T81-558:Applications of Deep Neural Networks

Course Description

Deep learning is a group of exciting new technologies for neural networks. By using a combination of advanced training techniques, neural network architectural components, it is now possible to train neural networks of much greater complexity. This course will introduce the student to deep belief neural networks, regularization units (ReLU), convolution neural networks and recurrent neural networks. High performance computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Deep learning allows a model to learn hierarchies of information in a way that is similar to the function of the human brain. Focus will be primarily upon the application of deep learning, with some introduction to the mathematical foundations of deep learning. Students will use Google TensorFlow and the Python programming language to architect a deep learning model for several of real-world data sets and interpret the results of these networks.

Objectives

  1. Explain how neural networks (deep and otherwise) compare to other machine learning models.
  2. Determine when a deep neural network would be a good choice for a particular problem.
  3. Demonstrate your understanding of the material through a final project uploaded to GitHub.

Course Materials