Lunar Meteorite: Calcalong Creek

Slices of Calcalong Creek. Photo credits: Robert Haag (left) and David Kring (right)
Two (?) slices of Calcalong Creek. Note the vesicular fusion crust. Photo credit: Jim Strope
Two sides of a 0.25-g slice of Calcalong Creek. Millimeter ticks. Photo credit: Luc Labenne
Outside and inside of a 0.21-g piece of Calcalong Creek. Note the vesicular fusion crust. Thanks to Dolores Hill for the sample. Image credit: Randy Korotev
Photomicrograph of a thin section (field of view: 1.1 cm across). Most of the clasts are grains of plagioclase and pyroxene. Image credit: Dolores Hill (Figure 1a from Hill & Boynton, 2003). There are no vesicles in the interior of the meteorite.

from The Meteoritical Bulletin, no. 71

Calcalong Creek

Wiluna District, Western Australia, Australia
Found: after 1960
Mass: 19 g (1 piece)

Lunar meteorite

History: A stone of 19 g was found by an Aborigine meteorite hunter in the Millbillillie strewnfield.

Physical Characteristics: It has a complete fusion crust, the interior shows a microbreccia with white angular clasts in a dark matrix (impact melt breccia, calculated from the bulk analysis: 50% anorthosite, 20% KREEP, 15% Luna- 16 type low-Ti mare basalt and 15% Sc-Cr-V components).

Information and analysis: Fe/Mn = 73-78, KREEP pattern of REE, Dolores H. Hill, Lunar Planetary Laboratory, University of Arizona, Tucson AZ 85726, USA. See also, D. H. Hill, W. V. Boynton and R. A. Haag, Nature, 1991, in press.

Specimens: The main mass is with Robert Haag, P. O. Box 27527, Tucson, AZ 85726, USA

Randy Says…

Because Calcalong Creek is a regolith breccia, it has a vesicular fusion crust, as do some lunar meteorites from Antarctica. The vesicles form from release of solar-wind implanted gases during the heating melting of the exterior associated with atmospheric entry.

The meteorite is compositionally distinct from Lynch 002, the only other lunar meteorite from Australia, but similarly rich in incompatible elements like Th.  The two Australian lunar meteorites were found 859 km apart.

More Information

Meteoritical Bulletin Database

Calcalong Creek

References

Calzada-Diaz A., Joy K. H., Crawford I. A., Spratt J. and Strekopytov S. (2015) Geochemical analysis and possible launch sites of lunar breccias Miller Range 090036 and Miller Range 090070. 46th Lunar and Planetary Science Conference, abstract no. 1585.

Calzada-Diaz A., Joy K. H., Crawford I. A., Spratt J., and Strekopytov S. (2017) The petrology, geochemistry, and age of lunar regolith breccias Miller Range 090036 and 090070: Insights into the crustal history of the MoonMeteoritics & Planetary Science 52, 3–23.

Hill D. H. and Boynton W. V. (2003) Chemistry of the Calcalong Creek lunar meteorite and its relationship to lunar terranesMeteoritics & Planetary Science 38, 595-626.

Hill D. H., Boynton W. V., and Haag R. A. (1991) A lunar meteorite found outside the AntarcticNature 352, 614-617.

Hill D. H., Marvin U. B., and Boynton W. V. (1995) Clasts from the Calcalong Creek lunar meteoriteLunar and Planetary Science XXVI, 605-606.

Korotev R. L. and Zeigler R. A. (2014) Chapter 6. ANSMET Meteorites from the Moon, Thirty-five Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection (editors K. Righter, R. P. Harvey, C. M. Corrigan, and T. J. McCoy), 101–130, Special Publications 68, American Geophysical Union, Washington, D. C., 296 pages, ISBN: 978-1-118-79832-4.

Korotev R. L., Jolliff B. L., and Carpenter P. K. (2011) Miller Range feldspathic lunar meteorites42nd Lunar and Planetary Science Conference, abstract no. 1999.

Liu Y., Patchen A., and Taylor L. A. (2011) Lunar highland breccias MIL 090034/36/70/75: A significant KREEP component42nd Lunar and Planetary Science Conference, abstract no. 1261.

McIntosh E. C., Day J. M. D., and Liu Y. (2018) Insights into impactor populations striking the moon from melt coat and regolith meteorite compositions. 49th Lunar and Planetary Science Conference, abstract no. 1022.

Miao B., Chen H., Xia Z., Xie L., and Yao J. (2013) The type, occurrence and origin of symplectites in lunar meteorites. 76th Annual Meeting of the Meteoritical Society, abstract no. 5234.

Nishiizumi K. and Caffee M. W. (2013) Relationships among six lunar meteorites from Miller Range, Antarctica based on cosmogenic radionuclides44th Lunar and Planetary Science Conference, abstract no. 2715.

Park J., Nyquist L. E., Shih C.-Y., Herzog G. F., and Yamaguchi A., Shirai N., Ebihara M., Lindsay F. N., Delaney J., Turrin B., and Swisher III C. (2013) Late bombardment of the lunar highlands recorded in MIL 090034, MIL 090036 and MIL 090070 lunar meteorites44th Lunar and Planetary Science Conference, abstract no. 2576.

Pernet-Fisher J. F., Nottingham M., Curran N. M. , and Joy K. H. (2020) Cosmic-ray exposure histories of Th-rich lunar regolith breccias. 51st Lunar and Planetary Science Conference, abstract no. 1376.

Shirai N., Ebihara M., Sekimoto S., Yamaguchi A., Nyquist L., Shih C.-Y., Park J., and Nagao K. (2012) Geochemistry of lunar highland meteorites MIL 090034, 090036 and 09007043rd Lunar and Planetary Science Conference, abstract no. 2003.

Xie L., Chen H., Miao B., Xia Z., and Yao J. (2014) Petrography and mineralogy of new lunar meteorite MIL090036Advances in Polar Science 25, 17-25.

Zeigler R. A., Korotev R. L., and Jolliff B. L. (2012) Pairing relationships among feldspathic lunar meteorites from Miller Range, Antarctica43rd Lunar and Planetary Science Conference, abstract no. 2377.