Lunar Meteorite: Dhofar 081 and pairs

Oman

The Dhofar 081 clan consists of paired stones Dhofar 081, 280, 910, & 1224

Schlieren, vesicles, and faces in photomicrographs of a thin section of Dhofar 081. Image credit: Addi Bischoff, Institut für Planetologie, Münster

Dhofar 280. Photo credit: Labenne Meteorites

Dhofar 910. Photo credit: Haberer-Meteorites

Sawn slice of Dhofar 081 with millimeter ticks for scale. Photo credit: Randy Korotev

Sawn slice of Dhofar 280 with millimeter ticks for scale. Photo credit: Randy Korotev

Sawn slice of Dhofar 910 with millimeter ticks for scale. Photo credit: Randy Korotev

A different sawn slice of Dhofar 910 with millimeter ticks for scale. Photo credit: Randy Korotev

from The Meteoritical Bulletin, No. 85

Dhofar 081

Oman
Found: 1999 November 29
Mass: 174 g (1 piece)

Lunar meteorite (feldspathic fragmental breccia)

A brownish gray stone of 174 g covered by fusion crust was found in the Dhofar region of Oman.

Classification and description (A. Greshake, MNB): a feldspathic fragmental breccia consisting of clasts of various lithologies embedded into a devitrified fine-grained matrix; schlieren and vesicles are abundant; feldspar, An96.5-99.5; pyroxene, Fs21.9-46.2 Wo3.0-41.4; olivine, Fa29.3-47.8; augites are more abundant than Ca-poor pyroxenes and often contain pigeonite exsolution lamellae; accessory phases are Fe-Ni metal, ilmenite, and Ti-Cr-rich spinel; crystalline fragments include large gabbroic anorthosites, high-Al highland basalts, microporphyritic impact melt breccias, dark fine-grained impact melt breccias, and large cataclastic feldspar; no regolith components, e.g., glass spherules, have been identified; low bulk concentrations of MgO and FeO reflect low abundance of mafic components.

Specimens: 19.8 g plus two thin sections, MNB; several grams, Mün; main mass with anonymous finder.

from The Meteoritical Bulletin, No. 85

Dhofar 280

Oman
Found: 2001 April 1
Mass: 251.2 g (1 piece)

Lunar meteorite (anorthositic fragmental breccia)

A gray stone weighing 251.2 g was found in the Dhofar region of Oman.

Classification and mineralogy (M. Nazarov, Vernad): fusion crust present; meteorite is a clast-rich fragmental breccia containing numerous mineral fragments and clasts of feldspathic rocks embedded in a glass-rich matrix; schlieren and vesicles are abundant; feldspar, An91-98; pyroxene, En58-75Wo4-5; olivine, Fo60-77 (Fe/Mn~99 atomic); accessory minerals are Ti-rich chromite, ilmenite, troilite, and Fe-Ni metal; terrestrial weathering not significant.

Dhofar 081 and Dhofar 280 are probably paired because the stones were found close to one another and are similar in texture and mineral chemistry.

Specimens: type specimen, 50 g plus two sections, Vernad; main mass with anonymous finder.

from The Meteoritical Bulletin, No. 88 (Table 5)

Dhofar 910

  lunar rock type date found mass
(g)
number
of pieces
An Fa Fs
Dhofar 908 breccia ? Jan 2003 245 9 93-99 31±9 27±7.5
Dhofar 909 breccia 2 Feb 2003 3.9 1 94-98 26.5±5 24±5
Dhofar 910 breccia, 142 g (1 piece)   142 1 94-100 34±9 30±7
Dhofar 911 breccia   194 9 93-98 26±3 22±5
Dhofar 1084   10 Apr 2003 90 1 92-98 43±5 30±9
Dhofar 1085   1 Oct 2003 197 4 93-99 34±10 31±8

from The Meteoritical Bulletin, No. 89

Dhofar 1224

Oman
Found: 2003 September 28
Mass: 4.57 g (1 piece)

Lunar meteorite (feldspathic regolith breccia)

One 4.57 g stone, partly covered with fusion crust, was found by an anonymous prospector near the find locations of the lunar meteorites Dho 081/280/910 and Dho 302/908/1085 on a desert plateau near Wadi Quitbit, Dhofar, Oman. It was subsequently purchased by N. Classen.

Classification and mineralogy (A. Irving and S. Kuehner, UWS): glass-rich, melt-matrix highland regolith breccia containing sparse, small mineral and lithic clasts. Minerals include exsolved pigeonite, augite (Fs21.4Wo38.3 to Fs24.1Wo35.0, FeO/MnO = 54.5 – 60.7), orthopyroxene (Fs27.6Wo9.4 to Fs37.1Wo3.0, FeO/MnO = 49.8 – 50.1), olivine (Fa27.3-46.7, FeO/MnO = 80-105), anorthite (An99.5-99.6), metal (10 wt.% Ni and 40 wt.% Ni), ilmenite, Ti-Al-bearing chromite and troilite. The largest lithic clast is a troctolite composed of olivine+anorthite+ilmenite. This specimen is probably paired to Dho 081, Dho 280 and Dho 910 found nearby.

Specimens: type specimen, 1.19 g, and one polished thin section, UWS; main mass, Classen.

Randy Says…

The Dhofar 081 clan is one of the most vesicular of lunar meteorites. Compositionally, it’s a typical feldspathic lunar meteorite.

More Information

Meteoritical Bulletin Database

Dhofar 081 | 280 | 910 | 1224

Map

Schematic Map of  Find Locations of  Lunar Meteorite from Oman

References

Anand M., Taylor L. A., Patchen A., Cahill J., and Nazarov M. A. (2002) New minerals from a new lunar meteorite, Dhofar 280Lunar and Planetary Science XXXIII, abstract no. 1653.

Anand M., Taylor L. A., Nazarov M. A., Shu J., Mao H.-K., and Hemley R. J. (2004) Space weathering on airless planetary bodies: clues from the lunar mineral hapkeiteProceedings of the National Academy of Sciences 101, abstract no. 18, 6847-6851.

Bischoff A. (2001) Fantastic new chondrites, achondrites, and lunar meteorites as the result of recent meteorite search expeditions in hot and cold desertsEarth, Moon and Planets 85-86, 87-97.

Cahill J.T., Taylor L.A., Anand M., Patchen A., and Nazarov M.A. (2002) Mineralogy, petrography, and geochemistry of lunar meteorite Dhofar 081: New developmentsLunar and Planetary Science XXXIII, abstract no. 1351.

Cahill J. T., Floss C., Anand M., Taylor L. A., Nazarov M. A., and Cohen B. A. (2004) Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and Dar al Gani 400Meteoritics & Planetary Science 39, 503-530.

Cao H. J., Chen J., Fu X. H., and Ling Z. C. (2020) A petrological and geochemical analysis of lunar feldspathic meteorite Dhofar 910. 51st Lunar and Planetary Science Conference, abstract no. 1336

Cohen B. A. (2005) More impact-melt clasts in feldspathic lunar meteorites. 68th Annual Meeting of the Meteoritical Society, abstract no. 5314.

Cohen B. A. (2008) Lunar meteorite impact melt clasts and lessons learned for lunar surface samplingLunar and Planetary Science XXXIX, abstract no. 2532, 39th Lunar and Planetary Science Conference.

Consolmagno G. J., Russell S. S., and Jeffries T. E. (2004) An in-situ study of REE abundances in three anorthositic impact melt lunar highland meteoritesLunar and Planetary Science XXXV, abstract no. 1370.

Demidova S. I., Nazarov M. A., Lorenz C. A., Kurat G., Brandstätter F., and Ntaflos Th. (2007) Chemical composition of lunar meteorites and the lunar crustPetrology 15 (4), 386-407.

Fernandes V. A., Anand M., Burgess R., and Taylor L. A. (2004) Ar-Ar studies of Dhofar clast-rich feldspathic highland meteorites: 025, 026, 280, 303Lunar and Planetary Science XXXV, abstract no. 1514.

Fritz J. (2012) Impact ejection of lunar meteorites and the age of Giordano BrunoIcarus 221, 1183-1186.

Greshake A., Schmitt R. T., Stöffler D., Pätsch M., and Schultz L. (2001) Dhofar 081: A new lunar highland meteoriteMeteoritics & Planetary Science 36, 459-470.

Hidaka H., Nishiizumi K., Caffee M., and Yoneda S. (2019) Samarium isotopic compositions of lunar meteorites. 82nd Annual Meeting of the Meteoritical Society, abstract no. 6279.

Korochantseva E. V., Buikin A. I., Hopp J., Korochantsev A. V., and Trieloff M. (2015) Thermal history of lunar meteorite Dhofar 280. 46th Lunar and Planetary Science Conference, abstract no. 2136.

Korochantseva E. V., Buikin A. I., Hopp J., Korochantsev A. V., Ott U. and Trieloff M. (2015) Irradiation history of lunar meteorite Dhofar 280. 46th Lunar and Planetary Science Conference, abstract no. 2158.

Korochantseva E. V., Buikin A. I., Hopp J., Korochantsev A. V., and Trieloff M. (2016) 40Ar-39Ar results of lunar meteorites Dhofar 025, 280, 309, 730, 733, 1436, 1442, SaU 449, NWA 6888. 79th Annual Meeting of the Meteoritical Society, abstract no. 6317.

Korotev R. L. (2005) Lunar geochemistry as told by lunar meteoritesChemie der Erde 65, 297-346.

Korotev R. L. (2006) New geochemical data for a some poorly characterized lunar meteoritesLunar and Planetary Science XXVII, abstract no. 1404.

Korotev R. L. (2012) Lunar meteorites from OmanMeteoritics & Planetary Science 47, 1365-1402.

Korotev R. L. (2013) Siderophile elements in brecciated lunar meteorites44th Lunar and Planetary Science Conference, abstract no. 1028.

Korotev R. L. (2017) Update (2012–2017) on lunar meteorites from OmanMeteoritics & Planetary Science 52, 1251-1256.

All Korotev data on Omani lunar meteorites.

Korotev R. L., Irving A. J., and Bunch T. E. (2008) Keeping up with the lunar meteorites – 2008Lunar and Planetary Science XXXIX, abstract no. 1209.

Lorenzetti S., Busemann H., and Eugster O. (2005) Regolith history of lunar meteoritesMeteoritics & Planetary Science 40, 315-327.

Macke R. J., Kiefer W. S., Britt D. T., Irving A. J., and Consolmagno G. J. (2011) Densities, porosities and magnetic susceptibilities of meteoritic lunar samples: Early results42nd Lunar and Planetary Science Conference, abstract no. 1986.

Macke R. J., Britt D. T., and Consolmagno G. J. (2011) Density, porosity and magnetic susceptibility of achondritic meteoritesMeteoritics & Planetary Science 46, 311-326.

Nazarov M. A., Badyukov D. D., Lorents K.A., Demidova. S. I. (2004) The flux of lunar meteorites onto the EarthSolar System Research 38, 49-58.

Nazarov M. A., Demidova S. I., Ntaflos Th., and Brandstaetter F. (2014) Origin of native silicon and Fe-silicides in lunar rocks. 45th Lunar and Planetary Science Conference, abstract no. 1090.

Nishiizumi K. (2003) Exposure histories of lunar meteorites. Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites, 104.

Nishiizumi K. and Caffee M. W. (2006) Constraining the number of lunar and martian meteorite falls. 69th Annual Meeting of the Meteoritical Society, abstract no. 5368.

Nishiizumi K., Hillegonds D. J., McHargue L. R., and Jull A. J. T. (2004) Exposure and terrestrial histories of new lunar and martian meteorites, In Lunar and Planetary Science XXXV, abstract no. 1130.

Rochette P., Gattacceca J., Ivanov A. V., Nazarov M. A., and Bezaeva N. S. (2010) Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samplesEarth and Planetary Science Letters 292, 383-391.

Russell S. S., Joy K. H., Jeffries T. E., Consolmagno G. J., and Kearsley A. (2014) Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean modelPhilosophical Transactions of the Royal Society A 372: 20130241. http://dx.doi.org/10.1098/rsta.2013.0241

Shukolyukov Y. A., Nazarov M. A., Pätsch M., and Schultz L. (2001) Noble gases in three lunar meteorites from OmanLunar and Planetary Science XXXII, abstract no. 1502.

Shukolyukov Y. A., Nazarov M. A., and Ott U. (2004) Noble gases in new lunar meteorites from Oman: Irradiation history, trapped gases, and cosmic-ray exposure and K-Ar ages. Geochemistry International 42, 1001-1017.

Warren P. H., Taylor L. A., Kallemeyn G., Cohen B. A., Nazarov M. A. (2001) Bulk-compositional study of three lunar meteorites: Enigmatic siderophile element results for Dhofar 026Lunar and Planetary Science XXXII, abstract no. 2197.

Warren P. H., Ulff-Møller F., and Kallemeyn G. W. (2005) “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crustMeteoritics & Planetary Science 40, 989-1014.

Lunar Meteorites | List of Lunar meteorites