LingZhi Hu

Program Years: 2010

Mentors:

Primary: Sam Wickline

Secondary: Conradi

Graduate Thesis Title: New MRI Techniques for Nanoparticle Based Functional and Molecular Imaging

Publications: 

Chen, J., Vemuri, C., Palekar, R. U., Gaut, J. P., Goette, M., Hu, L., … & Wickline, S. A. (2015). Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. American Journal of Physiology-Renal Physiology, 308(7), F765-F773.

Hu, L., Myerson, J. W., Yang, X., Chen, J., Caruthers, S. D., Lanza, G. M., & Wickline, S. A. (2011). Fluorine MR Angiography for Simultaneous Blood Flow and Oxygen Sensing with Circulating Perfluorocarbon (PFC) Nanoparticles (NP) at 4.7 T. Circulation, 124(21 Supplement), A10743.

Hu, L., Hockett, F.D., Chen, J., Zhang, L., Caruthers, S.D., Lanza, G.M. and Wickline, S.A., 2011. A generalized strategy for designing 19F/1H dual‐frequency MRI coil for small animal imaging at 4.7 Tesla. Journal of Magnetic Resonance Imaging, 34(1), pp.245-252.

Hu, L., Yang, X., Chen, J., Caruthers, S. D., Lanza, G. M., & Wickline, S. A. (2011). Non-invasive Evaluation of Regional Kidney Oxygen Tension (PO2) with Circulating Perfluorocarbon (PFC) Nanoparticles (NP) and 19F MRI. Circulation, 124(21 Supplement), A11328.

Hu, L., Myerson, J. W., Chen, J., Caruthers, S. D., Lanza, G. M., & Wickline, S. A. (2012). Thrombin-Inhibiting Perfluorocarbon Nanoparticles Reduce Intrarenal Coagulation in Acute Kidney Injury and Provide Image-Based Readouts (19F MRI) of Renal Endothelial Disruption. Circulation, 126(21 Supplement), A16488

Hu, L., Chen, J., Yang, X., Senpan, A., Allen, J. S., Yanaba, N., … & Wickline, S. A. (2014). Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear 1H/19F MRI and perfluorocarbon nanoparticles. Magnetic resonance in medicine, 71(6), 2186-2196.

Hu, L., Chen, J., Yang, X., Caruthers, S. D., Lanza, G. M., & Wickline, S. A. (2013). Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow‐enhanced‐saturation‐recovery sequence. Magnetic resonance in medicine, 70(1), 176-183.

Hu, L., Zhang, L., Chen, J., Lanza, G. M., & Wickline, S. A. (2011). Diffusional mechanisms augment the fluorine MR relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation. Journal of Magnetic Resonance Imaging, 34(3), 653-661.

Hu, L., Wickline, S. A., & Hood, J. L. (2015). Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magnetic resonance in medicine, 74(1), 266-271.

Pan, H., Myerson, J. W., Hu, L., Marsh, J. N., Hou, K., Scott, M. J., … & Schreiber, R. D. (2013). Programmable nanoparticle functionalization for in vivo targeting. The FASEB Journal, 27(1), 255-264.

Zhang, L., Allen, J., Hu, L., Caruthers, S. D., Wickline, S. A., & Chen, J. (2013). Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI. American Journal of Physiology-Heart and Circulatory Physiology, 304(2), H246-H252