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Precision functional MRI has enabled identification of

individual-specific network configurations. A comparison of

these individual-specific maps with group-average maps has

yielded novel insights into network organization of memory-

related brain systems. For example, the default mode network

was previously thought to be comprised of three subsystems,

but precision fMRI has demonstrated that one of those three

subsystems may have arisen as an artifact of group averaging.

Further, understanding of a second network—the parietal

memory network—has been enhanced through precision fMRI.

Specifically, one of the three canonical regions of this

network—the posterior inferior parietal lobule—is identifiable

within only about half of participants using current methods. In

addition, ‘network variants’ have been identified, which are the

existence of islands of network membership outside the typical

configuration or regions that do not fall within the typical

network assignment. The behavioral significance of such

variants remains a topic for future consideration.
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Introduction
The advent of neuroimaging enabled researchers to study

brain-behavior relationships in vivo. With the development
Current Opinion in Behavioral Sciences 2021, 40:52–57 
of fMRI, researchers gained access to improved spatial and

temporal resolution over positionemission tomography and

could study cognitive neuroscientific questions with

greater specificity. In a typical experiment, fMRI research-

ers collect relatively small quantities of data across a mod-

erate number of participants; the participants are assumed

to be a homogenous group, and data are analyzed via

averaging across participants. This approach has proven

remarkably successful, and researchers have made great

strides in understanding how the functional networks of a

typical brain support a multitude of cognitive processes. At

the same time, group averaging prohibits meaningful

explorations of individual participants’ functional neuro-

anatomy. Hence, a limitation in the clinical and theoretical

utility of much fMRI research is its inability to explore

individual variability across people.

In contrast to this standard approach, there is an emerging

trend to obtain large quantities of data on a small number of

individual people with the goal of better capturing and

characterizing individual variability. This approach has

come to be known as precision fMRI (or precision func-

tional mapping). The first such attempt was performed by

Russ Poldrack, who obtained fMRI data on himself once

per week for over a year [the MyConnectome project; 1,2�].
More recently, research groups at Washington University

[3; https://openneuro.org/datasets/ds000224] and Harvard

University [4�,5,6�] have separately obtained many hours of

both task and rest fMRI data per participant to better

understand the functional organization of single individu-

als. Analyses resulting from these datasets have already

documented potential clinical implications [e.g., 7�,8–10,
also discussed by Buckner and DiNicola 11] in addition to

informing basic science.

The current review covers what we have learned from

precision fMRI with respect to neural systems thought to

support human memory. By necessity, it also focuses on

the neocortex; the hippocampus is currently a glaring

omission from the emerging precision functional mapping

literature, despite the structure’s central role in memory.

Although much of the brain may very well contribute to

human memory function, there are two memory-related

systems that have been particularly well informed by the

shift to precision fMRI: the ‘default mode network’

[‘DMN’, 12,13], which is strongly associated with vivid

recall and ‘mentalizing’ (social cognition and theory of

mind) among other processes; and the smaller and adja-

cent ‘parietal memory network’ [‘PMN’, 14,15], which

appears important for orienting toward and recognizing
www.sciencedirect.com
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recently encountered or familiar stimuli. For both net-

works, precision fMRI has provided not just complemen-

tary, but also unexpected, findings based on what was

known from the extant literature that is built on group-

averaged data.

Group averaging may have fundamentally
mischaracterized the organization of the
default mode network
The DMN was first characterized as a large and largely

singular processing entity, notable because regions within

it tend to deactivate (relative to resting baseline) across a

range of tasks that require externally directing one’s

attention [e.g., 16,17]. However, researchers soon recog-

nized functional heterogeneity within the network, and a

number of fMRI studies have, since the DMN was first

described, suggested it to be composed of three distinct

subsystems, each consisting of multiple, distributed

regions [18–21]. The two cognitive domains generally

associated with the default mode network are associated

with two of its putative subsystems: episodic recall is

thought to be supported by the ‘medial temporal lobe

subsystem’, which consists primarily of the parahippo-

campal cortex, ventral medial parietal/parietal occipital

sulcus, and posterior angular gyrus (Figure 1a, green).

Rather than being restricted to episodic recall, this system

(which is also described separately from the default mode

network using terms such as ‘scene construction’ [22] or
Figure 1

(a) (b)
DORSAL MEDIAL SUBSYSTEM

MEDIAL TEMPORAL SUBSYSTEM

CORE

Precision functional mapping has led to a revised understanding of the orga

studies suggested a ‘3-subsystem’ model of DMN organization [18,20], with

medial temporal subsystem (which sometimes described as a ‘scene const

subsystem acting as a central hub that also supports self-referential proces

associated with each subsystem. Figure panel adapted from Andrews-Hann

observe a large, anatomically interposed ‘core’ [4�,5]. Rather, these studies

variability, arising from juxtaposition and interdigitation of the other two sub

proximity between the two networks. Figure panel adapted from Braga and
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‘contextual association’ [23]) appears critical for any task

that requires one to mentally construct a rich spatial

context [for related ideas and discussion, see Ref. 24].

Mentalizing, in contrast, is associated with a ‘dorsal

medial’ subsystem that consists of lateral and anterior

temporal cortex, aspects of the posterior cingulate cortex,

lateral and anterior frontal cortex, and other regions

(Figure 1a, blue). These regions have been described

by some as forming the ‘social brain’ [e.g., 25,26] and

seem to provide broad access to socially relevant memory

and knowledge. The ‘core’ subsystem (Figure 1a, yel-

low), anatomically interposed between the two, has been

theorized to support self-referential processing as well as

mediating information exchange between the two sub-

networks [18].

The multifaceted nature of DMN organization and the

diversity of the functions with which it has been

associated might lead one to consider it a prime target

for precision fMRI research. This expectation has

been borne out, albeit not for a reason many would

have considered likely: rather than identifying and

offering novel insights into the three DMN subsys-

tems, precision fMRI has instead led to the observa-

tion that the ‘core’ network is not readily identified at

the individual level. In contrast, networks correspond-

ing to the other two subsystems have been readily

identified [3,4�,5,6�,28�]; these same experiments
Current Opinion in Behavioral Sciences 
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indicated that the two observable systems were paral-

lel, interdigitated, and variable in location across indi-

viduals (Figure 1b). Furthermore, analysis of BOLD

responses during theory of mind or episodic projec-

tion/scene construction tasks revealed a within-subject

functional double-dissociation [6�], as would be

expected from prior characterizations of the dorsal

medial and medial temporal subsystems. Recent work

based on intracranial recordings has reached substan-

tially similar conclusions [29].

Where, then, is the ‘core’? It appears that, when aver-

aging highly and idiosyncratically interdigitated net-

works across individuals, the resulting blurring pro-

duces a ‘phantom’ third network. The same blurring

that gave rise to the apparent network could also

produce activity profiles that could easily be inter-

preted as coordinating activity between the two remain-

ing networks.
Figure 2

(a)

(c)

(e)

Precision functional mapping has identified network variants that are not pr

individuals. (a) An average network community map generated from the Mid

network, and regions of the parietal memory network (PMN) represented in 

PMN network variants emerge (i.e., the network structure looks much like th

such as the precuneus may be missing or shifted far outside their expected

along the paracentral lobule, dorsal anterior cingulate, and anterior medial p

typical midline PMN regions as well as variant locations. (e) An analysis of c

revealed anatomically consistent variant PMN locations in frontal, parietal, a

represent the percentage of HCP participants with a PMN network variant i

represent centers of mass for variant clusters. Figure panels adapted from 
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Precision fMRI has suggested that key hypotheses guiding

our understanding of the organizational hierarchy of the

DMN should be revised. While there will doubtless be

many downstream ripples of such revision, fundamental

questions may become more directly addressable, if only

due to improvements in functional-anatomic mapping.

One such question concerns the relation of episodic and

semantic memory [30], which has re-emerged as a topic of

interest [e.g., 31,32]. To what degree are these hypotheti-

cally distinct (yet related) systems truly separable? One

recent source of concern has been the widespread anatom-

ical overlap between regions associated with episodic and

semantic retrieval, which appear to overlap strongly with

default network regions [recently discussed by Renoult and

Rugg 33]. Is such overlap also present within single indi-

viduals? By understanding the similarities and differences

in their neural correlates, we can leverage knowledge about

the brain to inform understanding of how episodic and

semantic memory may relate to one another.
(b)

(d)
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Individuals possess network variants that
involve additional, missing, and/or shifted
functional regions commonly associated with
memory-related networks
Precision fMRI [2�] experiments have frequently empha-

sized that a single individual may possesses ‘islands’ of a

given network in locations that that do not exist at the

group level [Figure 2; see also 34], echoing observations

in earlier studies that focused on individual-specific func-

tional localization [35–37]. By the same token, it has since

become clear that specific regions that are present in the

group (Figure 2c) may be absent within individual parti-

cipants (or at least, may not observed using current

approaches). Such additions and deletions have come

to be known as ‘network variants’ [7�]; these variants

are stable within individuals, and precision fMRI has

revealed striking variant patterns in the PMN.

For example, it appears that only about 50% of partici-

pants possess identifiable PMN regions in the pIPL/dAG

[38], which group studies have suggested as one of three

primary regions that compose the network [14,39,40].

Similar results were obtained in analyses of human con-

nectome project data [34] in a study that also identified

variant locations in the dorsal anterior cingulate cortex/

medial prefrontal cortex (�30% of participants), fronto-

polar cortex (�20% of participants), and adjacent to the

paracentral lobule (�15% of participants) (Figure 2e).

What is to be made of these observations? It seems

reasonable to hypothesize (if one assumes that absent

regions are missing, and not simply undetectable given

current acquisition and analysis limitations) that informa-

tion processing should be impacted in cases where parti-

cipants have more or fewer regions within a network than

is typical. Intriguing work in line with this possibility was

recently reported by Seitzman et al. [7�], who examined

broader behavioral associates with network variants.

Using a combination of MSC and HCP data, the authors

were able to cluster participants according to patterns of

variation and identify small, but appreciable, links

between clustered subgroups and standard measures of

life-experience positivity or drug use history. A similar

analysis, conducted with a more targeted focus on mem-

ory abilities, may provide insight into how the presence or

absence of regions within a given network can influence

an individual’s encoding or retrieval abilities.

In the case of the PMN, activity in the network appears to

reflect a combination of the perceived familiarity of a

given stimulus (i.e., the degree to which one is aware of

prior experience(s) with a person, object, etc.), as well as

the salience of the familiarity signal (e.g., the degree to

which it is task relevant or otherwise captures one’s

attention) [14,41]. Repeated presentations of a stimulus

produce repetition enhancement in the PMN (in the case

of the precuneus, such increases can be observed across
www.sciencedirect.com 
60 stimulus presentations under certain conditions [42]),

and network activity is further amplified when one

engages in explicit (as compared to incidental) item

recognition [43] or when one is repeatedly tested on a

particular set of stimuli [39]. One might thus imagine that

individuals with variant PMN locations that fall in dorsal

anterior cingulate cortex—a region commonly associated

with cognitive control and attention—may show differ-

ential sensitivity relative to those without a variant in this

location to manipulations involving the salience of a

stimulus. On the other hand, participants who lack a

PMN region in canonical locations such as the precuneus

may demonstrate relatively less sensitivity to manipula-

tions of stimulus familiarity. These possibilities, while

speculative, can motivate future work that seeks to better

understand both the processes behind basic memory

phenomena, and the large-scale neural systems with

which memory has become associated.

Conclusion
Multiple functional networks exist that seem to be impor-

tant in supporting memory function, including the DMN

(which may more accurately be considered two distinct

networks) and PMN. At this point, we have a broad

understanding of what differentiates these networks

and have data to support their role in self-referential

components of remembering: mentalizing (dorsal medial

system), memory strength that can be bolstered by atten-

tion mechanisms (PMN), and processing of scenes or

spatial context that accompany memories from our past

(medial temporal system/scene construction/contextual

association network). Precision fMRI affords the oppor-

tunity to more accurately localize these networks and

their subcomponents, which in the end will yield a richer

understanding of the processes occurring within each

region of each network and to identify these locations

appropriately in each participant. Failure to do so will

inevitably lead to functional accounts of these networks

that miss the mark or invite additional networks to be

explored that only exist in the average brain.
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42. Brodt S, Pöhlchen D, Flanagin VL, Glasauer S, Gais S,
Schönauer M: Rapid and independent memory formation in
the parietal cortex. Proc Natl Acad Sci U S A 2016, 113:13251-
13256.

43. Gilmore AW, Kalinowski SE, Milleville SC, Gotts SJ, Martin A:
Identifying task-general effects of stimulus familiarity in
the parietal memory network. Neuropsychologia 2019,
124:31-43.
Current Opinion in Behavioral Sciences 2021, 40:52–57

http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0155
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0155
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0155
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0160
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0160
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0160
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0160
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0165
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0165
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0165
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0170
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0170
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0170
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0170
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0175
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0175
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0175
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0180
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0180
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0180
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0185
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0185
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0185
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0190
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0190
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0190
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0190
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0195
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0195
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0195
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0200
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0200
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0200
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0200
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0205
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0205
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0205
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0210
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0210
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0210
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0210
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0215
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0215
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0215
http://refhub.elsevier.com/S2352-1546(21)00003-6/sbref0215

	Precision functional mapping of human memory systems
	Introduction
	Group averaging may have fundamentally mischaracterized the organization of the default mode network
	Individuals possess network variants that involve additional, missing, and/or shifted functional regions commonly associat...
	Conclusion
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


