72. Jeon J., Lee K.Z., Zhang X., Jaeger J., Kim E., Li J., Belaygorod L., Arif B., Genin G.M., Foston M.B., Zayed M.A., Zhang F.* Genetically Engineered Protein-Based Bioadhesives with Programmable Material Properties. ACS Appl. Mater. InterfacesDec 01, doi.org/10.1021/acsami.3c12919, (2023).

71. Han Y., Li W., Li J., Zhang F.* Genome-wide promoter responses to CRISPR perturbations of regulators reveal regulatory networks in Escherichia coli. Nat Commun14, 5757, doi.org/10.1038/s41467-023-41572-4, (2023).

 

70. Mu X., Zhang F.*, Diverse Mechanisms of Bioproduction Heterogeneity in Fermentation and Their Control Strategies. J Ind Microbiol Biotechnol. Oct 3rd, doi.org/10.1093/jimb/kuad033, (2023)

69. Lee K.Z., Jeon J., Jiang B., Venkatesh S.V., Li J., Zhang F.*, Protein-Based Hydrogels and Their Biomedical Applications. Molecules 28 (13), 4988, doi.org/10.3390/molecules28134988, (2023).

68. Li J., Jiang B., Chang X., Yu H., Han Y., Zhang F.*, Bi-terminal Fusion of Intrinsically Disordered Mussel Foot Protein Fragments Boosts Mechanical Strength for a Wide Range of Protein Fibers. Nat. Commun. 2023, 14, 2127, doi: 10.1038/s41467-023-37563-0.

67. Jeon J., Subramani S.V., Lee K.Z., Jiang B. Zhang F.*, Microbial Synthesis of High-Molecular-Weight, Highly Repetitive Protein Polymers. Int. J. Mol. Sci. 2023, 24(7), 6416, doi: 10.3390/ijms24076416.

66. Zhou G.J., Zhang F.*, Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors. Biosensors 2023, 13(4), 428, doi: 10.3390/bios13040428.

65. Bai W., Anthony W.E., Hartline C.J., Wang S., Wang B., Ning J., Hsu F., Dantas G.*, Zhang F.*, Engineering Diverse Fatty Acid Compositions of Phospholipids in Escherichia coli. Metab. Eng., 74, 11-23, doi: 10.1016/j.ymben.2022.08.011.

64. Hartline C.J., Zhang F., The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors. ACS Synth. Biol. 2022, 11,7,2247-2258, doi: 10.1021/acssynbio.2c00143

63. Hartline C.J., Zhang R., Zhang F., Transient Antibiotic Tolerance Triggered by Nutrient Shifts From Gluconeogenic Carbon Sources to Fatty Acid. Front. Microbiol. 2022, 13:854272, doi: 10.3389/fmicb.2022.854272 

62. Verma B.K., Mannan A.A., Zhang F., Oyarzún D.A. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering. ACS Synth. Biol. 2022, 11, 1, 228–240. doi: 10.1021/acssynbio.1c00391

Figure 1

61. Wang Z., Hartline C., Zhang F., He Z. Enhanced microalgae cultivation using wastewater nutrients extracted by a microbial electrochemical system. Water Res. 206 (2021) 117722. doi: 10.1016/j.watres.2021.117722 

60. Kim E., Jeon J., Zhu Y., Hoppe E.D., Jun Y., Genin G.M., Zhang F.* A Biosynthetic Hybrid Spidroin-Amyloid-Mussel-Foot Protein for Underwater Adhesion on Diverse Surfaces. ACS Appl. Mater. Interfaces, 2021, 13, 41, 48457–48468. doi: 10.1021/acsami.1c14182

59. Li J., Zhang F.* Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int. J. Mol. Sci. 2021, 22(19), 10698. doi: 10.3390/ijms221910698

58.  Bowen C.H., Sargent C.J., Wang A., Zhu Y., Li J., Chang X., Mu X., Galazka J.M., Jun Y., Keten S., Zhang F.* Microbial Production of Megadalton Titin Yields Fibers with Advantageous Mechanical Properties. Nat. Commun., 12, 5182, doi: 10.1038/s41467-021-25360-6 (2021)

57. Li J., Zhu Y., Yu H., Dai B., Jun Y., Zhang F.* Microbially  Synthesized Polymeric Amyloid Fiber Promotes β-Nanocrystal Formation and Displays Gigapascal Tensile Strength. ACS Nano, 15, 711843–11853, doi: 10.1021/acsnano.1c02944 (2021)

56. Schmitz A., Zhang F.* Massively parallel gene expression variation measurement of a synonymous codon library. BMC Genomics. 22, 149,  doi: 10.1186/s12864-021-07462-z, (2021).

55. Lin PC., Zhang F., Pakrasi HB. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab Eng Commun. 12, e00164, doi: 10.1016/j.mec.2021.e00164, (2021).

54. Hartline C., Schmitz A., Han Y., Zhang F.,* Dynamic control in metabolic engineering: theories, tools and applications. Metab Eng. 63, 126-140, doi: 10.1016/j.ymben.2020.08.015, (2021).

53. Han Y., Zhang F.,* Control strategies to manage trade-offs during microbial production. Curr Opin Biotechnol. 66, 158-164, doi: 10.1016/j.copbio.2020.07.004, (2020).

52.  Kim E., Qin X., Qiao JB., Zeng Q., Fortner J.D., Zhang F.,* Graphene oxide/mussel foot protein composites for high-strength and ultra-tough thin films. Sci Rep. 10, 19082. doi: 10.1038/s41598-020-76004-6, (2020).

51. Hartline C., Mannan A.A., Zhang F.*, Oyarzún DA.*, Metabolite sequestration enables rapid recovery from fatty acid depletion in Escherichia coli. mBio, 11(2). pii: e03112-19. doi: 10.1128/mBio.03112-19. (2020)

50. Evans T.D., Zhang F.,* Bacterial Metabolic Heterogeneity: Origins and Applications in Engineering and Infectious Disease. Curr Opin Biotechnol. 64, 183-189, doi: 10.1016/j.copbio.2020.04.007, (2020).

49. Han Y., Zhang F.,* Heterogeneity coordinates bacterial multitasking in single cells. PLoS Comput Biol. 16(1):e1007643. doi: 10.1371/journal.pcbi.1007643. (2020)

48. Lin PC, Zhang F, Pakrasi HB. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci Rep. 10(1):390. doi: 10.1038/s41598-019-57319-5. (2020)

47. Bowen C.H., Reed T.J., Sargent C.J., Mpamo B., Galazka J.M., Zhang F.*, Seeded Chain-Growth Polymerization of Proteins in Living Bacterial Cells. ACS Synthetic Biology, 8. 2651-2658. doi.org/10.1021/acssynbio.9b00362 (2019)

2

46. Bai W., Sargent C.J., Choi J., Pappu R.V., Zhang F.*, Covalently-assembled, single-chain protein nanostructures with ultra-high stability. Nature Communications, 10, 3317. doi://doi.org/10.1038/s41467-019-11285-8 (2019)

2

45. Roell G.W., Carr R.R., Campbell T., Shang Z., Henson W.R., Czajka J.J., Martín H.G., Zhang F., Foston M., Dantas G., Moon T.S., Tang Y. J., A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630. Metab Eng, 55, 120-130, doi: 10.1016/j.ymben.2019.06.013. (2019)

44. Bai W., Geng W., Wang S., Zhang F., Biosynthesis, Regulation and Engineering of Microbially-produced Branched Biofuels. Biotechnol Biofuels, 12:84. doi:10.1186/s13068-019-1424-9. (2019).

43. Dai B., Sargent C.J., Gui X., Liu C., Zhang F., Fibril self-assembly of amyloid–spider silk block polypeptides. Biomacromolecules, 20(5):2015-2023. doi: 10.1021/acs.biomac.9b00218. (2019)

1

42. Kim E., Dai B., Qiao J.B., Li W., Fortner J.D., Zhang F., Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion. ACS Appl. Mater. Interfaces, 10 (49), 43003–43012 (2018) DOI: 10.1021/acsami.8b14890.

s

41. Bowen C.H.*, Dai B.*, Sargent C.J., Bai W, Ladiwala P, Feng H., Huang W, Kaplan D.L., Galazka J.M., Zhang F., Recombinant Spidroins Replicate Mechanical Properties of Natural Spider Silk. Biomacromolecules, 19 (9), 3853–3860 (2018) DOI: 10.1021/acs.biomac.8b00980. *These authors contributed equally.

1

40. Xiao Y, Wang S, Rommelfanger S, Balassy A, Barba-Ostria C, Gu P, Galazka JM, Zhang F. Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng. Jun 13. (2018) doi: 10.1002/bit.26747.

1

39. Guamán LP*, Barba-Ostria C*, Zhang F, Oliveira-Filho ER, Gomez JGC, Silva LF. Engineering xylose metabolism for production of polyhydroxybutyrate in the non-model bacterium Burkholderia sacchari. Microb Cell Fact. 17(1):74. (2018) doi: 10.1186/s12934-018-0924-9.*These authors contributed equally.

38. Liu D, Mannan AA, Han Y, Oyarzún DA, Zhang F, Dynamic metabolic control: towards precision engineering of metabolism. J Ind Microbiol Biotechnol. (2018). doi: 10.1007/s10295-018-2013-9

37. Liu D, Zhang F., Metabolic Feedback Circuits Provide Rapid Control of Metabolite Dynamics. ACS Syn Biol. 7 (2), 347–356, doi: 10.1021/acssynbio.7b00342 (2018).

36. Jiang W, Gu P, Zhang F., Steps towards ‘drop-in’ biofuels: focusing on metabolic pathways. Current Opinion in Biotechnology. 53, 26-32 (2018) doi.org/10.1016/j.copbio.2017.10.010.

35. Lin PC, Saha R, Zhang F, Pakrasi HB., Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Scientific Reports. 7(1), 17503. doi: 10.1038/s41598-017-17831-y. (2017).

1

34. Jiang W., Qiao J.B., Bentley G.J., Liu D., Zhang F., Modular pathway engineering for the Production of Branched-Chain Fatty Alcohols. Biotechnol Biofuels. 10:244. doi: 10.1186/s13068-017-0936-4. eCollection (2017).

33. Schmitz AC, Hartline CJ, Zhang F, Engineering Microbial Metabolite Dynamics and Hetergeneity. Biotech J . ASAP, (2017) Sep 13. doi: 10.1002/biot.201700422.

32. Mannan AA, Liu D, Zhang F, Oyarzún DA., Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.ACS Syn Biol. 6(10):1851-1859. doi: 10.1021/acssynbio.7b00172, (2017).

31. Xiao Y, Jiang W, Zhang F., Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin. ACS Syn Biol. 6(10):1807-1815. doi: 10.1021/acssynbio.7b00069. (2017).

30. Liu D., Wan N., Zhang F., Tang Y.J., Wu S.G., Enhancing fatty acid production in Escherichia coli by Vitreoscilla hemoglobin overexpression. Biotechnol Bioeng. 114, 463, (2017).

29. Bentley G.J., Jiang W., Guamán L.P., Xiao Y., Zhang F., Engineering Escherichia coli to produce branched-chain fatty acids in high percentages. Metab Eng. 38, 148, (2016).

28. Saha R., Liu D., Hoynes-O’Connor A.G., Liberton M., Yu J., Bhattacharyya M., Balassy A., Zhang F., Moon T., Maranas C.D., Pakrasi H.B., Synechocystis sp. PCC 6803: light plus endogenous regulation governing gene expression patterns in the diurnal cycle.mBio, 7(3), (2016).

27. Xiao Y., Bowen C., Liu D., Zhang F., Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol. 12, 339, (2016).

 

26. Bowen C., Bonin J., Kogler A., Barba-Ostria C., Zhang F., Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α,ω-dicarboxylic acids. ACS Syn Biol. 5, 200, (2016).

25. Liu D., Evans T., Zhang F., Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng. 31, 35, (2015).

24. Jiang Y., Wang. WN, Liu D., Nie Y., Li W., Wu J., Zhang F., Biswas P., Fortner JD.,Engineered crumpled graphene oxide nanocomposite membrane assemblies for advanced water treatment processes. Environ Sci Technol. 49, 6846, (2015).

23. Jiang W., Jiang Y., Bentley G.J., Liu D., Xiao Y., Zhang F., Enhanced production of branched-chain fatty acids by replacing β-ketoacyl-(acyl-carrier-protein) synthase III (FabH). Biotechnol Bioeng. 112, 1613, (2015).

22. Zhang, F., Editorial: Special Issue on Circuits in Metabolic Engineering. ACS Synth Biol. 4, 93, (2015).

Cover image

21. Liu, D., Xiao, Y., Evans, B., Zhang, F., Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol. 4, 132, (2015).

20. He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang YJ, Peng L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13 C-metabolic flux analysis. Biotechnol Bioeng. 111, 575, (2014).

19. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol. 31, 1039, (2013).

18. Yu, Y., You, L., Liu, D., Hollinshead, W., Tang, Y., Zhang, F., Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Mar Drugs. 11, 2894, (2013).

17. Liu, D., Hoynes-O’Connor, A., Zhang, F., Bridging the gap between systems biology and synthetic biology. Front. Microbiol. 4, 211, (2013).

____________________________________________________________________________________________________________

Before Washington University:

16. Zhang, F., Ouellet, M., Batth, T.S. Adams, P.D., Petzold, C.J., Mukhopadhyay, A., Keasling, J.D Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng, 14, 653-660 (2012).

15. Peralta-Yahya, P.P.*, Zhang, F.*, del Cardayre, S.B.., Keasling, J.D., Microbial engineering for the production of advanced biofuels. Nature, 488, 74110, 320-328 (2012), *These authors contributed equally.

4

14. Zhang, F., Carothers, J.M., Keasling, J.D., Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol, Epub Mar 25, 2012

20

13. Zhang, F., Woolley, G.A., Muller, K.M., Arndt, K.M., Light-controlled gene switches in mammalian cells. Methods Mol Biol, 813, 195-210 (2012)

12. Lee, T.S., Krupa, R.A., Zhang, F., Hajimorad, M., Prasad, N., Lee, S.K., Keasling, J.D., Biobrick vectors and datasheets; a synthetic biology platform for metabolic engineering. J Biol Eng, 5, (1), 12 (2011)

11. Zhang, F., K easling, J.D., Biosensors and their applications in microbial metabolic engineering. Trends in Microbiol. 19, (7), 323-329 (2011)

10. Zhang, F., Rodriguez, S., Keasling, J.D., Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol, 22, (6), 775-783 (2011).

9. Zhang, F., Timm, K.A., Arndt, K.M., Woolley, G.A., Photocontrol of coiled-coil proteins in living cells. Angew Chem Int Ed Engl. 49, (23), 3943-3946 (2010). Highlighted in Science Daily (May. 3, 2010).

8. Jackson, S.G., Zhang, F., Chindemi, P., Junop, M.S., Berti, P.J., Evidence of kinetic control of ligand binding and staged product release in MurA (enolpyruvyl UDP-GlcNAc synthase)-catalyzed reactions. Biochemistry. 48, (49), 11715-11723 (2009).

7. Zhang, F., Zarrine-Afsar, A., Al-Abdul-Wahid, S., Prosser, R.S., Davidson, A.R., Woolley, G.A., A structure-based approach to the photo-control of protein folding. J Am Chem Soc., 131, (6), 2283-2289 (2009). Highlighted in ACS Chem. Biol., 4, (3), 149-150, (2009).

6. Sadovski, O., Beharry, A.A., Zhang, F., Woolley, G.A., Spectral tuning of azobenzene photo-switches for biological applications. Angew Chem Int Ed Engl. 48, (8), 1484-1486 (2009).

5. Zhang, F., Sadovski, O., Woolley, G.A., Synthesis and Characterization of a Long, Rigid Photoswitchable Cross-Linker for Promoting Peptide and Protein Conformational Change. ChemBioChem, 27, 9(13), 2147-2154 (2008).

4. Zhang, F., Sadovski, O., Xin, S.J., Woolley, G.A., Stabilization of Folded Peptide and Protein Structures via Distance Matching with a Long, Rigid Cross-linker, J Am Chem Soc, 129, (46), 14154-14155 (2007).

3. Burns, D.C., Zhang, F., Woolley, G.A., Synthesis of 3,3′-bis(sulfonate)-4,4′-bis(chloroacetamido) azobenzene and cysteine cross-linking for photo-control of protein conformation and activity, Nature Protocols, 2, 251-258 (2007).

2. Woolley, G.A., Lee, E., Zhang, F., sGal: a computational method for finding surface exposed sites in proteins suitable for Cys-mediated cross-linking, Bioinformatics, 24, 3101-3102 (2006).

1. Zhang, F., Berti, P. J., Phosphate Analogues as Probes of the Catalytic Mechanisms of MurA and AroA, The Carboxyvinyl Transferases, Biochemistry, 45, 6027-6037 (2006).

Patents

  1. Zhang F., Kim E., Split Intein Mediated Polymerization and Production of Mussel Foot Adhesive Protein Materials, US Patent App. 16/554,171
  2. Zhang F., Bowen C.H., Dan B., Split Intein Mediated Protein Polymerization for Microbial Production of Materials, US Patent App. 16/713,643.
  3. Bentley G.J., Jiang W., Zhang F., Host cells and methods for producing fatty acid-derivatives with high branched-chain percentage. US Patent 10,556,930, 2017
  4. Zhang F., Xiao Y., Quality control for improved product biosynthesis. WO2017040958A1, 2015
  5. Zhang, F., Steen, E.J., Keasling, J.D., Host Cells and Methods for Producing Fatty Acid. US 20130059295 A1