Site-Selectively Functionalizing Microelectrode Arrays: The Use of Cu(I)-Catalysts

Site-selective Cu(I)-catalyzed reactions have been developed on microelectrode arrays. The reactions are confined to preselected electrodes on the arrays using oxygen as the confining agent. Conditions initially developed for the Cu(I)-catalyzed click reaction have proven general for the coupling of amine, alcohol, and sulfur nucleophiles to both vinyl and aryl iodides. Differences between reactions run on 1-K arrays and reactions run on 12-K arrays can be attributed to the 1-K array reactions being divided cell electrolyses and the 12-K array reactions being undivided cell electrolyses. Reactions on the 12-K arrays benefit from the use of a non-sugar-derived porous reaction layer for the attachment of substrates to the surface of the electrodes. The reactions are sensitive to the nature of the ligand used for the Cu catalyst.

Jennifer Bartels, Peng Lu, Karl Maurer, Amy V. Walker, and Kevin D. Moeller

Langmuir, 2011, 27 (17), pp 11199–11205