BACILLUS SUBTILIS TRANSFORMATION PROTOCOL

Published in supplemental methods section of: Bennallack et al., J Bacteriol. 2014 Oct 13. pii: JB.02243-14. PMID: 25313391 For questions, contact philip_bennallack@byu.edu

Day 1

- 1. Set up a 4ml O/N culture of PB047 (B. subtilis 168 wt) in plain LB
- 2. Grow at 37°C, 225 rpm for 14-18 hours
- 3. Ensure clean, autoclaved 250ml conical flasks as well as all of the stock solutions listed in the recipe section below are available for use tomorrow

Day 2

- 1. Make fresh SM1 in a sterile 125ml conical flask and pre-warm at 37°C
- 2. Transfer 1ml of saturated O/N culture to 15ml pre-warmed SM1. Final OD₆₀₀ should be between 0.4-0.6. Adjust concentration as necessary, ensuring the final culture volume is close to 15ml
- 3. Incubate culture flask at 37° C, 225rpm until the culture departs log phase. I suggest taking OD₆₀₀ readings of 1:4 diluted aliquots every hour for the first 3 hours, then every 20 min thereafter. It usually takes between 4-5 hours, depending on the incubator with a final 1/4 OD₆₀₀ between around 0.5-0.7.
- 4. Once the culture reaches stationary phase, add an equal volume of pre-warmed SM2 and incubate a further 90 minutes. At this point, and for the next 2 or so hours (haven't tested beyond that) the cells are highly competent.
- 5. Remove 500 μ l of cell culture and combine with 5 μ l of plasmid.
- 6. Incubate at 37°C for 30 min on an end over end rotator.
- 7. Add 300 µl LB and incubate for further 30 min at 37°C rotating.
- 8. Plate desired volume of cells on selective media (transformation efficiencies of $2x10^4$ - $2x10^5$ transformed cells per ug plasmid from DH5 α prepped DNA have been observed in our lab).

Note: to freeze competent cells; after **step 4**, add glycerol to 10% (v/v), freeze 500ul aliquots at -80°C. You should expect a 2-fold or greater reduction in transformation efficiency upon freezing. Long term viability has been a problem, but for short term storage (weeks to a month) this works great.

BACILLUS SUBTILIS COMPETENT CELL PREP RECIPES

1X ST Base (1L)

- Ammonium sulfate 2g
- K₂HPO₄ 12g
- KH₂PO₄ 6g
- Sodium citrate dihydrate 1g
- ddH_2O up to 1L
- pH should be ~ 7.0
- Autoclave

Supplements (Stocks) – unless indicated otherwise store all solutions at room temp

- 1. <u>MgSO₄ 7H₂O (0.3M)</u>
 - Dissolve 7.40g in 100ml ddH₂O
 - 100X in SM1, 400X in SM2
- 2. <u>CaCl₂ · 2H₂O (0.3M)</u>
 - Dissolve 4.41g in 100ml ddH₂O
 - 100X in SM2, not used in SM1
- 3. <u>50X YECA</u>
 - 5g Bacto yeast extract
 - 0.625g Casamino acids
 - Make up to 50ml with dH₂O
 - May need heating at 60°C to fully go into solution
 - Filter sterilize
 - 50X in SM1, 100X in SM2
- 4. Tryptophan (10mg/ml)
 - Dissolve 500mg of L-tryptophan in 50ml ddH₂O
 - Filter sterilize, store at 4°C
 - 100X in all solutions
- 5. <u>50% Glucose</u>
 - Dissolve 25g glucose (Dextrose) in 50ml ddH₂O
 - Filter sterilize
 - 100x in all solutions

To make SM1 and SM2 combine the following

Reagent	SM1 (15ml)	SM2 (15ml)
ST Base	15 ml	15 ml
MgSO ₄ (0.3M)	37.5 µl (.75mM)	150 µl (3mM)
50X YECA	300 µl	150 µl
Tryptophan	150 µl (.49mM)	150 μl (.49mM)
(10 mg/ml)		
50% Glucose	150 µl (27.75mM)	150 µl (27.72mM)
CaCl ₂ (0.3M)	-	75 μl (1mM)

Notes

Calcium chloride final concentrations >2mM cause CaPO₄ precipitate to form

P. Levin lab recommends final pH of base should be 7.5 - it may be adjusted by adding more K_2 HPO₄ and less KH₂PO₄ to make solution more basic