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Hutchinson’s (1959) “Homage to Santa Rosalia or
Why Are There so Many Kinds of Animals?”’, coupled
with MacArthur and Levins’ (1967) theory of limiting
similarity, established the idea that competition pre-
vents coexistence of species that are morphologically
too similar (see also Carothers [1986]). Subsequently,
numerous authors have reported either that the ratio
of sizes of adjacent species in a size-ordered assemblage
tends toward constancy or that all ratios exceed some
minimum “limiting similarity.”

Simberloff and Boecklen (1981) constructed null
models to test 28 claims in the literature that species
assemblages exhibited either unusual constancy or un-
usually large minimum ratios. In most cases, they found
that observed size-ratio distributions were indistin-
guishable from those generated by the null model. Their
paper has been widely cited in support of the position
that little evidence exists for such “Hutchinsonian ra-
tios.”

Like many tests of null models proposed in the com-
petition debate (see Grant and Abbott, 1980; Diamond
and Gilpin, 1982; Case, 1983; Case and Sidell, 1983;
Colwell and Winkler, 1984; Schoener, 1984), the meth-
ods used by Simberloff and Boecklen (1981) have been
criticized for deficiency of statistical power (see Toft
and Shea, 1983). In other words, the conjecture is that
they may err too strongly on the side of accepting the
null hypothesis when it is false (i.e., they commit fre-
quent type-II errors). In the case of size ratios, sets of
ratios that are more constant than expected by chance
and minimum ratios that are larger than expected by
chance would wrongly be declared merely random at
an unacceptably high rate.

In this note, we confirm this conjecture and reanalyze
Simberloff and Boecklen’s (1981) findings by combin-
ing results from samples within studies, thereby in-
creasing statistical power. We will show that evidence
for Hutchinsonian ratios is, in many cases, quite strong,
even on the basis of Simberloff and Boecklen’s own
tests.

Combining Results from Samples Within Studies

Under appropriate circumstances, results from in-
dependent tests of the same hypothesis may be com-
bined (Sokal and Rohlf, 1981 pp. 779-782), which
effectively increases sample size while avoiding the
doubtful tactic of directly pooling data of diverse origins.
Here, we apply this procedure to the results reported
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by Simberloff and Boecklen (1981) from their tests for
unusual constancy of morphological size ratios and
unusually large minimum size ratios in assemblages of
co-occurring species.

Constancy of Size Ratios. —When co-occurring
species are ordered by body size, are the size ratios
between adjacent species unexpectedly constant? Sim-
berloff and Boecklen (1981) analyzed data from the
literature to answer this question. To determine wheth-
er the data support a claim of ratio constancy, they
employed the Barton-David statistic (Barton and Da-
vid, 1956) to compare three sets of size ratios (smallest
vs. largest, smallest vs. second-largest, and second-
smallest vs. largest) for each species assemblage in a
study and then tabulated the proportion of the assem-
blages in which a majority (two or all three) of these
test statistics were significant. Simberloff and Boecklen
(1981) considered that a claim of ratio constancy was
generally supported in a study if, in a majority of the
assemblages, a majority of the test statistics was sig-
nificant.

Of the 21 studies analyzed by Simberloff and Boeck-
len (1981) to assess ratio constancy, only four support
rejection of the null hypothesis by the above criteria
(i.e., the hypothesis that size ratios are no more con-
stant than expected at random) at the P = 0.05 level
for type-I error. When they allow a more generous
significance level (P = 0.30), the null hypothesis is
rejected in an additional nine studies (due to an error
in enumeration, Simberloff and Boecklen [1981] re-
ported only seven; see their table 2 and our Table 1).

In 12 of the 21 studies, the original authors presented
data for more than one assemblage of co-occurring
species. The null hypothesis was rejected by Simberloff
and Boecklen’s criteria in only 1 of these 12 studies at
the P = 0.05 level, and in another six studies at the P
= 0.30 level.

With few exceptions, each assemblage within a study
represents an independent test of the hypothesis that
ratios are unusually constant. Consequently, for each
study, it is appropriate to assess the overall probability
that the assemblages taken together reveal significant
patterns by combining probabilities of independent tests
of the same hypothesis. By not doing so, Simberloff
and Boecklen (1981) neglected a means of considerably
lowering type-II error, while in the same spirit substi-
tuting the much less precise “majority rule”” approach
outlined above to “combine” results within studies.

Here, we have used Fisher’s method for combining
probabilities (Sokal and Rohlf, 1981 pp. 779-782),

k

which takes advantage of the fact that 2 2 In P, ex-
hibits a chi-square distribution (d.f- = 2k), where P, is

the probability of type-I error for the ith independent
test.
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TaBLE 1. Claims of ratio constancy based on studies of multiple assemblages. Unless otherwise noted, references
are those making the claim of ratio constancy. If the claim was made for data other than their own, the source
of the data is presented in parentheses. Results from Simberloff and Boecklen (1981) are presented as [number
of assemblages in which a majority of test statistics were significant)/[number of assemblages]. Symbols: y = claim

supported; n = claim not supported.

Claim supported
Simberloff and Boecklen (1981)

Present paper

Reference P <0.05 P <030 P<005 P<030
McNab, 1971 (Phillips, 1968) 2/11 5/11 y y
McNab, 19712 (Goodwin and Greenhall, 1961) 0/2 172 n n
Brown, 1973 2/14 12/14 y y
Brown, 1975 172 2/2 yP y
May, 1978 (Cody, 1974) 0/11 2/11 n n
Terborgh et al., 1978 1/5 5/5 y y
MacArthur, 1972; Brown, 1975 (Storer, 1966)¢ 1/1 1/1 y y
Barbour, 19732 0/3 2/3d n n
Brown, 19752 (Roughgarden, 1974) 0/2 0/2 n n
Smith, 1978 0/2 0/2 n n
Brown, 1975 (Evans, 1970) 0/2 172 n y
Inouye, 1977 1/3 1/3 y y

2 Author did not actually make a claim of ratio constancy. McNab (1971) discussed ratio constancy but never claimed that these data displayed
it. Barbour (1973) claimed that there were consistent differences in absolute lengths, not ratios, between species (though Brown [1975] did make a
claim of ratio constancy for these data). Brown (1975) never mentions Roughgarden (1974).

b Both assemblages have the same smallest and second-largest species. If the computation for Gy ;-1 uses this combination only once, the combined

probability changes from P < 0.05 to P < 0.10.

¢ Data for males and females are presented by Storer (1966) and are combined using Fisher’s test.
d Simberloff and Boecklen (1981) incorrectly state this as 1/3 (see their tables 1 and 2).

When the results for each of the 12 multiassemblage
studies presented by Simberloff and Boecklen (1981)
are analyzed by combining results within studies, six
(instead of one) of the 12 claims are significant at the
P = 0.05 level, and a seventh is significant at the P =
0.30 level (Table 1). We use the criterion of Simberloff
and Boecklen that two or three of the three ratio com-
parisons (smallest vs. largest, smallest vs. second-larg-
est, and second-smallest vs. largest) must be significant
to consider the results of a given study significant at
the P = 0.05 or P = 0.30 level. The three comparisons
cannot be combined, because they are not independent.

Minimum Size Ratios.—Many studies have pur-
ported to demonstrate that an unusually large mini-
mum size ratio exists among members of an assem-
blage. Simberloff and Boecklen (1981) used the Irwin

statistic (Irwin, 1955) to test 18 such claims against the
null hypothesis that the minimum in each assemblage
is no larger than expected at random. Only one of the
18 claims was generally sustained at the P = 0.05 level;
another 12 were supported at the 0.30 level.

Again, Fisher’s method for combining probabilities
can be employed in those studies that involved mul-
tiple assemblages. Of ten such studies, Simberloff and
Boecklen found one generally supported at the P =
0.05 level and five more supported at the P = 0.30
level (Table 2). In contrast, after combining results
from different assemblages within studies, we found
that six of the ten studies were significant at the P =
0.05 level and that another was significant at the P =
0.30 level. Hutchinson’s (1959) data on finches from
three of the Galapagos Islands were not combined,

TaABLE 2. Claims of unusually high minimum size ratios based on studies of multiple assemblages (format as

in Table 1).

Claim supported

Simberloff and Boecklen (1981) Present paper

Reference P < 0.05 P <0.30 P <0.05 P <0.30
McNab, 1971 (Phillips, 1968) 3/11 5/11 y y
McNab, 19712 (Goodwin and Greenhall, 1961) 0/2 172 n n
Brown, 1973 3/14 11/14 y y
Brown, 1975 172 2/2 y y
May, 1978 (Cody, 1974) 1/11 3/11 n n
Terborgh et al., 1978 1/5 5/5 y y
Brown, 19752 (Barbour, 1973) 0/3 0/3 n n
Inouye, 1977 1/3 3/3 y y
Uetz, 1977 0/2 2/2 n y
Robison, 1975 3/3 3/3 y y

2 Author did not make a claim of unusually large minimum size ratio.
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because Simberloffand Boecklen (1981) make the plau-
sible claim that such data were “dredged” (sensu Selvin
and Stuart, 1966) from a larger data set.

Discussion on Combining Results. —Two objections
could be raised to using Fisher’s method. Simberloff
(1983), Simberloffand Boecklen (1981), Simberloffand
Connor (1981), and Boecklen and NeSmith (1985) ar-
gue that only positive findings are published; conse-
quently, combining probabilities across separate stud-
ies is inappropriate, because negative findings are less
likely to be reported. This objection, however, is far
less valid for combining probabilities computed for
independent assemblages within studies. It is unrea-
sonable to assume that authors omit data from assem-
blages within a study that do not support their claim.
Examination of the papers reveals, furthermore, that
“negative” data are indeed reported alongside those
that support the authors’ claims.

Using Fisher’s method might also be inappropriate
if the assemblages within studies were composed of the
same species, because the samples then might not be
independent (Brown and Bowers, 1985). We examined
the original data and determined the number of cases
in which comparisons between different assemblages
included the same species (i.e., the same pair of species
constituted the smallest, second smallest, second larg-
est, or largest ratio in both assemblages). We found
only a few such cases, and for each we recalculated the
combined probabilities omitting redundancies. One
study reversed from significance to nonsignificance at
the P = 0.05 level in the ratio-constancy results (Table
1), but there were no other changes in those results,
and there were no changes for the minimum-ratio anal-
ysis.

We then checked the five purported claims of ratio
constancy that were not supported even at the P =0.30
level. In three of these papers (McNab, 1971; Barbour,
1973; Roughgarden, 1974; see Table 1), no such claims
could be discovered. Likewise, no claims of unusually
large minimum size ratios were made for two of the
studies analyzed by Simberloff and Boecklen (McNab,
1971; Brown, 1975); neither rejected the null hypoth-
esis, even at P = 0.30.

In summary, statistical inference based on individual
small assemblages tends strongly toward incorrect ac-
ceptance of the null hypothesis. Our reanalysis of the
cases that Simberloff and Boecklen (1981) analyzed
reveals that, although some claims (and nonclaims) of
ratio constancy are unfounded, nearly half (47%) are
supported at the P = 0.05 level, and a large majority
(more than 70%) are supported at the P = 0.30 level
that Simberloff and Boecklen (1981) considered.

Statistical Power of the Irwin Test for
Minimum Size Ratios

The Irwin test detects an unexpectedly large mini-
mum size ratio by comparing the minimum ratio for
areal-world species assemblage with the corresponding
minimum ratio expected for a sample drawn from a
log-uniform distribution. Several authors (Case et al.,
1983; Colwell and Winkler, 1984; Schoener, 1984;
Tonkyn and Cole, 1986) suggested that, because the
test is based on a log-uniform rather than a log-normal
distribution of species’ sizes, it overestimates the ex-
pected minimum size ratio. These critics point out that
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body sizes (or other homologous sets of measurements)
are almost invariably log-normally distributed within
clades or assemblages in nature, as Eadie et al. (1987)
have recently confirmed in a large survey. If the log-
normal distribution is, indeed, the more biologically
appropriate null model for size distributions, then points
in the distribution will be clumped around the mode.
Consequently, the expected minimum size ratio drawn
from such a distribution would be smaller than one
drawn from a log-uniform distribution. Thus, an em-
pirical minimum size ratio larger than expected for a
log-normal distribution might nonetheless test out
smaller than expected for the log-uniform distribution.
Further, the variance of the log-normal distribution
should affect the outcome of the test.

Boecklen and NeSmith (1985) claimed to have re-
futed this conjecture, however, by demonstrating that
the results from the Irwin test were nearly indistin-
guishable from those produced by a simulated draw
from a log-normal distribution (the variance of which
was not reported). Further, although they showed an-
alytically that changing the variance of the log-normal
distribution does not alter the expected distribution of
the Barton-David statistic for ratio constancy, they
merely asserted, without proof, that “the same result
will obtain for the Irwin test statistic”” (Boecklen and
NeSmith, 1985 p. 697). Eadie et al. (1987), however,
showed Boecklen and NeSmith to be mistaken, by con-
firming the earlier conjecture that, if the log-normal
distribution is substituted for the log-uniform distri-
bution, the variance of the log-normal distribution is
positively correlated with the expected minimum size
difference.

Type-I Error.—Eadie et al. (1987) did not address
the adequacy of the Irwin test as a method of detecting
unexpectedly large minimum size ratios. We under-
took this task by conducting a series of simulations,
drawing three-, four-, five-, and six-species commu-
nities (a large number of the assemblages in the studies
examined by Simberloff and Boecklen [1981] con-
tained 3-6 species) at random from a log-normal dis-
tribution with variance (of the logs) increasing from
0.02 t0 0.10 in 0.01 increments. We arbitrarily used a
mean of 100; as Eadie et al. (1987) noted, changes in
the mean do not affect minimum ratios.

For each sample drawn, we calculated the critical
value that the minimum ratio would have to exceed
in order to reject the null hypothesis at the P = 0.05
level by the Irwin test, and we determined whether the
minimum ratio in the sample exceeded this critical
level. The Irwin test statistic had to be recalculated for
each draw, because the statistic depends not only on
the number of “species” drawn but also on the smallest
and largest “‘species sizes” in each sample.

For each combination of species number and vari-
ance of the sampling distribution, we conducted 10
runs of 100 draws each. Because each of these draws
was made at random, any rejection of the null hy-
pothesis is a type-I error. Given that the Irwin statistics
we used were computed for a type-I error rate of P =
0.05, the proportion of samples in which the null hy-
pothesis is rejected should also be 0.05 if the test is
accurate for a log-normal distribution. We found that
the mean proportion of samples for which the Irwin
test rejected the (true) null hypothesis ranged from 0.043
to 0.069 (Table 3), over the span of variances and
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TABLE 3. Probability of type-I error (+SD) of the Irwin test at the P < 0.05 level when applied to randomly
drawn samples from a log-normal distribution. Values shown represent probability values x 100.

Variance of

Number of species drawn

distribution 3 4 5 6
0.02 5.8 £0.54 4.8 +£1.03 6.0 £ 0.75 5.4 £0.80
0.03 4.3 +£0.45 6.4 + 0.82 4.8 £0.68 5.5 +0.79
0.04 5.8 £0.72 6.5 + 0.42 6.9 £ 0.81 5.8 £0.86
0.05 5.9 £ 0.51 5.3 +£0.89 6.2 £0.75 5.5 £0.36
0.06 4.8 £0.72 4.7 £ 0.50 6.5 = 1.01 4.7 = 0.63
0.07 5.6 £0.76 5.4 = 0.55 5.5+0.79 5.8 +0.68
0.08 6.0 = 0.80 5.5 +£0.36 5.5 +£0.45 4.5 £ 0.65
0.09 5.8 £0.44 6.0 = 1.12 6.6 £ 0.91 4.8 +£0.70
0.10 5.1 £0.95 6.5 £0.61 5.8 +0.99 5.7 £ 0.80

species numbers tested. Therefore, for any practical
purpose, the type-I error rate of the Irwin test is ac-
curate enough when the test is applied to log-normal
distributions, even though the test is based on the log-
uniform distribution. Boecklen and NeSmith (1985)
had already demonstrated this result for, apparently, a
single log-normal distribution of unreported variance.
Our results extend the analysis to a range of defined
variances.

Type-1I Error.—In fact, the more important part of
the original conjecture concerned type-II error (i.e.,
accepting a false null hypothesis), rather than type-I
error. Type-II errors underestimate the degree to which
minimum ratios are, in fact, larger than expected by
chance.

We undertook, therefore, a direct analysis of the sta-
tistical power of the Irwin test (i.e., its ability to detect
nonrandomly large minimum ratios in samples from
log-normal distributions). In other words, we asked
whether the Irwin statistic could detect patterns pro-
duced by some deterministic process that limits the
similarity of co-occurring species.

Simulations were conducted exactly as above, but
any draw containing a minimum ratio smaller than a
specified threshold value was discarded and replaced
with a new draw. In other words, a limit to similarity
was imposed. The threshold ratio was varied between
1.1 and 1.5, and the variance of the log-normal dis-
tribution from which samples were drawn was varied
as before. Combinations of very small variances and
very large thresholds, however, were not tested, be-
cause the rate of rejection of draws was so excessive
that simulations took too long to be practical.

Because only those samples that pass the threshold
criterion are retained, the null hypothesis that the min-
imum size ratio in each sample is no greater than ex-
pected for a random sample from a log-normal distri-
bution is consistently false. Therefore, any sample for
which the (false) null hypothesis is accepted by the
Irwin test represents a type-II error.

Figure 1 presents the proportion of samples for which
the Irwin statistic incorrectly accepted the null hy-
pothesis (i.e., the rate of type-II error (the complete
matrix of simulation results is available from J. B. L.
upon request). The results show that the rate of type-
II error can be very high indeed but that it decreases
with larger thresholds, larger numbers of species in the

sample, and lower variances of the log-normal distri-
bution.

The qualitative effect of the threshold is expected;
as with any statistic, as the size of the actual deviation
from the value expected under the null hypothesis in-
creases (the threshold, in this case), the power of the
test to detect that deviation increases (type-II error
decreases). Unfortunately, however, the minimum ra-
tios in nature that are likely to be tested fall in a region
of rather low statistical power.

Hutchinson (1959) proposed that sympatric species
must differ in size dimensions by a factor of 1.28. Many
studies have accepted this value, claimed to confirm
it, or proposed different values of limiting similarity
(reviewed in Simberloff [1983]). Most studies support
a value of limiting similarity at or below 1.3 (but see
Terborgh et al. [1978]), and at these values, the Irwin
statistic is very weak. Even at higher thresholds, the
Irwin statistic is reasonably powerful only under some
circumstances.

The effects of species number and variance are equal-
ly troubling. Type-II error is fairly low for small vari-
ances, but the variance of real distributions is what
counts. Eadie et al. (1987) collected data on the vari-
ance of the log-normal distribution from 33 studies
encompassing 439 assemblages of species. From their
data, we extracted the standard deviations calculated
from single assemblages, discarding the values reported
from data pooled from more than one assemblage. A
summary appears in Table 4. Of the resulting 42 size
distributions, only five have variances less than 0.03,
while 26 have variances greater than 0.10. The ex-
pected type-II error for the latter studies is quite high.
Consequently, little reliance can be placed on the Irwin
test for many realistic cases.

Conclusions

Despite the inherently large probability of type-II
error of the Irwin test for many realistic cases, we have
shown that Simberloff and Boecklen’s (1981) results
nevertheless indicate the existence of unusually large
minimum size ratios for many cases when results with-
in studies are combined. Likewise, combining results
within studies from the Barton-David test for nonran-
dom constancy of size ratios also produced a consid-
erable increase in the number of cases judged signifi-
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Fic. 1. Probability (P) of type-II error for the Irwin test when applied to samples drawn from log-normal
distributions. If presented as 1 — P, a standard statistical power curve would result. Draws containing ratios
less than the threshold ratio were discarded. Results are presented for draws of three- and six-species sets from
distributions with selected variances (¢2). The complete matrix of simulation results is available from the authors

upon request.

cant. More recent studies of size ratios (e.g., Gilpin and
Diamond, 1982; Case, 1983; Case and Sidell, 1983;
Case et al., 1983; Schoener, 1984; Brandl and Topp,
1985) have utilized appropriate null models and have
found strong evidence for the existence of unusually
large minimum size ratios.

What process or processes are responsible for these
patterns is another question. Eadie et al. (1987) argue
that Hutchinsonian ratios are an artifact of the under-
lying log-normal distribution of species’ sizes. How-

TABLE4. Variances of log-normal distributions in na-
ture (calculated from Eadie et al. [1987]).

Number of
species per Number of Variance
assem- assem-
blage blages Mean Minimum Maximum
2 5 0.033 0.004 0.063
3 4 0.102 0.048 0.212
4 3 0.649 0.078 1.638
5 4 0.700 0.053 2.250
6 6 0.556 0.020 1.513
7 6 0.153 0.008 0.250
8 2 0.117 0.048 0.185
9 5 1.037 0.152 2.756
11 2 0.135 0.102 0.168
14 3 0.251 0.048 0.436
16 2 0.178 0.019 0.336

ever, their results do not provide a method for testing
whether ratios are either too constant or too large to
be explained as the result of random processes. They
demonstrate that the expected ratios between species
ordered by size lie in a narrower range than one might
naively assume and that the range includes the mini-
mum size ratios often cited as evidence of community
structure.

Boecklen and NeSmith (1985) demonstrated that,
even for samples from a log-normal distribution, the
Barton-David and Irwin tests maintain a correct level
of type-I error. We have extended their result for the
Irwin test by showing it to be robust, for practical pur-
poses, to changes in variance of the log-normal distri-
bution. Thus, although Eadie et al. (1987) are doubtless
correct that many ratios in the range 1.2-2.0 are simply
artifacts of sampling from a log-normal distribution
with a low variance, artifactual ratios can nevertheless
be separated from nonrandom size ratios in the same
range by use of these statistical tests, with the proviso
that results from related but distinct assemblages should
be combined and with the realization that type-II error
may nonetheless be high.

Several recent studies (e.g., Case, 1983; Case and
Sidell, 1983; Case et al., 1983; Schoener, 1984; Grant,
1986) have provided strong corroborative biogeo-
graphical, ecological, and behavioral evidence to bols-
ter the suggestion that competition is the process caus-
ing many of these nonrandom patterns. In most cases,
however, detailed studies are still required to elucidate
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the processes responsible for creating unusually large
minimum and constant size ratios.
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IS LIFETIME DATA ALWAYS NECESSARY FOR EVALUATING THE
“INTENSITY” OF SELECTION?

TAKAYOSHI NISHIDA
Entomological Laboratory, College of Agriculture, Kyoto University, Kyoto 606, JAPAN

Received April 13, 1989.

Lifetime reproductive success has been regarded as
the most accurate measure of fitness, and it has been
argued that measurement of selection parameters (such
as selection gradient, selection differential, and oppor-
tunity for selection) should be made based on lifetime
data (Clutton-Brock, 1983, 1988; Endler, 1986). This
argument is indeed strictly true; however, it is often
logistically or practically impossible to collect lifetime
data in the field, especially for highly mobile animals.
In this paper, I show that lifetime data are not always
required to obtain a precise estimate of selection pa-
rameters.

I measured lifetime reproductive success of individ-
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Fic. 1. The ratio of the opportunity for selection
based on a 10-day cumulative observation period to
the opportunity for selection based on lifetime repro-
ductive success.

Accepted May 25, 1989

uals of both sexes in the coreid bug, Colpula lativentris
(Nishida, 1987). This bug forms a compact aggregation
composed of copulating pairs, on stems of its host plant,
Polygonum cuspidatum. Males search for mates, and
females oviposit on the ground near the host plants.
Because a single copulation lasts an average of three
days and because the bugs are rather sedentary, lifetime
mating success could be easily measured. A detailed
description of the mating system and behaviors is given
in Nishida (1988, 1989).

Figure 1 shows the ratio of the opportunity for se-
lection based on a 10-day cumulative observation pe-
riod to the opportunity for selection based on lifetime
reproductive success. As the observation period in-
creased, the value of this ratio decreased rapidly, al-
most reaching one after 40 days of observation and
remaining constant after that. Thus, a 40-day obser-
vation period was sufficient to evaluate the opportunity
for selection on lifetime reproductive success in both
males and females.

These results suggest that lifetime data are not always
required for measuring selection, especially for mul-
tiply mating insects. However, if reproduction at an
early age results in a reduction of future reproduction
or if there is a strong negative trade-off between fitness
components, lifetime data will be required. Nonethe-
less, I believe that, for most insects that mate multiply
in a single mating season, the precise measurement of
selection parameters does not require lifetime data. In
the future, by utilizing a large body of data concerning
relations between selection parameters based on both
lifetime data and short-term data, it should prove pos-
sible to determine empirically what period is necessary
for collection of data in order to derive a valid esti-
mation of selection parameters.
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