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FUS and EWSR1 are RNA-binding proteins with prion-like
domains (PrLDs) that aggregate in amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD). The FUS and
EWSR1 genes are also prone to chromosomal translocation
events, which result in aberrant fusions between portions of the
PrLDs of FUS and EWSR1 and the transcription factors CHOP
and FLI. The resulting fusion proteins, FUS-CHOP and EWS-
FLI, drive aberrant transcriptional programs that underpin lipo-
sarcoma and Ewing’s sarcoma, respectively. The translocated
PrLDs alter the expression profiles of these proteins and pro-
mote their phase separation and aggregation. Here, we report
the development of yeast models of FUS-CHOP and EWS-FLI
toxicity and aggregation. These models recapitulated several
salient features of sarcoma patient cells harboring the FUS-
CHOP and EWS-FLI translocations. To reverse FUS and
EWSR1 aggregation, we have explored Hsp104, a hexameric
AAA� protein disaggregase from yeast. Previously, we engi-
neered potentiated Hsp104 variants to suppress the proteotox-
icity, aggregation, and mislocalization of FUS and other proteins
that aggregate in ALS/FTD and Parkinson’s disease. Potentiated
Hsp104 variants that robustly suppressed FUS toxicity and
aggregation also suppressed the toxicity and aggregation of
FUS-CHOP and EWS-FLI. We suggest that these new yeast
models are powerful platforms for screening for modulators of
FUS-CHOP and EWS-FLI phase separation. Moreover, Hsp104
variants might be employed to combat the toxicity and phase
separation of aberrant fusion proteins involved in sarcoma.

Chromosomal translocation events underpin sarcoma (1). In
liposarcoma, the N-terminal portion of FUS3 becomes aber-

rantly fused to the transcription factor CHOP (1). In Ewing’s
sarcoma, the second most common pediatric bone cancer, a
chromosomal translocation event inappropriately fuses the
N-terminal region of EWSR1 to the transcription factor FLI (1).
The EWS-FLI translocation can occur in multiple frames, lead-
ing to the formation of different translocation products (1). Due
to their fusion to portions of FUS and EWSR1, the transcription
factors become differentially regulated and elicit aberrant tran-
scriptional programs (1). For instance, FLI is expressed only
under specific conditions, whereas EWSR1 is constitutively
expressed (1). Fusion of FLI to EWSR1 results in constitutive
expression of FLI in the form of the EWS-FLI fusion. Both FUS
and EWSR1 harbor prion-like domains (PrLDs), and large por-
tions of these PrLDs are retained in the translocated products
(1, 2). PrLDs are found in �240 human proteins and resemble
yeast prion domains in their aggregation propensity and precise
low-complexity amino acid composition, which is enriched for
uncharged polar residues and glycine (3–6). The PrLDs of FUS
and EWSR1 drive the aggregation and toxicity of full-length
FUS and EWSR1, which aggregate in subsets of patients with
amyotrophic lateral sclerosis (ALS) or frontotemporal demen-
tia (FTD) (7–13). Thus, in addition to altered expression pro-
files, the PrLDs of FUS and EWSR1 may dramatically alter the
biochemical properties of CHOP and FLI (2, 12). In fact, the
PrLD of EWS-FLI promotes aberrant phase separation events,
which lead to the inappropriate recruitment of chromatin-re-
modeling factors, activating the deleterious transcriptional
events of Ewing’s sarcoma (2). Thus, agents that antagonize
these aberrant phase separation events could be therapeutic for
sarcoma (2, 14 –16).

To study human disease in a highly genetically tractable
model system, we and others have demonstrated that diverse
protein-misfolding disorders can be modeled in the budding
yeast, Saccharomyces cerevisiae (7–9, 17–24). Excellent models
have been developed for studying FUS and EWSR1 misfolding
(in ALS/FTD) as well as �-synuclein (in Parkinson’s disease)
and TDP-43 (in ALS/FTD) among others (7–9, 17–24). Yeast
models recapitulate many of the molecular phenotypes
observed in patients with these respective disorders, and they
are also highly genetically tractable platforms, which enable
rapid screening for genetic and small-molecule modifiers (7,
17–19, 21, 23–26). For instance, the RNA-binding protein FUS
shuttles to the nucleus to fulfill its roles in regulating RNA
homeostasis (10). However, in ALS/FTD patients and in yeast
models of FUS proteinopathy, FUS is toxic and aggregates in
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the cytoplasm (7, 10, 11, 21). This yeast system has been used to
identify potent genetic modifiers of FUS aggregation and tox-
icity (7, 21, 27, 28). Here, we establish yeast models for studying
the aggregation of FUS-CHOP and EWS-FLI. Additionally, we
assessed whether protein disaggregases that dissolve FUS
aggregates might also be capable of dispersing altered FUS-
CHOP and EWS-FLI phases (27, 29, 30).

Prions are not invariably toxic or harmful (31–34). In
S. cerevisiae, prions are harnessed for adaptive purposes, and so
they are tightly regulated (35, 36). The AAA� protein Hsp104
constructs and deconstructs yeast prions and solubilizes pro-
teins that accumulate after environmental stress (37–51). We
hypothesized that the shared cross-� structure of amyloids
might enable a protein that naturally regulates amyloid in yeast
to be active against similarly structured proteins that underpin
human disease (39, 52, 53). However, Hsp104 has somewhat
limited ability to disaggregate proteins that aggregate in human
disease (27, 54, 55). Thus, we have used protein engineering to
potentiate Hsp104 (56). We have found that potentiated
Hsp104 variants suppress the misfolding and toxicity of diverse
proteins that form amyloid or harbor prion-like domains (27,
29, 57– 61). Enhanced Hsp104 disaggregases suppress the
toxicity of TDP-43, FUS, and �-synuclein as well as disease-
associated mutants of these proteins, and they suppress tox-
icity under conditions where WT Hsp104 is ineffective (27,
29, 47, 58 – 60). Although each of the potentiated Hsp104
variants was isolated from a screen against a single disease
substrate, the majority of the variants isolated thus far rescue
the toxicity of TDP-43, FUS, and �-synuclein (27). Certain
variants also suppress dopaminergic neurodegeneration in a
Caenorhabditis elegans model of Parkinson’s disease (27).
They also reverse FUS aggregation in fibroblasts while
restoring proper localization of FUS-associated RNA (30).
Surprisingly, although these variants rescue diverse sub-
strates harboring PrLDs, they do not suppress the toxicity
and aggregation of EWSR1, which has a domain architecture
strikingly similar to that of FUS (29).

Here, we explored the effects of FUS-CHOP and EWS-FLI
overexpression in yeast and found that they are toxic and aggre-
gate in patterns resembling those in sarcoma patients. We fur-
ther demonstrate that FUS-CHOP undergoes aberrant phase
separation, adopting a gel- or solid-like state. We also demon-
strate that just as the potentiated Hsp104 variants counter the
toxicity of FUS, they can also suppress the toxicity of the FUS-
CHOP and EWS-FLI translocations. We therefore propose that
these yeast model systems might be useful platforms for study-
ing the underpinnings of sarcoma as well as for screening for
modifiers of these disorders. Moreover, we suggest that engi-
neered protein disaggregases might be employed to combat
aberrant phenotypes driven by prion-like fusion proteins in-
volved in sarcoma and other cancers.

Results

FUS-CHOP is toxic and aggregates when expressed in yeast

FUS is a nuclear RNA-binding protein with a PrLD that
forms cytoplasmic aggregates in the degenerating neurons of
FUS-ALS and FTD patients (10). FUS forms toxic cytoplasmic

aggregates in yeast just as it does in the degenerating neurons of
ALS/FTD patients (7, 21). Therefore, we established a similar
model for studying the expression of the FUS-CHOP translo-
cation, which is implicated in liposarcoma (Fig. 1A) (1).

To assess FUS-CHOP toxicity and probe the domain
requirements that might drive this toxicity, we expressed FUS-
CHOP and several related constructs in yeast (Fig. 1A). We
used the 413GAL plasmid to drive galactose-inducible expres-
sion of these genes, and we expressed 413GAL (empty vector),
413GAL-FUS, 413GAL-FUS-CHOP, 413GAL-FUS(1–266),
and 413GAL-CHOP. FUS-CHOP overexpression was highly
toxic and slightly more toxic than full-length FUS (Fig. 1B). The
FUS(1–266) truncation was not toxic (Fig. 1B), corroborating
studies demonstrating that the PrLD, RNA-recognition motif
(RRM), and first arginine/glycine-rich (RGG) domain are
required for FUS toxicity in yeast (7, 21). Furthermore, overex-
pression of CHOP alone is only very slightly toxic (Fig. 1B).
These results demonstrate that both CHOP and the PrLD of
FUS are required to elicit severe FUS-CHOP toxicity. We con-
firmed that each of the proteins was expressed by using anti-
FUS and anti-CHOP antibodies (Fig. 1C). Each of the proteins
was expressed, and FUS(1–266) was expressed at a lower level.

Using fluorescence microscopy, we established that FUS-
CHOP-GFP forms nuclear foci in yeast (Fig. 1D) just as it does
in myxoid liposarcoma cells (62, 63). FUS(1–266)-GFP displays
more diffuse fluorescence than FUS-CHOP-GFP with some
nuclear foci (Fig. 1D). Furthermore, CHOP-GFP accumulates
diffusely in the nucleus, correlating with its role as a transcrip-
tion factor. To confirm the fusion to GFP did not substantially
alter the toxicity of these proteins, we repeated spotting assays
for the GFP-tagged constructs, and results were similar to those
for the untagged constructs (Fig. 1, B and E). Thus, the nonag-
gregating CHOP is minimally toxic, and aggregation of FUS(1–
266) is not toxic (7). Because FUS(1–266) does not bind nucleic
acid (64), these findings suggest that aggregation of the PrLD
alone is not sufficient for toxicity. Rather, these findings suggest
that constructs must aggregate and be capable of engaging
nucleic acid to confer toxicity as with FUS-CHOP and full-
length FUS (7, 65, 66). Likewise, TDP-43 must aggregate and be
able to engage RNA to elicit toxicity in yeast and other model
systems (19, 20, 67– 69).

In summary, FUS-CHOP aggregates in the nucleus and is
toxic in yeast, recapitulating cancer cell phenotypes observed in
liposarcoma patients (62, 63). Our results suggest that yeast is
an excellent model system for studying FUS-CHOP aggrega-
tion and toxicity and that this yeast model might be a suitable
platform for unearthing small-molecule or genetic modulators
of FUS-CHOP aggregation and toxicity.

EWS-FLI is toxic and aggregates when expressed in yeast

Like FUS, EWSR1 is an RNA-binding protein with a PrLD,
and its aggregation is implicated in a subset of ALS and FTD
patients (8, 70, 71). Thus, we also assessed the toxicity of EWS-
FLI in yeast and performed similar domain-mapping experi-
ments (Fig. 2A). Here, we expressed EWS-FLI1 and EWS-FLI3
in yeast from the galactose-inducible 413GAL plasmid along
with controls 413GAL (empty vector), 413GAL-EWSR1,
423GAL-EWSR1, 413GAL-EWS(1–264), 413GAL-EWS(1–
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347), and 413GAL-FLI (Fig. 2B). EWS-FLI1 and EWS-FLI3
overexpression was highly toxic and far more toxic than full-
length EWSR1 when expressed at similar levels (Fig. 2, B and C).
We also expressed EWSR1 from a 2� plasmid to increase
EWSR1 expression. Even at these higher expression levels (Fig.
2C), the EWS-FLI constructs are more toxic than EWSR1 (Fig.
2B). Expression of neither EWS(1–264) nor EWS(1–347) was
toxic, and expression of FLI was only slightly toxic. Thus, the
fusion of a portion of the EWSR1 PrLD to FLI confers a syner-
gistic enhancement of toxicity in yeast. We confirmed that each
of these proteins was expressed by using anti-EWS and anti-FLI
antibodies (Fig. 2C). Although each of the proteins was ex-
pressed, detection of the EWS(1–264) truncation was weaker
(Fig. 2C).

Next, we assessed the aggregation of these constructs in
yeast. We first constructed GFP-tagged versions of the strains
and confirmed that their toxicity was similar to that of the
untagged constructs (Fig. 2, B and D). We next confirmed that
EWS-FLI1-GFP and EWS-FLI3-GFP aggregate in yeast and
found that these foci accumulate in the nucleus (Fig. 2E). As
with FUS(1–266), expression of EWS(1–264) or EWS(1–347)

yielded cells with more diffuse fluorescence than EWS-FLI and
some nuclear foci, although again fewer than for the EWS-FLI
constructs (Fig. 2E). Also, as with FUS-CHOP, these constructs
consisting primarily of the EWSR1 PrLD yielded larger foci
than for the full-length fusion (Fig. 2E). Finally, consistent with
its role as a transcription factor, localization of FLI alone was
restricted primarily to diffuse staining inside the nucleus (Fig.
2E). These data suggest that, as with FUS-CHOP, the PrLD of
EWSR1 must be appended to a nucleic acid– binding domain to
connect aggregation and toxicity. Thus, FLI does not aggregate
and is not toxic, and the PrLD portions of EWSR1 aggregate but
are not toxic. By contrast, appending portions of the EWSR1
PrLD to either an RRM plus RGG domains as in EWSR1 or to a
DNA-binding domain as in EWS-FLI yields proteins that
aggregate and are toxic.

In summary, like FUS-CHOP, EWS-FLI1 and EWS-FLI3
aggregate and are toxic in yeast, recapitulating cellular pheno-
types found in Ewing’s sarcoma patients (1, 2). Our results dem-
onstrate that yeast is an excellent model system for studying
FUS-CHOP and EWS-FLI aggregation and toxicity and that
these models could be excellent platforms for discovering

Figure 1. FUS-CHOP is toxic and forms nuclear foci in yeast. A, domain architecture of FUS, the FUS-CHOP fusion, and the truncations tested in this work.
DBD, DNA-binding domain. B, W303�hsp104 yeast was transformed with galactose-inducible FUS, FUS-CHOP, or the indicated truncation. The strains were
serially diluted 5-fold and spotted on glucose (off) or galactose (on) media. C, strains from B were induced for 5 h, lysed, and immunoblotted. PGK1 serves as a
loading control. D, fluorescence microscopy of cells expressing FUS-CHOP-GFP or the truncations stained with Hoechst dye to visualize nuclei (blue). Scale bar,
5 �m. E, strains from D were spotted on glucose and galactose media as in B.
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small-molecule or genetic modifiers of the toxicity of these
translocations.

FUS-CHOP protein is immobile within nuclear inclusions

It has been shown that the translocated PrLD of EWSR1 can
elicit phase separation events that can disrupt transcriptional
programs and lead to cancer (2). We assessed whether these
same aberrant phase transitions applied to our yeast models
and more broadly to FUS-CHOP. Using super-resolution imag-
ing, we first visualized cells expressing FUS-CHOP-GFP, EWS-
FLI1-GFP, or EWS-FLI3-GFP. Cells expressing FUS-CHOP-
GFP were characterized by foci �600 nm in diameter, whereas
those for EWS-FLI measured less than 300 nm in diameter (Fig.
3A). Furthermore, the EWS-FLI foci were highly dynamic,
moving rapidly throughout the nucleus. Although the FUS-
CHOP inclusions also were prone to movement, this move-
ment was slower than for EWS-FLI. As a result, we were only
able to characterize the material properties of the FUS-CHOP

inclusions using fluorescence recovery after photobleaching
(FRAP). We employed FRAP to determine whether these inclu-
sions displayed internal rearrangements characteristic of a liq-
uid or a solid. Here, we photobleached a small region of the
nuclear foci and tracked the recovery of fluorescence intensity
within bleached and unbleached regions of interest (ROIs) by
confocal microscopy (Fig. 3B). On following the inclusions for
90 s, we noted minimal recovery of fluorescence. Materials in
the liquid state would be expected to adopt a spherical shape
(72). However, the FUS-CHOP inclusions do not appear to be
spherical, suggesting that FUS-CHOP adopts a gel- or solid-like
state in yeast (Fig. 3B). For comparison, we also bleached cells
expressing GFP with no fused protein. Recovery of FUS-
CHOP-GFP reached only �40% of the prebleached fluores-
cence intensity at most, whereas recovery of GFP exceeded 60%
and was more rapid (Fig. 3C). Thus, we conclude that FUS-
CHOP phase separates to a gel- or solid-like state.

Figure 2. EWS-FLI is toxic and forms nuclear foci in yeast. A, domain architecture of EWSR1, EWS-FLI1, EWS-FLI3, and the corresponding truncations. DBD,
DNA-binding domain; AD, activation domain. B, W303�hsp104 yeast was transformed with galactose-inducible EWSR1, EWS-FLI1, EWS-FLI3, or the indicated
truncation. The strains were serially diluted 5-fold and spotted on glucose (off) or galactose (on) media. C, strains from B were induced for 5 h, lysed, and
immunoblotted. PGK1 serves as a loading control. D, spotting of the GFP-tagged constructs was performed as in B. E, fluorescence microscopy of cells
expressing EWS-FLI1-GFP and EWS-FLI3-GFP and the truncations stained with Hoechst dye to visualize nuclei (blue). Scale bar, 5 �m.
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Potentiated Hsp104 variants suppress FUS-CHOP toxicity and
aggregation

We have previously demonstrated that engineered variants
of the yeast AAA� protein Hsp104 can suppress the aggrega-
tion and toxicity of FUS, TDP-43, and �-synuclein (27, 29, 58).
Hsp104 is a protein disaggregase that translocates these sub-
strates through its central pore and, through cycles of ATP
hydrolysis, dissolves these kinetically trapped aggregates such
that solubilized proteins can then refold to the native state (39,
52, 53, 73, 74). We hypothesize that, as for EWS-FLI (2), the
PrLD of FUS-CHOP drives FUS-CHOP aggregation in addition
to altering its transcriptional program (62, 63). Thus, develop-
ment of a FUS-CHOP disaggregase might be a useful agent to
counter aberrantly functioning FUS-CHOP.

We were curious whether the same Hsp104 variants that can
dissolve FUS aggregates might also rescue FUS-CHOP toxicity,
considering that the PrLD of FUS is conserved in the FUS-
CHOP translocation (1, 27, 29). Hsp104 harbors a nuclear local-
ization sequence and localizes to the cytoplasm and nucleus in
yeast (75). Thus, Hsp104 could antagonize formation of nuclear
FUS-CHOP aggregates. We coexpressed FUS-CHOP with
Hsp104 and a series of potentiated variants, Hsp104A503V,
Hsp104A503S, Hsp104A503G, Hsp104V426L, Hsp104A437W,
Hsp104Y507C, Hsp104N539K, and Hsp104DPLF-A503V (27).
Hsp104 is inactive against FUS in yeast, and we found that
Hsp104 is similarly inactive against FUS-CHOP (Fig. 4A). How-
ever, each of the potentiated Hsp104 variants tested potently
suppressed FUS-CHOP toxicity, restoring growth to nearly the
levels of vector alone (Fig. 4A, top lane, 413GAL � 416GAL).
We assessed expression levels by immunoblotting and con-

firmed that this toxicity suppression is not due to decreased
FUS-CHOP expression (Fig. 4B). As we have seen in other stud-
ies (27, 29, 58), the Hsp104 variants are expressed at lower levels
than Hsp104, suggesting that they are more active at lower
concentrations.

We next assessed the effects of the potentiated Hsp104 vari-
ants on the FUS-CHOP nuclear foci. Here, we coexpressed
FUS-CHOP-GFP with Hsp104 and two of the potentiated vari-
ants, Hsp104A503V and Hsp104A503S. Although Hsp104 has no
apparent effect on the FUS-CHOP-GFP foci, cells expressing
either Hsp104A503V or Hsp104A503S show a reduced number
and size of nuclear foci (Fig. 4, C and D). We confirmed that the
Hsp104 variants only subtly decrease expression levels of FUS-
CHOP-GFP (Fig. 4E). Because we still observed some foci, we
tested the rescue of the potentiated variants against FUS-
CHOP-GFP (Fig. 4F). We found that FUS-CHOP-GFP is less
toxic than untagged FUS-CHOP, and so the rescue of toxicity
is more modest than for the untagged constructs. Here,
Hsp104A503S was more effective in rescuing toxicity than
Hsp104A503V (Fig. 4F). Collectively, these findings establish
that enhanced Hsp104 variants antagonize FUS-CHOP toxicity
and phase separation.

Potentiated Hsp104 variants suppress EWS-FLI toxicity and
aggregation

We have previously shown that the substrate repertoire of
the potentiated Hsp104 variants is broad (27, 29). Thus, we
hypothesized that, given the similar domain architecture of
EWSR1 and FUS, Hsp104 variants that disaggregate FUS would
also disaggregate EWSR1. Surprisingly, variants active against

Figure 3. FUS-CHOP inclusions display gel- or solid-like properties. A, FUS-CHOP, EWS-FLI1, and EWS-FLI3 form nuclear foci in yeast, and FUS-CHOP foci
were generally substantially larger than EWS-FLI foci. B, FRAP of FUS-CHOP-GFP shows that the nuclear foci are immobile and do not recover after 90 s. Also, the
inclusions do not appear spherical, consistent with more gel- or solid-like properties. Arrows indicate the ROI that was photobleached. C, FRAP experiments
were performed for FUS-CHOP-GFP and a diffuse GFP control. FUS-CHOP shows a slower rate of return than GFP. Scale bars in A and B are 500 nm. Curves in C
show data points (dark blue and red) � S.E. (light blue and red), n � 10 cells per condition.
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FUS do not rescue EWSR1 toxicity or aggregation, and some
variants even enhance EWSR1 toxicity (29). Therefore, we were
curious to test whether these same variants might rescue EWS-
FLI toxicity. We coexpressed EWS-FLI1 and EWS-FLI3 with
Hsp104 and the same series of potentiated variants tested
against FUS-CHOP. Hsp104 does not suppress EWSR1 toxicity
in yeast, and we found that Hsp104 does not suppress
EWS-FLI1 or EWS-FLI3 toxicity either (Fig. 5, A and C). We
found that, unlike with FUS-CHOP, only certain Hsp104 vari-
ants rescue EWS-FLI toxicity: Hsp104A503S, Hsp104V426L,
Hsp104A437W, Hsp104 N539K, and Hsp104DPLF-A503V robustly
rescue EWS-FLI1 toxicity. By contrast, Hsp104A503V confers a
more modest rescue of EWS-FLI1 toxicity. We confirmed that

this rescue was not simply due to decreased EWS-FLI1 expres-
sion levels (Fig. 5B). Hsp104A503S, Hsp104A503G, Hsp104N539K,
and Hsp104DPLF-A503V confer a strong rescue of EWS-FLI3 tox-
icity, whereas Hsp104V426L and Hsp104A437W confer a more
modest rescue (Fig. 5C). As with EWS-FLI1, the potentiated
variants rescue EWS-FLI3 toxicity without substantially modi-
fying EWS-FLI3 expression levels (Fig. 5D). Like we have seen
with FUS-CHOP, the Hsp104 variants are expressed at lower
levels than Hsp104, indicating that they are active even when
expressed at lower concentrations. Although Hsp104A503S and
Hsp104V426L suppress the toxicity of both EWS-FLI1 and EWS-
FLI3, these same variants do not rescue EWSR1 toxicity (29).
These results suggest that translocation of the EWSR1 PrLD to

Figure 4. Potentiated Hsp104 variants suppress FUS-CHOP toxicity and aggregation. A, W303�hsp104 yeast was sequentially transformed with FUS-
CHOP and Hsp104 or the indicated variants. The strains were serially diluted 5-fold and spotted on glucose (off) or galactose (on) media. B, strains from A were
induced for 5 h, lysed, and immunoblotted. C, W303�hsp104 yeast was sequentially transformed with FUS-CHOP-GFP and Hsp104 or the indicated variants. The
strains were induced for 5 h, stained with Hoechst dye, and imaged. Representative images are shown. Scale bar, 5 �m. D, quantification of microscopy
experiments shown in C. Error bars represent S.E.M. E, strains from C were induced for 5 h, lysed, and immunoblotted. F, strains from C were serially diluted 5-fold
and spotted on glucose and galactose media.
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FLI yields a protein with physical properties distinct from
EWSR1, allowing for detoxifying remodeling by the potentiated
Hsp104 variants.

We next assessed the effects of the potentiated Hsp104 vari-
ants on the EWS-FLI nuclear foci. Here, we coexpressed EWS-
FLI1-GFP or EWS-FLI3-GFP with Hsp104 or two of the poten-
tiated variants that conferred a mild (Hsp104A503V) and more
moderate (Hsp104A503S) rescue of toxicity. We first retested
these variants against the EWS-FLI-GFP fusions to confirm
they still rescue toxicity (Fig. 5E). EWS-FLI1-GFP and EWS-
FLI3-GFP are both less toxic than their untagged versions, and
so the potentiated Hsp104 variants rescue this toxicity more
robustly. We then confirmed expression via immunoblotting
and found that the Hsp104 variants decrease the expression of
EWS-FLI-GFP more than they do for EWS-FLI (Fig. 5B, D and
F). Using fluorescence microscopy, we found that, although
Hsp104 has no effect on the EWS-FLI foci, cells expressing
either Hsp104A503V or Hsp104A503S reduced nuclear foci (Fig.
5G). Collectively, our findings suggest that enhanced Hsp104
variants antagonize EWS-FLI toxicity and phase separation.

Discussion

Here, we have established yeast models to investigate the
misfolding of FUS-CHOP and EWS-FLI translocations that
underpin sarcoma. We found that fusion of FUS and EWS to
CHOP and FLI, respectively, drives a synergistic enhancement
in toxicity of the resulting fusions. As in sarcoma patients, FUS-
CHOP and EWS-FLI expression in yeast leads to the formation
of multiple nuclear foci. We found that FUS-CHOP foci display
properties characteristic of a gel or solid rather than a liquid.
Aggregation and nucleic acid– binding capability were impor-
tant for toxicity as CHOP or FLI did not aggregate and were not
toxic, and portions of the PrLDs of FUS or EWSR1 (which do
not bind RNA) aggregated but were not toxic. In this regard,
FUS-CHOP and EWS-FLI toxicity resembles FUS and TDP-43
toxicity in yeast where nucleic acid binding couples aggregation
to toxicity (7, 19 –21).

We also have demonstrated that potentiated Hsp104 vari-
ants that suppress FUS toxicity also robustly suppress the tox-
icity of FUS-CHOP and EWS-FLI. These Hsp104 variants also
decrease the accumulation of nuclear foci of FUS-CHOP and
EWS-FLI. It is important to note that, although these Hsp104
variants cannot counter the toxicity of EWSR1 (29), they do
counter the toxicity of EWS-FLI. Thus, the EWS-FLI translo-
cation yields a protein with a distinct structure, which enables
the Hsp104 variants to remodel EWS-FLI even though they do
not remodel EWSR1.

Recently, it has been demonstrated that the PrLD of EWS-
FLI drives phase separation and that this phase separation acti-
vates the transcriptional events of Ewing’s sarcoma (2, 12).
Hsp104 has been shown to regulate phase transitions in yeast
(41, 48, 76). Thus, it will be interesting to determine whether

the potentiated variants can also antagonize aberrant phase
transitions of EWS-FLI or FUS-CHOP in sarcoma patient cells.

It has been demonstrated that many complex diseases can be
modeled in yeast (7, 20 –22, 77–79), and we now demonstrate
that the aberrant phase transitions of FUS-CHOP and EWS-
FLI that underlie sarcoma can also be modeled in yeast. We
anticipate that these new model systems will serve as robust
platforms to enable rapid genome-wide and small-molecule
screens in yeast to identify additional modifiers of FUS-CHOP
and EWS-FLI aggregation and toxicity.

We have demonstrated that Hsp104, which regulates yeast
prions (80), can be potentiated to counter the toxicity of FUS,
TDP-43, �-synuclein, and now FUS-CHOP and EWS-FLI as
well (27, 29). It is intriguing that the specificity Hsp104 has for
yeast prions carries over to substrates that form amyloid or
prion-like structures in humans even though yeast Hsp104 has
not encountered these exact substrates throughout evolution.
In the future, it will be interesting to assess whether these
enhanced disaggregases can also block the aberrant transcrip-
tional programs driven by FUS-CHOP and EWS-FLI in
sarcoma.

Experimental procedures

All yeast were WT W303a �hsp104 (MATa, can1–100, his3–
11,15, leu2-3,112, trp1-1, ura3-1, ade2-1) (81). Yeast were
grown in rich medium (yeast extract, peptone, dextrose (YPD))
or in synthetic media lacking the appropriate amino acids.
Media were supplemented with 2% glucose, raffinose, or galac-
tose. Vectors encoding FUS-CHOP and EWS-FLI were
obtained from Addgene and Jeffrey Toretsky, respectively. The
FUS and EWSR1 plasmids were described previously (27, 29).
Vectors were cloned from these plasmids into pDONR 221 and
then transferred to pAG413GAL via Gateway cloning.
pAG416GAL-Hsp104 and the potentiated variants were gener-
ated previously (27). All truncated constructs were generated
using QuikChange site-directed mutagenesis (Agilent), and all
constructs were confirmed by DNA sequencing.

Yeast were transformed according to standard protocols
using PEG and lithium acetate (82). Yeast strains were con-
structed by first transforming the appropriate pAG413GAL
plasmid. Plates were then scraped, and cultures were inoculated
and subsequently transformed with the pAG416GAL-Hsp104
plasmids. For the spotting assays, yeast were grown to satura-
tion overnight in raffinose-supplemented dropout media at
30 °C. Cultures were serially diluted 5-fold and spotted in dupli-
cate onto synthetic dropout media containing glucose or galac-
tose. Plates were analyzed after growth for 2–3 days at 30 °C.

For immunoblotting, yeast were grown overnight to satura-
tion in raffinose. They were then diluted to an A600 nm of 0.3 in
galactose-containing media and induced for 5 h. Cultures were
normalized to an A600 nm of 0.6, 3 ml of cells were harvested and
treated in 0.1 M NaOH for 5 min at room temperature, and cell

Figure 5. Potentiated Hsp104 variants suppress EWS-FLI1 and EWS-FLI3 toxicity and aggregation. A, W303�hsp104 yeast was sequentially transformed
with EWS-FLI1 and Hsp104 or the indicated variants. The strains were serially diluted 5-fold and spotted on glucose (off) or galactose (on) media. B, strains from
A were induced for 5 h, lysed, and immunoblotted. C, experiments were performed as in A but using EWS-FLI3. D, strains from C were induced for 5 h, lysed, and
immunoblotted. E, W303�hsp104 yeast was sequentially transformed with EWS-FLI1-GFP or EWS-FLI3-GFP and Hsp104 or the indicated variants. F, strains from
E were induced for 5 h, lysed, and immunoblotted. G, left, strains from E were induced for 5 h, stained with Hoechst dye, and imaged. Scale bar, 5 �m. Right,
quantification of microscopy. Error bars represent S.E.M.
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pellets were then resuspended into 1� SDS sample buffer and
boiled for 10 min. Lysates were cleared by centrifugation at
14,000 rpm for 2 min, then separated by SDS-PAGE (4 –20%
gradient; Bio-Rad), and transferred to a polyvinylidene difluo-
ride membrane. Membranes were blocked in LI-COR Biosci-
ences Odyssey PBS blocking buffer for 2 h at room temperature.
Primary antibody incubations were performed at 4 °C over-
night. Antibodies used included anti-FUS polyclonal (Bethyl
Laboratories), anti-Hsp104 polyclonal (Enzo Life Sciences),
anti-3-phosphoglycerate kinase (PGK) monoclonal (Invitro-
gen), anti-CHOP (Abcam), anti-EWS (Santa Cruz Biotechnol-
ogy), and anti-FLI (Abcam). Blots were processed using a
LI-COR Biosciences Odyssey Fc imaging system.

For fluorescence microscopy, FUS-CHOP, EWS-FLI1, and
EWS-FLI3 were imaged by appending a C-terminal GFP tag
using Gateway cloning into pAG303GAL-ccdB-GFP. The
pAG303GAL-FUS-CHOP-GFP, pAG303GAL-EWS-FLI1-
GFP, and pAG303GAL-EWS-FLI3-GFP were then linearized
and transformed as described above. Single colonies were
selected, and yeast were grown and processed for microscopy as
for immunoblotting. To assess the effects of Hsp104 on FUS-
CHOP and EWS-FLI nuclear foci, these strains were then
sequentially transformed with pAG416GAL, pAG416GAL-
Hsp104, or variants of Hsp104. For imaging the truncation vari-
ants, the pAG413GAL-ccdB-GFP plasmid was used in place of
pAG303GAL-ccdB-GFP. After 5-h induction at 30 °C, cultures
were harvested and processed for microscopy. All imaging was
performed using live cells treated with Hoechst dye. Images
were collected at 100� magnification using a Leica DM IRBE
microscope or a Nikon Eclipse Te2000-E microscope and pro-
cessed using ImageJ software. All experiments were repeated at
least three times, and representative images are shown.

For FRAP experiments, yeast were harvested after 5-h
induction at 30 °C. Yeast were immobilized on slides using a
4% agarose pad supplemented with media and sealed with
nail polish. Images were acquired using a Zeiss LSM 880
confocal microscope with Airyscan. For FUS-CHOP-GFP
strains, a 1 � 1-pixel ROI was drawn in the center of the
focus. For diffuse GFP, an 8 � 8-pixel circular ROI was
drawn. ROIs were photobleached using a 488 nm laser at 60%
power for 15 iterations of 16 �s/pixel and imaged for fluo-
rescence recovery for 90 s at 0.0618 s/frame after bleaching
using the Airyscan detector. Images were deconvolved with a
2.7 Airyscan parameter.

Image analysis was performed in Fiji. The GFP integrated
densities of the bleached area, background, and a reference
cell were calculated. Individual curves were background-
subtracted and corrected for bleaching caused by imaging.
Individual curves were normalized to the average of pre-
bleach integrated densities and the postbleach minimum.
Individual curves were then averaged to produce a single
FRAP curve.
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