Lunar Meteorite: Queen Alexandra Range 93069 & 94269

paired stones

Queen Alexandra Range 93069 in the field. Photo credit: Ralph Harvey
QUE 93069. The fusion crust is strikingly vesicular (it has gas bubbles) because the meteorite is a regolith breccia. The fusion crust on feldspathic lunar breccias is lighter in color that that on chondrites and basaltic meteorites. The cube is 1 cm square. Photo credit: NASA/JSC
Two views of tiny QUE 94269, which was found a year after QUE 93069. Photo credit: NASA/JSC

Listed in The Meteoritical Bulletin, No. 79

from Antarctic Meteorite Newsletter, vol. 17, No. 2, 1994 (PDF p. 3)

Queen Alexandra Range 93069 (QUE 93069)

Queen Alexandra Range, Transantarctic Mountains, Antarctica

Dimensions (cm): 5.0 x 2.2 x 2.3
Mass: 21.4 g (1 piece)
Weathering: A/B
Fracturing: B

Meteorite Type: Lunar-anorthositic  breccia

Macroscopic Description: Cecilia Satterwhite and Marilyn Lindstrom. The overall shape of this lunar meteorite is approximately one third of a flat ovoid. Thick gray-green frothy fusion crust covers the top while thin granular medium olive green-brown fusion crust covers the bottom. The north face is a fractured surface with exposed interior matrix and abundant fractures. This surface consists of black matrix with abundant millimeter sized white/ gray clasts. Some clasts have weathered to a yellowish color. One gray clast is visible in a fracture. Cleaving this meteorite revealed a lighter gray matrix with small clasts of various sizes. One white, friable clast (3 x 2 mm) is directly below the fusion crust. An area 2 x 2 mm near this clast has a uniform, dusty-gray appearance with an indistinguishable border. All of the clasts present are small and friable and unfortunately may not be extractable.

Thin Section (,5) Description: Brian Mason. The section shows a microbreccia of small plagioclase grains and granular clasts, up to 0.6 mm across, in a translucent to semi-opaque brown glassy matrix; colorless vesicular fusion crust is present on one edge. There is one large clast, 2.4 x 3.6 mm, of pale brown partly devitrified glass. Traces of metallic iron, as irregular grains up to 40 microns, are present. Microprobe analyses show that the plagioclase is almost pure anorthite (Na2O 0.3-0.4%, K2O less than 0.1%). The composition of the fusion crust, probably a reasonable approximation for the bulk meteorite, is (weight percent): SiO2 44, Al2O3 27, FeO 4.4, MgO 4.5, CaO 16, Na2O 0.32, K2O less than 0.1 %, TiO2 0.24, MnO 0.10. The FeO : MnO ratio is high, 44-75, characteristic of lunar material. The meteorite is an anorthositic microbreccia, presumably of lunar origin. In thin section, it is very similar to MAC 88105 (Antarctic Meteorite Newsletter 12(2), 1989).

Listed in The Meteoritical Bulletin, No. 79

from Antarctic Meteorite Newsletter, vol. 18, No. 2, 1995

Queen Alexandra Range 94269 (QUE 94269)

Queen Alexandra Range, Transantarctic Mountains, Antarctica

Dimensions (cm): 1.9 x 1.4 x 1.3
Mass: 3.2 g (1 piece)

Meteorite Type: Lunar-Anorthositic Breccia

Macroscopic Description: Roberta Score. This lunar meteorite is identical to QUE93069 and would probably fit together if QUE93069 was still in one piece. One side of this flat stone has thick gray-green, frothy fusion crust. The other side has thin, weathered, dull green-brown fusion crust. A fractured surface reveals the interior matrix which is dark gray to black with abundant inclusions. The largest inclusion is white and measures 1.0 x 0.2 cm. The newly exposed interior surface has a lighter gray-colored matrix and abundant white and gray clasts. One white clast measures 0.4 x 0.2 cm. Other inclusions present include fine-grained, buff-colored clasts, several brecciated gray clasts, and smaller white clasts. Many clasts have weathered to a yellowish color. As in QUE93069, most of the clasts are small and friable and, unfortunately, are not extractable.

Thin Section (,5 and ,7) Description: Brian Mason. The sections show a microbreccia of granular clasts, up to 1.5 mm across, and small plagioclase grains, in a translucent to semi-opaque brown glassy matrix; one grain of metallic iron, 0.3 mm across, was noted. Most of the plagioclase is almost pure anorthite (Na2O 0.3-0.5%, K2O less than 0.1%), with a few grains with higher Na2O, up to 3.2%. QUE94269,7 has a 3 mm clast of subequal amounts of plagioclase and pyroxene; the plagioclase is anorthite (Na2O 0.3-0.5%), the pyroxene ranges from Wo5Fs39 to Wo34Fs22 with fairly uniform En content. This specimen is a lunar meteorite, very similar to QUE93069 (Antarctic Meteorite Newsletter 17(2), 1994), with which it is certainly paired.

Randy Says…

The regolith (soil) from which QUE 93069/94269 derives had more exposure at the surface of the Moon than that of most regolith breccias. That is why it has such a vesicular fusion crust and high concentrations of iridium from asteroidal meteorites. Compositionally, it is a typical feldspathic lunar meteorite.

More Information

Meteoritical Bulletin Database

QUE 93069 | 94269


ANSMET Location Map


Bischoff A. (1996) Lunar meteorite Queen Alexandra Range 93069: A lunar highland regolith breccia with very low abundances of mafic componentsMeteoritics & Planetary Science 31, 849-855.

Cohen B. A., Swindle T. D., and Kring D. A. (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt agesScience 290, 1754-1756.

Cohen B. A., Swindle T. D., and Kring D. A. (2005) Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment historyMeteoritics & Planetary Science 40, 755-777.

Fritz J. (2012) Impact ejection of lunar meteorites and the age of Giordano BrunoIcarus 221, 1183-1186.

Grier J. A., Kring D. A., and Swindle T. D. (1995) Impact melts and anorthositic clasts in lunar meteorites QUE93069 and MAC88105Lunar and Planetary Science XXVI, 513-514.

Isaacson P. J., Liu Y., Patchen A., Pieters C. M., and Taylor L. A. (2009) Integrated analyses of lunar meteorites: Expanded data for lunar ground truth40th Lunar and Planetary Science Conference, abstract no. 2119.

Isaacson P. J., Liu Y., Patchen A. D., Pieters C. M., and Taylor L. A. (2010) Spectroscopy of lunar meteorites as constraints for ground truth: Expanded sample collection diversity41st Lunar and Planetary Science Conference, abstract no. 1927.

Koeberl C., Kurat G., and Brandstätter F. (1996) Mineralogy and geochemistry of lunar meteorite Queen Alexandra Range 93069Meteoritics & Planetary Science 31, 897-908.

Korotev R. L. (2005) Lunar geochemistry as told by lunar meteoritesChemie der Erde 65, 297-346.

Korotev R. L. and Zeigler R. A. (2014) Chapter 6. ANSMET Meteorites from the Moon, Thirty-five Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection (editors K. Righter, R. P. Harvey, C. M. Corrigan, and T. J. McCoy), 101–130, Special Publications 68, American Geophysical Union, Washington, D. C., 296 pages, ISBN: 978-1-118-79832-4.

Korotev R. L., Jolliff B. L., and Rockow K. M. (1996) Lunar meteorite Queen Alexandra Range 93069 and the iron concentration of the lunar highlands surfaceMeteoritics & Planetary Science 31, 909-924.

Korotev R. L., Jolliff B. L., Zeigler R. A., Gillis J. J., and Haskin L. A. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crustGeochimica et Cosmochimica Acta 67, 4895-4923.

Kring D. A., Hill D. H., and Boynton W. V. (1995) The geochemistry of a new lunar meteorite, QUE93069, a breccia with highland affinitiesLunar and Planetary Science XXVI, 801-802.

Lindstrom M. M., Mittlefehldt D. W., Morris R. V., Martinez R. R., and Wentworth S. J. (1995) QUE93069, a more mature regolith breccia for the Apollo 25th anniversary, In Lunar and Planetary Science XXVI, 849-850.

Nishiizumi K. (2003) Exposure histories of lunar meteorites. Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites, 104.

Nishiizumi K., Caffee M. W., Finkel R. C., and Reedy R. C. (1995) Exposure history of lunar meteorite QUE93069Lunar and Planetary Science XXVI, 1051-1052.

Nishiizumi K., Caffee M. W., Jull A. J. T., and Reedy R. C. (1996) Exposure history of lunar meteorite Queen Alexandra Range 93069 and 94269Meteoritics & Planetary Science 31, 893-896.

Nyquist L. E., Wiesmann H., Shih C.-Y., Dasch J. (1996) Lunar meteorites and the lunar crustal Sr and Nd isotopic compositionsLunar and Planetary Science XXVII, 971-972.

Robinson K. L. and Treiman A. H. (2010) Mare basalt fragments in lunar highlands meteorites: Connecting measured Ti abundances with orbital remote sensing41st Lunar and Planetary Science Conference, abstract no. 1788.

Robinson K. L., Treiman A. H., and Joy J. H. (2012) Basaltic fragments in lunar feldspathic meteorites: Connecting sample analyses to orbital remote sensingMeteoritics & Planetary Science 43, 387-399.

Spettel B., Dreibus G., Burghele A., Jochum K. P., Schultz L., Weber H. W., Wlotzka F., and Wänke H. (1995) Chemistry, petrology, and noble gases of lunar highland meteorite Queen Alexandra Range 93069Meteoritics 30, 581-582.

Thalmann Ch. and Eugster O. (1995) Lunar meteorite QUE 93069: History derived from cosmic-ray-produced and trapped noble gasesMeteoritics 30, 585-586.

Thalmann C., Eugster O., Herzog G. F., Klein J., Krähenbühl U., Vogt S., and Xue S. (1996) History of lunar meteorites Queen Alexandra Range 93069, Asuka 881757, and Yamato 793169 based on noble gas isotopic abundances, radionuclide concentrations, and chemical compositionMeteoritics & Planetary Science 31, 857-858.

Warren P. H. and Kallemeyn G. W. (1995) QUE93069: a lunar meteorite rich in HASP glassesLunar and Planetary Science XXVI, 1465-1466.

Warren P. H., Ulff-Møller F., and Kallemeyn G. W. (2005) “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crustMeteoritics & Planetary Science 40, 989-1014.

Wolf S. F., Wang M.S., and Lipschutz M. E. (2009) Labile trace elements in basaltic achondrites: Can they distinguish between meteorites from the Moon, Mars, and V-type asteroidsMeteoritics & Planetary Science 44, 891–903.