let X = [0, 1] and let

f(x) =

{
1− x/2 if x ≤ 1/2,

1/2− x/2 if x > 1/2.

There is no fixed point. In this case, X is a complete lattice but f is not weakly
increasing. �

Example 17. As in Example 1, let X = [0, 1) and f(x) = (x + 1)/2. There is no
fixed point. Here, f is increasing but X is not a complete lattice. �

As noted in the proof of Theorem 9, since X is a complete lattice it has a largest
element b0 and a smallest element a0. Let a1 = f(a0), a2 = f(a1) = f(f(a0)),
and so on. Similarly, let b1 = f(b0), b1 = f(f(b0)), and so on. Since f maps X
into itself, it must be that a1 ≥ a0 and b1 ≤ b0. Moreover, since a0 ≤ b0 and f is
weakly increasing, a1 ≤ b1. In addition, since a0 ≤ a1 and f is weakly increasing,
f(a0) ≤ f(a1). Moreover, since a∗ ≥ a0, a

∗ is a fixed point, and f is weakly
increasing, a1 = f(a0) ≤ f(a∗) = a∗. By induction, it follows that at ≤ a∗ for all t.
By an analogous argument, bt ≥ b∗ for all t. Therefore,

a0 ≤ a1 ≤ · · · a∗ ≤ b∗ · · · ≤ b1 ≤ b0.

If X is finite then it is easy to see that at → a∗ in the trivial sense that there is
a T such that at = a∗ for all t ≥ T . Similarly bt → b∗. If X is not finite then the
situation is more delicate.

Example 18. Let X = [0, 1/4) ∪ [3/8, 1/2) ∪ {3/4} and let

f(x) =


x/2 + 1/8 if x ∈ [0, 1/4),

x/2 + 4/16 if x ∈ [3/8, 1/2),

3/4 if x = 3/4.

Then a∗ = b∗ = 3/4. Considered as a subset of R, at → 1/4 6= a∗. Moreover, the
least upper bound of {a0, a1, . . . } within X is 3/8, which is not a fixed point. So
there is no sense in which at converges to a fixed point. �
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